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A B S T R A C T   
Computer Vision (CV) is an automation technology with applications in 
national defense, particularly for enabling automated object targeting 
systems. This study focuses on developing a unique marker detection system 
to support such targeting capabilities. The markers consist of laser beams 
characterized by distinct colors, shapes, sizes, and blinking patterns, designed 
to be identifiable only by a programmed computer system. Incorporating 
these laser properties as input parameters is essential for effective object 
recognition. Experimental results indicate that the detection threshold was 
calibrated to identify red, green, and blue colored objects under indoor 
lighting conditions of 71.3 Lux. The CV system successfully identified a 
circular marker positioned 680 cm away from triangular and square markers. 
In distance estimation tests using a Logitech C615 HD camera, the system 
achieved average error rates of 4% for circles, 5% for rectangles, and 6% for 
triangles. Overall, the system demonstrated a tracking accuracy of 95.24% for 
unique markers placed at distances ranging from 50 to 300 cm. 
 
 
 

1. Introduction  
Computer Vision (CV) exemplifies the rapid 

progress of automation technology [1,2], driven by 
efforts to replicate human sensory capabilities, 
particularly vision. In this context, a camera 
functions as a surrogate eye, capturing visual details 
such as geometry, color, size, and shape [3,4]. 
Computers and software then process these inputs 
to enable object detection and identification. As a 
result, CV has been widely adopted across various 
domains for object tracking and recognition tasks 
[4,5]. 

Alongside automation, military technology has 
also seen significant advancements. Consequently, 
there is a growing need for systems capable of 
tracking, detecting, marking, locking onto, and 
engaging targets using image processing, specifically 
through an automated unique marker system [6,7]. 
Markers are generally artificial indicators designed 
for easy recognition and identification [8]. 

Despite the proliferation of marker-based 
tracking systems, most existing approaches rely on 
static or continuous laser beams, which are 
susceptible to evasion, obstruction, or environmental 
interference. Moreover, conventional systems often 
lack dynamic encoding mechanisms that could 
enhance marker distinctiveness and resistance to 
distraction. This presents a critical gap in the 

development of robust, interference-resistant 
marker recognition systems, particularly in real-time, 
multi-object environments. 

To address this gap, this study introduces a 
specialized form of marker. These unique markers 
are derived from conventional designs but are 
enhanced through light intensity modulation using 
Pulse Width Modulation (PWM). This technique 
creates a blinking laser effect, which not only 
improves visibility but also encodes temporal 
information that the system can uniquely interpret. 
PWM is also employed to control the system's servo 
motor [9,10]. The experimental setup utilizes 
commercially available red, green, and blue lasers as 
unique markers. 

In this system, the camera serves as the input 
device, capturing object-related data such as color, 
pattern, and size through CV techniques [4,11,12]. 
One application of CV explored here is Vision Marker 
Recognition, which is advanced into a Recognizing 
Unique Marker system [13]. The detection process 
uses the HSV (Hue, Saturation, Value) color space for 
segmentation and contour analysis [14,15]. The 
marker itself is a laser beam characterized by a 
distinct color, shape, size, and blinking pattern, 
making it recognizable only by a computer 
programmed for this purpose. Once an object is 
marked, the camera tracks it and coordinates with a 
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servo motor to follow its movement. Each identified 
object is assigned a unique marker [16,17], designed 
to resist interference or distraction [4]. 

The cameras used in this study are equipped with 
image processing capabilities, enabling them to 
identify and locate objects accurately. They typically 
feature a 78° field of view, a resolution of 640 × 480 
pixels, and a frame rate of 30 frames per second (fps). 
Image processing and analysis are conducted using 
the OpenCV library, which supports integration with 
programming languages such as Android, .NET, Java, 
and iOS, and is compatible with platforms like 
Eclipse and Visual Studio across Windows, macOS, 
and Linux [4,10,11]. The Unique Marker Recognizing 
System, developed within OpenCV, is employed for 
target identification in this setup [4,13,18]. 

The novelty of this research lies in the integration 
of PWM-based blinking laser markers with CV-based 
recognition and servo-controlled tracking, forming a 
distraction-resistant and dynamically encoded 
marker system. Unlike prior works that rely on static 
visual cues, this approach leverages temporal 
modulation to enhance marker uniqueness and 
robustness.  

Mono cameras can detect multiple objects with 
predefined shapes and colors, contributing to the 
refinement of marker recognition. This study 
investigates the properties of blue, red, and green 
lasers in an object recognition system that utilizes 
blinking lasers as unique markers. This feature, 
originating from a specific blinking frequency and 
forming a complex code sequence, provides crucial 
feedback for decision-making and represents a 
significant step toward achieving precise and reliable 
object labeling. 

The structure of this paper is as follows: Section 1 
provides an introduction, Section 2 outlines the 
proposed method for generating unique object 
recognition markers, Section 3 presents the 
experimental results, and Section 4 offers a summary 
and conclusion. 

 
2. Methods 

The computer vision (CV) system was 
implemented using Python within the Visual Studio 
Code (VSC) environment, leveraging the OpenCV 
library for image processing tasks. This integration 
allows OpenCV to process images and extract key 
features such as color, pattern, and size. These 
parameters enable the CV system to identify, track, 
and lock onto objects using designated markers. 
Furthermore, image processing techniques are 
employed to derive distance and positional data, 
which are transmitted serially to serve as input for 
the microcontroller. 

The experimental framework designed to 
evaluate the object identification system using 
unique markers consists of two main components: 
object recognition via distinctive markers and a 
blinking laser mechanism. The following subsections 
provide a detailed explanation of these two system 
configurations. 
 
2.1. Object Recognition by Unique Marker 

As illustrated in Fig. 1, a PWM-based encoding 
laser is utilized to build the unique marker and drive 
system [8,9]. 

 
 

Fig. 1: The experimental setup analyzes the object 
recognition system using unique markers. 

 
An encoding laser refers to a laser modulated 

using Pulse Width Modulation (PWM) to produce a 
blinking pattern that serves as a temporal identifier. 
Specifically, the system assigns a distinct frequency 
to each marker, allowing the camera to differentiate 
objects based on their blinking rate. This frequency 
is extracted through frame-based intensity sampling 
and matched against predefined values for marker 
identification. The target marker is generated using 
an Arduino Uno to drive the PWM method [8,9,19], a 
technique applied in previous studies to regulate 
laser illumination intensity via a dimmer circuit. 

The dimmer circuit operates on the principle of 
voltage regulation through PWM. This PWM signal is 
a time-controlled pulse pattern directed at a target, 
and the system measures the time taken for the 
pulses to be reflected to a receiver, such as a camera. 

Object detection based on color involves several 
stages, beginning with connecting the camera to a 
computer and configuring it for real-time image 
capture. The captured images are stored in memory 
as a 640 × 480-pixel matrix in the RGB (Red, Green, 
Blue) color space. These images are then converted 
to HSV (Hue, Saturation, Value) format for color 
segmentation. Segmentation is performed by setting 
lower and upper thresholds for hue, saturation, and 
value, which are adjustable via a trackbar ranging 
from 0 to 255. HSV thresholding is preferred for its 
robustness against lighting variations. Each pixel is 
classified: if it falls within the defined HSV range, it is 
assigned a value of 1 (white); otherwise, it is set to 0 
(black). 

During segmentation, OpenCV loads the image 
into an array format and converts it from RGB to HSV. 
To reduce noise and minimize detection errors, the 
image is separated from the background using 
OpenCV's threshold function. The object’s position is 
then identified by detecting contours with 
the findContours function. The system iterates 
through all detected contours and selects those with 
an area greater than 100 pixels. Detection is based 
on analyzing the number of edges derived from the 
object’s corner points using 
the approxPolyDP function. Finally, the number of 
sides for each shape is determined according to the 
program's logic, allowing the system to label objects 
as triangles, squares, or circles based on their 
geometric features. 

To estimate object size, OpenCV functions analyze 
the contours from the thresholded image. The 
calculated pixel-based width and height are 
displayed on the frame and are later used for 
distance calibration. 

The camera used in this experiment has a 78° 
field of view, a resolution of 640 × 480 pixels, an 
approximate focal length of 3.7 mm, and a frame rate 
of 30 fps. It identifies objects using OpenCV-based 
image processing software [4,11,16,20]. The system 
adheres to the triangle similarity principle, utilizing a 
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biconvex lens that defines the relationship between 
the object and its image. According to this principle, 
the ratio of the actual object distance from the 
camera to the image width is proportional to the 
focal length divided by the sensor width. As the 
object moves farther from the camera, its captured 
size decreases. If the object’s actual size and the 
camera’s focal length are known, the real distance 
can be calculated. 

This study employs OpenCV's unique marker 
detection to identify objects. The markers are 
defined by several criteria: color, pattern, size, and 
blinking laser frequency. The system integrates a 
laser and camera with a servo motor to enable 
dynamic tracking and alignment with detected 
objects. Figure 1 illustrates the camera’s coverage 
area, and object recognition is performed on the 
computer using OpenCV. 

 
2.2. Blinking Laser 

Figure 2 illustrates how the PWM method induces 
a blinking effect in the laser when integrated into the 
system [8,9,19].  

 

 
Fig. 2: The schematic of the blinking effect works 

 
The dim-bright modulation mechanism enables 

the system to perform continuous observation while 
incorporating meaningful feedback into the blinking 
pattern. This dynamic light behavior, typically 
controlled via Pulse Width Modulation (PWM), 
serves as both a visual cue and a coded signal for the 
detection system to interpret. By assigning specific 
blinking frequencies to different markers, the system 
not only tracks objects in real-time but also conveys 
distinct identification or status information to the 
decision-maker. This dual function enhances both 
monitoring efficiency and decision-making accuracy. 

In this setup, the marker serves as a synthetic cue 
to support object identification. The lasers employed 
include a red laser (650 nm, 5 mW), a blue laser (405 
nm, 5 mW), and a green CNC laser module (532 nm, 
2500 mW). The blinking behavior, generated by the 
system’s operation, is integrated into the laser 
encoding mechanism to produce a distinctive marker. 

The encoding laser is driven by a PWM signal, 
which consists of a time-regulated pulse pattern 
used to determine the duration for the reflected 
signal to travel from the target back to the camera. 
The laser beam itself serves as the marker, while the 
PWM-based control system, implemented via an 
Arduino Uno, manages the electrical input through a 
dimmer circuit. This dimmer generates the PWM 
signal using a voltage modulation technique. 

The marker is designed with distinct attributes in 
terms of size, color, and pattern to ensure easy 
recognition. A key innovation of this study is the use 
of a blinking laser signal as a coded identifier to 
create a unique marker. 

 
 
 

3. Result and discussion 
In this experiment, the focus is on analyzing the 

colors of different laser diodes, specifically blue, red, 
and green, as distinctive markers within an object 
recognition system. As illustrated in Fig. 3, the study 
examines the intensity response of each laser type by 
applying specific voltage inputs, allowing a 
comparative evaluation of their performance 
characteristics. 

To the best of our knowledge, this study is the 
first to utilize a green CNC laser as a unique marker, 
allowing comparative analysis with standard red and 
blue lasers. The green CNC laser demonstrated the 
highest intensity, likely due to its lower threshold 
voltage and the material properties inherent to CNC 
laser construction. 

 
Fig. 3: The voltage input of blue, red, and green lasers 

toward the intensity. 

 
Fig. 4: The duty cycle of blue, red, and green lasers toward 

the output voltage. 
 

Additionally, Fig. 4 illustrates the relationship 
between duty cycle variation and the output voltage 
of the encoding lasers. Tests were conducted using 
blue, red, and green lasers, revealing that the green 
laser consistently produced the highest output 
voltage across all duty cycle settings. 

PWM signal control is utilized to generate the 
blinking effect of the lasers. As shown in Fig. 4, duty 
cycle variations were applied to blue, red, and green 
lasers to observe their output behavior. The duty 
cycle, defined by the ratio of the on-time (ton) to the 
total cycle time, represented in Fig. 2 as 100% ton 
and 0% toff, directly influences the laser’s output 
voltage. Figure 4 demonstrates that as the duty cycle 
percentage increases, the corresponding output 
voltage also rises, highlighting the system’s 
responsiveness to PWM modulation. 
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Fig. 5: (a) Display trackbars to set the threshold (b) Color 

detection results of indoor objects. 
 

The selection of the green CNC laser module over 
the red and blue lasers was based on several 
practical and performance-driven considerations. 
First, the green CNC laser offers significantly higher 
brightness and visibility, which is crucial for reliable 
detection in both indoor and outdoor environments. 
Its beam is more easily recognized by standard 
camera sensors, especially under varying lighting 
conditions. Second, the CNC laser module provides 
stable output and precise beam control, making it su- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

itable for consistent marker tracking. In contrast, red 
and blue lasers, while useful for basic detection, have 
lower power and visibility, which can limit their 
effectiveness in long-range or high-interference 
scenarios. Although the green CNC laser operates at 
a higher power level, its use was intended to ensure 

robust performance during early-stage testing. 
Future experiments will consider power 
normalization across laser types to enable fairer 
comparisons and address safety concerns. 

Furthermore, laser detection based on variations 
in color, pattern, size, and blinking behavior is 
performed using CV techniques, specifically through 
two core processes: color segmentation and contour 
detection. For color analysis, laser data in RGB 
format is converted to HSV using the OpenCV library, 
enabling more effective segmentation. HSV-based 
processing allows the system to identify target 
objects with distinct colors, shapes, and dimensions.  

Pattern detection through threshold adjustment 
for specific colors is illustrated in Fig. 5. To identify 
blue-colored objects, the HSV lower threshold is set 
to L-H: 88, L-S: 102, L-V: 211, and the upper 
threshold to U-H: 135, U-S: 255, U-V: 255. For red 
object patterns, detection is achieved by configuring 
the lower threshold to L-H: 0, L-S: 102, L-V: 211, and 
the upper threshold to U-H: 90, U-S: 255, U-V: 211. 
Similarly, green-colored patterns are recognized by 
setting the lower HSV values to L-H: 34, L-S: 86, L-V: 
125, and the upper values to U-H: 84, U-S: 255, U-V: 
255. These threshold configurations enable the 
system to segment and identify objects based on 
their color profiles accurately. 

As illustrated in Fig. 5(a), the HSV parameters are 
adjusted via a trackbar to establish threshold values 
for detecting blue-colored markers. The thresholding 
process involves filtering each pixel's HSV value to 
isolate relevant features. As shown in Fig. 5(b), this 
segmentation technique separates the target object 
from its background, producing a camera-captured 
image where the background has been removed or 
darkened, following the approach described in [14] 
and [15]. 

In parallel, segmentation data is used to identify 
and highlight objects by enclosing them within 
bounding boxes, while object detection relies on a tr- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ackbar interface to filter colors. The system 
processes images captured by the camera using the 
ReadImage function, converting them from RGB to 
HSV format. This conversion enables the program to 
determine the minimum and maximum HSV values 
for each color, with the upper bounds set at L-H: 180, 

Table 1: Laser detection testing with different blinking. 

Laser Data retrieval Duty Cycle 
 

HSV Value 
 

Red  

Blinking 1: 50% and 5% 
Delay 1: 7s 

Blinking 2: 50% and 5% 
Delay 2: 1s 

L-H: 155 
L-S: 0 

L-V: 209 
U-H: 180 
U-S: 255 
U-V: 255 

Green  

Blinking 1: 50% and 5% 
Delay 1: 7s 

Blinking 2: 50% and 5% 
Delay 2: 1s 

L-H: 155 
L-S: 0 

L-V: 209 
U-H: 180 
U-S: 255 
U-V: 255 

Blue  

Blinking 1: 50% and 5% 
Delay 1: 7s 

Blinking 2: 50% and 5% 
Delay 2: 1s 

L-H: 114 
L-S: 0 
L-V: 0 

U-H: 180 
U-S: 255 
U-V: 255 

 



166 
 

L-S: 255, L-V: 255, and U-H: 180, U-S: 255, U-V: 255. 
As depicted in Fig. 5(b), the test objects, which are 
styrofoam shapes wrapped in red, green, and blue 
cardboard, include triangles, squares, and circles. 
These color variations are used to evaluate the 
system’s ability to detect objects under indoor 
lighting conditions. The results confirm that the HSV-
based color detection method effectively 
distinguishes object colors across diverse scenarios. 

Table 1 presents the outcomes of laser beam 
detection tests, which demonstrate the effectiveness 
of using Computer Vision (CV) to identify lasers 
based on their color, shape, size, and blinking 
behavior. The system successfully detects blinking 
lasers, also referred to as dimmers, by leveraging CV 
techniques such as color segmentation and contour-
based shape recognition. These results confirm that 
the camera can consistently recognize lasers with 
identical visual attributes when blinking is 
introduced. Furthermore, the data in Table 1 
highlights the reliability of the unique marker system, 
particularly when combined with the optimized duty 
cycle settings used in this experiment. 

In this experiment, both laser sources were 
configured to have identical visual attributes. 
Specifically, the same color, size, and beam pattern, 
under blinking conditions. The only distinguishing 
factor was the duration of their blinking cycles: Laser 
1 (duty cycle 50% and 5%) emitted a signal lasting 7 
seconds, while Laser 2 (duty cycle 50% and 5%) 
blinked for only 1 second. Despite their identical 
appearance, the camera system successfully detected 
and differentiated the two lasers based solely on 
their temporal blinking behavior. This result 
confirms the system’s ability to recognize and 
interpret time-based encoding, demonstrating a key 
feature: the capacity to detect user-defined unique 
markers. The successful identification of these 
markers validates the implementation of a 
programmable recognition framework, in which 
blinking duration serves as a dynamic identifier 
beyond static visual characteristics. 

The accuracy of pattern detection in this system 
is highly dependent on the threshold parameter 
settings; incorrect values can introduce noise during 
color segmentation, leading to suboptimal 
recognition. The process begins with color detection 
to isolate the object based on its hue, followed by 
contour analysis to determine its shape. Color 
segmentation enables the system to identify and 
separate patterns, using the object's color as the 
basis for region extraction. 
 

Table 2: Evaluation of object detection range in indoor 
environments. 

Indoor Condition Testing 

No 

Distance 
of 

objects 
to 

system 
(cm) 

Experiment to- (1=correct, 
0=failed) Accuracy 

of the 
system 

(%) 1 2 3 4 5 6 7 

1 50 1 0 1 1 1 1 1 85.71 
2 100 1 1 1 1 1 1 1 100 
3 150 1 1 1 1 1 1 1 100 
4 200 1 1 1 1 0 1 1 85.71 
5 250 1 1 1 1 1 1 1 100 
6 300 1 1 1 1 1 1 1 100 

Average accuracy testing 95.24 
 

The system has been configured to perform real-
time monitoring by identifying objects based on their 
color and geometric shape, consistent with 
methodologies described in [13] and [18]. Utilizing a 
commercial camera, the system effectively detects 
laser-encoded markers within a range of 50 to 300 
cm. After synchronization, the tracking response 
time is recorded at 1.11 seconds. As evidenced in 
Tables 2 and 3, the system demonstrates robust 
performance, achieving an average detection 
accuracy of 95.24% in indoor conditions and 85.74% 
outdoors. 

 
Table 3: Evaluation of object detection range in outdoor 

environments. 
Indoor Condition Testing 

No 

Distance 
of 

objects 
to 

system 
(cm) 

Experiment to- (1=correct, 
0=failed) Accuracy 

of the 
system 

(%) 1 2 3 4 5 6 7 

1 50 1 1 1 1 1 1 1 100 
2 100 1 1 1 1 1 1 1 100 
3 150 1 1 1 1 0 1 1 85.71 
4 200 1 1 1 1 0 1 1 85.71 
5 250 1 1 1 1 0 0 1 71.42 
6 300 1 1 1 0 1 0 1 71.42 

Average accuracy testing 85.71 
 
The experimental results reveal notable 

performance differences between indoor and 
outdoor environments, primarily due to variations in 
ambient light intensity, which significantly influence 
the system’s detection accuracy. For effective 
detection, the laser's emitted intensity must exceed 
the surrounding ambient brightness. Using a 
Logitech C615 HD camera as a distance sensor, the 
system demonstrated average measurement errors 
of 4%, 5%, and 6% for circular, square, and 
triangular objects, respectively, as illustrated in Fig. 
5(b). These findings underscore the critical role of 
environmental lighting conditions in maintaining 
consistent object recognition performance. 

Among the three shape-based tests, the circular 
object yielded the lowest measurement error at 4%. 
The object size estimation results demonstrate that 
the computer vision system can accurately calculate 
pixel dimensions, enabling reliable recognition based 
on color attributes. These findings provide a solid 
basis for employing various laser types as unique 
markers within this experimental framework. 

Experimental results confirm that the green CNC 
laser exhibits a significantly higher power density 
compared to other laser colors. To quantify this, 
calculations were performed using a color spectrum 
calculator, which evaluates intensity based on 
wavelength and input power. Under identical power 
conditions, the green CNC laser was found to be 
16,405 times brighter than the red laser, highlighting 
its superior visibility. This enhanced brightness, 
combined with low power consumption, makes the 
green CNC laser highly suitable as a unique marker 
for object recognition systems. Its strong 
detectability by camera sensors reinforces its 
practical advantage. These insights underscore the 
need for future development of detection algorithms 
that can accommodate diverse object sizes and 
patterns to achieve greater precision in recognition 
tasks. 
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4. Conclusion 
This research demonstrates the effectiveness of 

using laser-based unique markers for object 
recognition systems, particularly through the 
integration of computer vision techniques such as 
color segmentation and contour detection. Among 
the tested laser types, the green CNC laser stands out 
due to its superior intensity, lower threshold voltage, 
and higher output voltage, making it highly suitable 
as a distinctive marker. The system successfully 
identified and tracked objects based on color, shape, 
size, and blinking behavior, achieving high accuracy 
rates of 95.24% indoors and 85.71% outdoors across 
distances ranging from 50 cm to 300 cm. 

For future development, the implementation of 
invisible laser markers could enhance security and 
reduce visual distraction. Furthermore, refining 
detection algorithms to better accommodate 
variations in object size, shape, and environmental 
lighting will be essential for improving robustness 
and expanding the system’s applicability in dynamic 
or outdoor settings. 
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