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Computer Vision (CV) is an automation technology with applications in
national defense, particularly for enabling automated object targeting
systems. This study focuses on developing a unique marker detection system
to support such targeting capabilities. The markers consist of laser beams
characterized by distinct colors, shapes, sizes, and blinking patterns, designed
to be identifiable only by a programmed computer system. Incorporating
these laser properties as input parameters is essential for effective object
recognition. Experimental results indicate that the detection threshold was
calibrated to identify red, green, and blue colored objects under indoor
lighting conditions of 71.3 Lux. The CV system successfully identified a
circular marker positioned 680 cm away from triangular and square markers.
In distance estimation tests using a Logitech C615 HD camera, the system
achieved average error rates of 4% for circles, 5% for rectangles, and 6% for
triangles. Overall, the system demonstrated a tracking accuracy of 95.24% for

unique markers placed at distances ranging from 50 to 300 cm.

1. Introduction

Computer Vision (CV) exemplifies the rapid
progress of automation technology [1,2], driven by
efforts to replicate human sensory -capabilities,
particularly vision. In this context, a camera
functions as a surrogate eye, capturing visual details
such as geometry, color, size, and shape [3,4].
Computers and software then process these inputs
to enable object detection and identification. As a
result, CV has been widely adopted across various
domains for object tracking and recognition tasks
[4,5].

Alongside automation, military technology has
also seen significant advancements. Consequently,
there is a growing need for systems capable of
tracking, detecting, marking, locking onto, and
engaging targets using image processing, specifically
through an automated unique marker system [6,7].
Markers are generally artificial indicators designed
for easy recognition and identification [8].

Despite the proliferation of marker-based
tracking systems, most existing approaches rely on
static or continuous laser beams, which are
susceptible to evasion, obstruction, or environmental
interference. Moreover, conventional systems often
lack dynamic encoding mechanisms that could
enhance marker distinctiveness and resistance to
distraction. This presents a critical gap in the
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development of robust, interference-resistant
marker recognition systems, particularly in real-time,
multi-object environments.

To address this gap, this study introduces a
specialized form of marker. These unique markers
are derived from conventional designs but are
enhanced through light intensity modulation using
Pulse Width Modulation (PWM). This technique
creates a blinking laser effect, which not only
improves visibility but also encodes temporal
information that the system can uniquely interpret.
PWM is also employed to control the system's servo
motor [9,10]. The experimental setup utilizes
commercially available red, green, and blue lasers as
unique markers.

In this system, the camera serves as the input
device, capturing object-related data such as color,
pattern, and size through CV techniques [4,11,12].
One application of CV explored here is Vision Marker
Recognition, which is advanced into a Recognizing
Unique Marker system [13]. The detection process
uses the HSV (Hue, Saturation, Value) color space for
segmentation and contour analysis [14,15]. The
marker itself is a laser beam characterized by a
distinct color, shape, size, and blinking pattern,
making it recognizable only by a computer
programmed for this purpose. Once an object is
marked, the camera tracks it and coordinates with a



servo motor to follow its movement. Each identified
object is assigned a unique marker [16,17], designed
to resist interference or distraction [4].

The cameras used in this study are equipped with
image processing capabilities, enabling them to
identify and locate objects accurately. They typically
feature a 78° field of view, a resolution of 640 x 480

pixels, and a frame rate of 30 frames per second (fps).

Image processing and analysis are conducted using
the OpenCV library, which supports integration with
programming languages such as Android, .NET, Java,
and i0S, and is compatible with platforms like
Eclipse and Visual Studio across Windows, macOS,
and Linux [4,10,11]. The Unique Marker Recognizing
System, developed within OpenCV, is employed for
target identification in this setup [4,13,18].

The novelty of this research lies in the integration
of PWM-based blinking laser markers with CV-based
recognition and servo-controlled tracking, forming a
distraction-resistant and dynamically encoded
marker system. Unlike prior works that rely on static
visual cues, this approach leverages temporal
modulation to enhance marker uniqueness and
robustness.

Mono cameras can detect multiple objects with
predefined shapes and colors, contributing to the
refinement of marker recognition. This study
investigates the properties of blue, red, and green
lasers in an object recognition system that utilizes
blinking lasers as unique markers. This feature,
originating from a specific blinking frequency and
forming a complex code sequence, provides crucial
feedback for decision-making and represents a
significant step toward achieving precise and reliable
object labeling.

The structure of this paper is as follows: Section 1
provides an introduction, Section 2 outlines the
proposed method for generating unique object
recognition markers, Section 3 presents the
experimental results, and Section 4 offers a summary
and conclusion.

2. Methods

The computer vision (CV) system was
implemented using Python within the Visual Studio
Code (VSC) environment, leveraging the OpenCV
library for image processing tasks. This integration
allows OpenCV to process images and extract key
features such as color, pattern, and size. These
parameters enable the CV system to identify, track,
and lock onto objects using designated markers.
Furthermore, image processing techniques are
employed to derive distance and positional data,
which are transmitted serially to serve as input for
the microcontroller.

The experimental framework designed to
evaluate the object identification system using
unique markers consists of two main components:
object recognition via distinctive markers and a
blinking laser mechanism. The following subsections
provide a detailed explanation of these two system
configurations.

2.1. Object Recognition by Unique Marker

As illustrated in Fig. 1, a PWM-based encoding
laser is utilized to build the unique marker and drive
system [8,9].
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Fig. 1: The experimental setup analyzes the object
recognition system using unique markers.

An encoding laser refers to a laser modulated
using Pulse Width Modulation (PWM) to produce a
blinking pattern that serves as a temporal identifier.
Specifically, the system assigns a distinct frequency
to each marker, allowing the camera to differentiate
objects based on their blinking rate. This frequency
is extracted through frame-based intensity sampling
and matched against predefined values for marker
identification. The target marker is generated using
an Arduino Uno to drive the PWM method [8,9,19], a
technique applied in previous studies to regulate
laser illumination intensity via a dimmer circuit.

The dimmer circuit operates on the principle of
voltage regulation through PWM. This PWM signal is
a time-controlled pulse pattern directed at a target,
and the system measures the time taken for the
pulses to be reflected to a receiver, such as a camera.

Object detection based on color involves several
stages, beginning with connecting the camera to a
computer and configuring it for real-time image
capture. The captured images are stored in memory
as a 640 x 480-pixel matrix in the RGB (Red, Green,
Blue) color space. These images are then converted
to HSV (Hue, Saturation, Value) format for color
segmentation. Segmentation is performed by setting
lower and upper thresholds for hue, saturation, and
value, which are adjustable via a trackbar ranging
from 0 to 255. HSV thresholding is preferred for its
robustness against lighting variations. Each pixel is
classified: if it falls within the defined HSV range, it is
assigned a value of 1 (white); otherwise, it is set to 0
(black).

During segmentation, OpenCV loads the image
into an array format and converts it from RGB to HSV.
To reduce noise and minimize detection errors, the
image is separated from the background using
OpenCV's threshold function. The object’s position is
then identified by detecting contours with
the findContours function. The system iterates
through all detected contours and selects those with
an area greater than 100 pixels. Detection is based
on analyzing the number of edges derived from the
object’s corner points using
the approxPolyDP function. Finally, the number of
sides for each shape is determined according to the
program's logic, allowing the system to label objects
as triangles, squares, or circles based on their
geometric features.

To estimate object size, OpenCV functions analyze
the contours from the thresholded image. The
calculated pixel-based width and height are
displayed on the frame and are later used for
distance calibration.

The camera used in this experiment has a 78°
field of view, a resolution of 640 x 480 pixels, an
approximate focal length of 3.7 mm, and a frame rate
of 30 fps. It identifies objects using OpenCV-based
image processing software [4,11,16,20]. The system
adheres to the triangle similarity principle, utilizing a



biconvex lens that defines the relationship between
the object and its image. According to this principle,
the ratio of the actual object distance from the
camera to the image width is proportional to the
focal length divided by the sensor width. As the
object moves farther from the camera, its captured
size decreases. If the object’s actual size and the
camera’s focal length are known, the real distance
can be calculated.

This study employs OpenCV's unique marker
detection to identify objects. The markers are
defined by several criteria: color, pattern, size, and
blinking laser frequency. The system integrates a
laser and camera with a servo motor to enable
dynamic tracking and alignment with detected
objects. Figure 1 illustrates the camera’s coverage
area, and object recognition is performed on the
computer using OpenCV.

2.2. Blinking Laser

Figure 2 illustrates how the PWM method induces
a blinking effect in the laser when integrated into the
system [8,9,19].
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Fig. 2: The schematic of the blinking effect works

The dim-bright modulation mechanism enables
the system to perform continuous observation while
incorporating meaningful feedback into the blinking
pattern. This dynamic light behavior, typically
controlled via Pulse Width Modulation (PWM),
serves as both a visual cue and a coded signal for the
detection system to interpret. By assigning specific
blinking frequencies to different markers, the system
not only tracks objects in real-time but also conveys
distinct identification or status information to the
decision-maker. This dual function enhances both
monitoring efficiency and decision-making accuracy.

In this setup, the marker serves as a synthetic cue
to support object identification. The lasers employed
include a red laser (650 nm, 5 mW), a blue laser (405
nm, 5 mW), and a green CNC laser module (532 nm,
2500 mW). The blinking behavior, generated by the
system’s operation, is integrated into the laser

encoding mechanism to produce a distinctive marker.

The encoding laser is driven by a PWM signal,
which consists of a time-regulated pulse pattern
used to determine the duration for the reflected
signal to travel from the target back to the camera.
The laser beam itself serves as the marker, while the
PWM-based control system, implemented via an
Arduino Uno, manages the electrical input through a
dimmer circuit. This dimmer generates the PWM
signal using a voltage modulation technique.

The marker is designed with distinct attributes in
terms of size, color, and pattern to ensure easy
recognition. A key innovation of this study is the use
of a blinking laser signal as a coded identifier to
create a unique marker.
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3. Result and discussion

In this experiment, the focus is on analyzing the
colors of different laser diodes, specifically blue, red,
and green, as distinctive markers within an object
recognition system. As illustrated in Fig. 3, the study
examines the intensity response of each laser type by

applying specific voltage inputs, allowing a
comparative evaluation of their performance
characteristics.

To the best of our knowledge, this study is the
first to utilize a green CNC laser as a unique marker,
allowing comparative analysis with standard red and
blue lasers. The green CNC laser demonstrated the
highest intensity, likely due to its lower threshold
voltage and the material properties inherent to CNC
laser construction.
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Fig. 3: The voltage input of blue, red, and green lasers
toward the intensity.
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Fig. 4: The duty cycle of blue, red, and green lasers toward
the output voltage.

Additionally, Fig. 4 illustrates the relationship
between duty cycle variation and the output voltage
of the encoding lasers. Tests were conducted using
blue, red, and green lasers, revealing that the green
laser consistently produced the highest output
voltage across all duty cycle settings.

PWM signal control is utilized to generate the
blinking effect of the lasers. As shown in Fig. 4, duty
cycle variations were applied to blue, red, and green
lasers to observe their output behavior. The duty
cycle, defined by the ratio of the on-time (ton) to the
total cycle time, represented in Fig. 2 as 100% ton
and 0% torr, directly influences the laser’s output
voltage. Figure 4 demonstrates that as the duty cycle
percentage increases, the corresponding output
voltage also rises, highlighting the system’s
responsiveness to PWM modulation.
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detection results of indoor objects.

The selection of the green CNC laser module over
the red and blue lasers was based on several
practical and performance-driven considerations.
First, the green CNC laser offers significantly higher
brightness and visibility, which is crucial for reliable
detection in both indoor and outdoor environments.
Its beam is more easily recognized by standard
camera sensors, especially under varying lighting
conditions. Second, the CNC laser module provides
stable output and precise beam control, making it su-

robust performance during early-stage testing.
Future  experiments will consider power
normalization across laser types to enable fairer
comparisons and address safety concerns.

Furthermore, laser detection based on variations
in color, pattern, size, and blinking behavior is
performed using CV techniques, specifically through
two core processes: color segmentation and contour
detection. For color analysis, laser data in RGB
format is converted to HSV using the OpenCV library,
enabling more effective segmentation. HSV-based
processing allows the system to identify target
objects with distinct colors, shapes, and dimensions.

Pattern detection through threshold adjustment
for specific colors is illustrated in Fig. 5. To identify
blue-colored objects, the HSV lower threshold is set
to L-H: 88, L-S: 102, L-V: 211, and the upper
threshold to U-H: 135, U-S: 255, U-V: 255. For red
object patterns, detection is achieved by configuring
the lower threshold to L-H: 0, L-S: 102, L-V: 211, and
the upper threshold to U-H: 90, U-S: 255, U-V: 211.
Similarly, green-colored patterns are recognized by
setting the lower HSV values to L-H: 34, L-S: 86, L-V:
125, and the upper values to U-H: 84, U-S: 255, U-V:
255. These threshold configurations enable the
system to segment and identify objects based on
their color profiles accurately.

As illustrated in Fig. 5(a), the HSV parameters are
adjusted via a trackbar to establish threshold values
for detecting blue-colored markers. The thresholding
process involves filtering each pixel's HSV value to
isolate relevant features. As shown in Fig. 5(b), this
segmentation technique separates the target object
from its background, producing a camera-captured
image where the background has been removed or
darkened, following the approach described in [14]
and [15].

In parallel, segmentation data is used to identify
and highlight objects by enclosing them within
bounding boxes, while object detection relies on a tr-

Table 1: Laser detection testing with different blinking.

Laser Data retrieval Duty Cycle HSV Value
L-H: 155
Blinking 1: 50% and 5% L-S: 0
Red o Delay 1: 7s L-V: 209
Blinking 2: 50% and 5% U-H: 180
Delay 2: 1s U-S: 255
U-V: 255
L-H: 155
Blinking 1: 50% and 5% L-S: 0
Green Delay 1: 7s L-V: 209
Blinking 2: 50% and 5% U-H: 180
Delay 2: 1s U-S: 255
U-V: 255
L-H: 114
Blinking 1: 50% and 5% L-S: 0
Blue Delay 1: 7s L-V: 0
Blinking 2: 50% and 5% U-H: 180
Delay 2: 1s U-S: 255
U-V: 255

itable for consistent marker tracking. In contrast, red
and blue lasers, while useful for basic detection, have
lower power and visibility, which can limit their
effectiveness in long-range or high-interference
scenarios. Although the green CNC laser operates at
a higher power level, its use was intended to ensure
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ackbar interface to filter colors. The system
processes images captured by the camera using the
Readlmage function, converting them from RGB to
HSV format. This conversion enables the program to
determine the minimum and maximum HSV values
for each color, with the upper bounds set at L-H: 180,



L-S: 255, L-V: 255, and U-H: 180, U-S: 255, U-V: 255.
As depicted in Fig. 5(b), the test objects, which are
styrofoam shapes wrapped in red, green, and blue
cardboard, include triangles, squares, and circles.
These color variations are used to evaluate the
system’s ability to detect objects under indoor
lighting conditions. The results confirm that the HSV-
based color detection method effectively
distinguishes object colors across diverse scenarios.

Table 1 presents the outcomes of laser beam
detection tests, which demonstrate the effectiveness
of using Computer Vision (CV) to identify lasers
based on their color, shape, size, and blinking
behavior. The system successfully detects blinking
lasers, also referred to as dimmers, by leveraging CV
techniques such as color segmentation and contour-
based shape recognition. These results confirm that
the camera can consistently recognize lasers with
identical visual attributes when blinking is
introduced. Furthermore, the data in Table 1
highlights the reliability of the unique marker system,
particularly when combined with the optimized duty
cycle settings used in this experiment.

In this experiment, both laser sources were
configured to have identical visual attributes.
Specifically, the same color, size, and beam pattern,
under blinking conditions. The only distinguishing
factor was the duration of their blinking cycles: Laser
1 (duty cycle 50% and 5%) emitted a signal lasting 7
seconds, while Laser 2 (duty cycle 50% and 5%)
blinked for only 1 second. Despite their identical
appearance, the camera system successfully detected
and differentiated the two lasers based solely on
their temporal blinking behavior. This result
confirms the system’s ability to recognize and
interpret time-based encoding, demonstrating a key
feature: the capacity to detect user-defined unique
markers. The successful identification of these
markers validates the implementation of a
programmable recognition framework, in which
blinking duration serves as a dynamic identifier
beyond static visual characteristics.

The accuracy of pattern detection in this system
is highly dependent on the threshold parameter
settings; incorrect values can introduce noise during
color segmentation, leading to suboptimal
recognition. The process begins with color detection
to isolate the object based on its hue, followed by
contour analysis to determine its shape. Color
segmentation enables the system to identify and
separate patterns, using the object's color as the
basis for region extraction.

Table 2: Evaluation of object detection range in indoor
environments.

Indoor Condition Testing

Distance  Experiment to- (1=correct,
of 0=failed) Accuracy
objects of the
No to system
system 2 3 4 5 6 7 (%)
(cm)
1 50 1 0 1 1 1 1 1 85.71
2 100 11 1 1 1 1 1 100
3 150 1 1 1 1 1 1 1 100
4 200 1 1 1 1 0 1 1 85.71
5 250 1 1 1 1 1 1 1 100
6 300 1 1 1 1 1 1 1 100
Average accuracy testing 95.24

The system has been configured to perform real-
time monitoring by identifying objects based on their
color and geometric shape, consistent with
methodologies described in [13] and [18]. Utilizing a
commercial camera, the system effectively detects
laser-encoded markers within a range of 50 to 300
cm. After synchronization, the tracking response
time is recorded at 1.11 seconds. As evidenced in
Tables 2 and 3, the system demonstrates robust
performance, achieving an average detection
accuracy of 95.24% in indoor conditions and 85.74%
outdoors.

Table 3: Evaluation of object detection range in outdoor
environments.

Indoor Condition Testing
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Distance Experiment to- (1=correct,
of O=failed) Accuracy
No objtects of Ehe
(0} system
system 2 3 4 5 6 7 y[% )
(cm)
1 50 1 1 1 1 1 1 1 100
2 100 1 1 1 1 1 1 1 100
3 150 1 1 1 1 0 1 1 85.71
4 200 1 1 1 1 0 1 1 85.71
5 250 1 1.1 1 0 0 1 71.42
6 300 1 1 1 0 1 0 1 71.42
Average accuracy testing 85.71
The experimental results reveal notable
performance differences between indoor and

outdoor environments, primarily due to variations in
ambient light intensity, which significantly influence
the system’s detection accuracy. For effective
detection, the laser's emitted intensity must exceed
the surrounding ambient brightness. Using a
Logitech C615 HD camera as a distance sensor, the
system demonstrated average measurement errors
of 4%, 5%, and 6% for circular, square, and
triangular objects, respectively, as illustrated in Fig.
5(b). These findings underscore the critical role of
environmental lighting conditions in maintaining
consistent object recognition performance.

Among the three shape-based tests, the circular
object yielded the lowest measurement error at 4%.
The object size estimation results demonstrate that
the computer vision system can accurately calculate
pixel dimensions, enabling reliable recognition based
on color attributes. These findings provide a solid
basis for employing various laser types as unique
markers within this experimental framework.

Experimental results confirm that the green CNC
laser exhibits a significantly higher power density
compared to other laser colors. To quantify this,
calculations were performed using a color spectrum
calculator, which evaluates intensity based on
wavelength and input power. Under identical power
conditions, the green CNC laser was found to be
16,405 times brighter than the red laser, highlighting
its superior visibility. This enhanced brightness,
combined with low power consumption, makes the
green CNC laser highly suitable as a unique marker
for object recognition systems. Its strong
detectability by camera sensors reinforces its
practical advantage. These insights underscore the
need for future development of detection algorithms
that can accommodate diverse object sizes and
patterns to achieve greater precision in recognition
tasks.



4. Conclusion

This research demonstrates the effectiveness of
using laser-based unique markers for object
recognition systems, particularly through the
integration of computer vision techniques such as
color segmentation and contour detection. Among
the tested laser types, the green CNC laser stands out
due to its superior intensity, lower threshold voltage,
and higher output voltage, making it highly suitable
as a distinctive marker. The system successfully
identified and tracked objects based on color, shape,
size, and blinking behavior, achieving high accuracy
rates of 95.24% indoors and 85.71% outdoors across
distances ranging from 50 ¢cm to 300 cm.

For future development, the implementation of
invisible laser markers could enhance security and
reduce visual distraction. Furthermore, refining
detection algorithms to better accommodate
variations in object size, shape, and environmental
lighting will be essential for improving robustness
and expanding the system’s applicability in dynamic
or outdoor settings.
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