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A B S T R A C T   
In computed tomography (CT), the noise is sometimes non-uniform, i.e. the 
noise magnitude may vary with the gradient CT number within the image. 
However, the noise fluctuations due to the magnitude of the image gradient is 
not considered. The purpose of this study was to quantify the noise non-
uniformity in CT images using appropriate 1D and 2D computational gradient 
phantoms, and to validate the effectiveness of the proposed concept in images 
filtered by the bilateral filter (BF), as an example of a non-linear filter. We first 
developed 1D and 2D computational gradient phantoms, and Gaussian noises 
with several noise levels were then added to the phantoms. In addition, to 
simulate the real form of noise from images obtained in a real CT scanner, a 
homogeneous water phantom image was used. These noise levels were 
referred to as ground truth noise (σG). The phantoms were filtered by the 
bilateral filter with various pixel value spreads (σ) to produce non-uniform 
noise. The original gradient phantoms (G) were subtracted from both the 
noisy phantoms (IN) and the filtered noisy phantoms (IBF), and the magnitudes 
of the resulting noise for each gradient were computed. The noise-gradient 
dependency (NGD) curve was used to display the dependency of noise 
magnitude on image gradient in the non-uniform noise. It was found that for 
uniform noise, the magnitude of noise was constant for all gradients. However, 
for non-uniform noise, the measured noise was dependent on the gradient 
levels and on the strength of the BF for every ground truth noise (σG). It was 
found that the noise magnitude was large for the large gradients and 
decreased with the magnitude of the image gradient.   

 
1. Introduction 
Noise is defined as stochastic fluctuations of the 
pixel values in an image due to uncertainties in the 
image production [1-3]. The noise can be quantum 
noise or electronic noise or it can result from the 
image generating process, i.e. from image 
reconstruction algorithm [4-6]. Fluctuations of the 
pixel values in an image due to anatomical 
variations are not considered as noise. Noise 
assessment generally uses the standard deviation 
(SD) [7] or the noise power spectrum (NPS) [8, 9] of 
pixel values in a homogeneous region of interest 
(ROI). The SD of pixel values quantifies the noise 
magnitude [10], while the NPS characterizes the 
noise texture [11, 12], i.e. visual impression of the 
noise, whether it is fine or coarse. Noise evaluation 
using the SD or NPS values is widely accepted by the 
medical physics community for uniform noise [13-
18]. 

In earlier methods of CT reconstruction, a 
filtered back-projection (FBP) method [19, 20] was 
used to produce images with uniform noise. 
Nowadays, an iterative reconstruction (IR) method 

is generally used for CT image reconstruction in 
order to produce a high-quality image with low 
dose. The IR results in images with non-uniform 
noise [21-25]. In addition, many non-linear filters, 
such as the bilateral filter (BF) [26, 27] and the non-
local mean (NLM) filter [28, 29] are implemented in 
CT image, where filtering is performed aggressively 
in homogeneous regions with zero gradients, but 
less aggressively in non-homogeneous regions or 
edge areas with high gradients [30, 31]. Image noise 
obtained from non-linear filters is also non-uniform 
noise, having characteristics of low noise in 
homogeneous regions but the boundaries between 
objects still appear sharp [32].  

In non-uniform noise, the noise may be smaller 
in the homogeneous regions than it is in regions 
near the edges [33]. Thus, images may have not only 
one noise magnitude, but have many different noise 
magnitudes depending on the position and 
environment, whether they are in a homogeneous 
region or in an area near an edge. As a result, 
assessment of noise only in homogeneous/zero 
gradient regions does not comprehensively 
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describe the actual nature of noise [33]. A new 
metric needs to be developed to quantify noise non-
uniformity. 

To date, two metrics have been introduced to 
quantify noise non-uniformity, and both are based 
on the spatial noise-map (SNM) [33]. The SNM is 
computed as the standard deviations of a sliding 
ROI within the image [34, 35]. The first metric is the 
noise spatial non-uniformity index (NUI) [36] and is 
for characterizing the degree of noise fluctuation 
globally across the field of view (FOV). It can be 
measured from images of a homogeneous phantom 
or a special structured phantom. The NUI is 
computed as the SD of the SNM. The second metric 
is the noise inhomogeneity index (η) [37] and is for 
characterizing highly irregular spatial distributions 
of noise, found in iterative reconstruction of the 
structured phantoms [30, 37]. This metric is 
computed from two distinct peaks of the histogram 
of the SNM of the structured phantom. Specifically, 
it is calculated as the separation of the two peaks 
divided by the height difference of the two peaks.  

However, these two metrics do not completely 
characterize the noise fluctuations due to the 
magnitude of the image gradient is not considered. 
Therefore, we present a novel method for 
quantifying noise non-uniformity using a noise-
gradient dependency (NGD) curve, and propose 1D 
and 2D computational phantoms designed for this 
purpose. We then validate the effectiveness of the 
NGD in evaluating noise non-uniformity in filtered 
images using the non-linear BF. 

 
2. Methods  
Quantification of noise non-uniformity  
In non-uniform noise, the magnitude of the noise 
changes according to the image gradient (G), i.e. the 
gradient in pixel values throughout the image. We 
refer to the curve displaying the magnitude of noise 
as a function of the magnitude of the image gradient 
as the noise-gradient spectrum (NGS). The noise for 
each gradient (IG) can be calculated if the magnitude 
of the gradient itself is known. The method is simply 
to subtract the gradient (G) itself from the noisy 
images that have a certain gradient (IN). 

 

(1) 

This is illustrated in Fig 1. The first row of Fig 1 
shows a homogeneous 1D phantom (i.e. zero-
gradient, G = 0) as is commonly used to date. 
Because the gradient is zero, there is no need to 
subtract the gradient from the noisy phantom. The 
second row shows noisy 1D phantom at G = 1 
HU/pixel and the third row shows noisy 1D 
phantom at G = 2 HU/pixels. The gradients (G), 
shown in (b), are subtracted from the noisy 1D 
phantoms (IN), shown in (a), to give the noise (IG), 
shown in (c), from which the noise magnitude ( ) 

can be directly calculated using the standard 
deviation equation: 

 

(2) 

with 

 

(3) 

where i indicates number element of data phantom 
with maximum N data. The equations (1)-(3) can be 
extended for 2D phantom with row-element (i) and 
column-element (j). 

 

Design of the phantoms 
The phantoms used to realize the NGD calculations 
were in the form of computational phantoms 
developed using MATLAB software (Mathworks, 
MA). To easily comprehend the concept of NGD, we 
firstly developed 1D gradient phantom and after 
that we implemented the NGD in 2D gradient 
phantom. 

The design of the 1D gradient phantom is shown 
in Fig 2. Each gradient consists of 512 pixels. (a) to 
(f) are processes to obtain the 1D gradient phantom. 
For an object gradient of 1 HU/pixel (Fig 2(b)), at 
the left end was 0 HU and at the right end was 512 
HU. This was because every shift of 1 pixel to the 
right, the pixel values increased 1 HU. For an object 
gradient of 2 HU/pixel (Fig 2(c)), at the left end was 
0 HU and at the right end was 1024 HU (2*512 HU). 
The same pattern was applied for all object 
gradients of 3 to 48 HU/pixel. After that all 
gradients are added to make 1D gradient phantoms. 
Fig 2(d) shows 1D gradient phantom with gradient 
from 0-1 HU/pixel, Fig 2(e) shows 1D gradient 
phantom with gradient from 0-2 HU/pixel, and Fig 
2(f) shows 1D gradient phantom with gradient from 
0-48 HU/pixel. 

The design of the 2D gradient phantom is shown 
in Fig 3. The phantom is a circle with a diameter of 
512 pixels and with a homogeneous background of 
100 HU (This is assumed that phantom is made 
from acrylic-like material with CT number of 
around 100 HU). The phantom is located in air with 
a pixel value of -1,000 HU. There are 49 objects in 
the phantom, with gradient values from 0 to 48 
HU/pixel. Each gradient object has a size of 30 × 30 
pixels, separated from the next by a distance of 5 
pixels. The initial pixel value of every gradient 
object (top left corner) is -500 HU. The right side of 
Fig 3 shows a magnified view of an object with a 
gradient of 48 HU/pixel.  -500 HU (0) is for objects 
mimicking the lungs, and 2284 HU (48) is for highly 
attenuating objects such as the dense bone. 
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Fig 1. Illustration of the concept of a gradient phantom. The first row indicates 1D phantom with a gradient of 0 
HU/pixel, the second row indicates 1D phantom with a gradient of 1 HU/pixel, and the third row indicates 1D 
phantom with gradients of 2 HU/pixels. The gradients (b) are subtracted from the noisy 1D phantom (a) to 
obtain the noise (c). 

 

Research design 
The research design for calculating the NGD for the 
1D phantom is shown in Fig 4. Gaussian noise for 
several noise level variations, viz. 5, 10, 25, and 50 
HUs, was added to the 1D phantom. These noise 

levels were referred to as ground truth noise (σG). 
The original 1D gradient phantoms (G) were 
subtracted from the noisy phantoms (IN) to give the 
uniform noise (IG). 

 

Fig 2. 1D gradient phantom. Phantom with a gradient of 0 HU/pixel (a), 1 HU/pixel (b), 2 HU/pixel (c), 0-1 
HU/pixel (d), 0-2 HU/pixel (e), and 0-48 HU/pixel (f).  
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Fig 3. 2D gradient phantom. The phantom consisted of 49 objects with gradients from 0 to 48 HU/pixel. Each 
object had a size of 30 × 30 pixels and was separated by 5 pixels. The image on the right shows an object with a 
gradient of 48 HU/pixel.  

 

 

Fig 4. Uniform noise was obtained by subtracting the original phantom from the 1D noisy phantom. The noise 
calculations were performed on the 49 objects with gradients of 0-48 HU/pixel using ROIs with a size of 512 
pixels. Non-uniform noise was obtained by filtering the 1D noisy phantom using a 1D-BF, and then subtracting 
the original phantom from the result. The noise non-uniformity calculations were performed by calculating the 
SDs of 49 objects with gradients of 0-48 HU/pixel. 

 

IN was filtered using a non-linear filter, namely the 
1D bilateral filter (1D-BF) so that a filtered noisy 
phantom (IBF) was generated. The 1D-BF was 
calculated using:  

 

 

(4) 

where k is a normalization constant and was 
calculated using: 

 

 

 

(5) 

where  represents the geometric spread of the BF. 
By increasing , more neighboring pixels are 
utilized for denoising, resulting in increased 
filtering [26]. The σ represents the pixel intensity 
spread of BF [26]. x indicates x-axis and i indicates 
pixel kernel of BF. In this study, 1D-BF filtering was 
performed for each noise with 3 variations of σ, i.e. 
1×, 0.5×, and 0.25× ground truth noise (σG). For 
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example, for σG of 10 HU, the magnitudes of σ values 
in the 1D-BF were 10, 5, and 2.5 HU. 

Filtering using the 1D-BF produced noise that 
varies according to the magnitude of the object 
gradients (IBF). For objects with gradients below the 
value of σ, filtering works very aggressively. As the 
gradient increases, filtering becomes less aggressive. 
For certain level of gradients, the 1D-BF was no 
longer able to filter because the gradient of pixel 
values was outside the 1D-BF range.  

To calculate the noise non-uniformity, the 
gradient of the object (G) was subtracted from the 
filtered noisy image (IBF), and standard deviations in 
every ROI were then computed. Fig 4 showed that 
the unfiltered original image had uniform noise, i.e. 
the magnitude of noise was relatively flat for all 
gradients.  Conversely, the filtered noisy image, had 

non-uniform noise, i.e. the magnitude of noise was 
large for large gradients, and decreased for small 
gradients. 

Similar to the 1D phantom, Gaussian noise of 
various levels (i.e. noise levels (σG) of 5, 10, 25, and 
50 HUs) (Fig 5(b)) was added to the 2D phantom 
(Fig 5(c)). In addition, to simulate the real form of 
noise from images obtained in a real CT scanner, a 
homogeneous water phantom image, the AAPM CT 
performance phantom for homogeneous water 
sections (Fig 5(d)), was used. The phantom was 
scanned in axial mode in a GE LightSpeed CT with 
two tube currents, i.e. 50 mA and 100 mA, a tube 
voltage of 120 kVp, and a slice thickness of 5 mm. 
The homogeneous phantom image was added to the 
2D gradient image, in order to obtain a 2D gradient 
image with the real noise from the CT (Fig 5(e)). 

 

Fig 5. 2D gradient phantom. (a) Original 2D gradient phantom, (b) Gaussian noise, (c) 2D gradient phantom with 
addition of Gaussian noise, (d) Real CT image from a homogeneous water section of AAPM CT performance 
phantom, and (e) 2D gradient phantom with addition of real noise from a CT scanner. 

 

Fig 6. Uniform noise is obtained by subtracting the original image from the 2D noisy image. The non-uniform 
noise was obtained by filtering the 2D noisy image using the 2D BF, and then subtracting the original gradient 
phantom (G) from the filtered noisy object (IBF). The magnitude of the noise was obtained for the 49 objects, each 
of 30 x 30 pixels. 
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The design for calculating the NGS in the 2D 
phantom is shown in Fig 6. The 2D phantom was 
then filtered using a 2D-BF, with 3 variations of 

pixel intensity spread (σ), i.e. 1×, 0.5×, and 0.25× of 
ground truth noises (σG). The 2D-BF was carried out 
using equation (6). 

 

 

(6) 

where k is the normalization constant using:  

 

 

(7) 

Similar to the 1D phantom, the original gradient 
phantom (G) was subtracted from the filtered noisy 
object (IBF) to calculate the noise non-uniformity in 
the 2D phantom. Fig 6 shows that uniform noise 
was obtained in the unfiltered image, while non-
uniform noise was obtained in the filtered noise 
phantom. To calculate noise, a 30 × 30 pixels ROI 
was used within each object, and the noise 
magnitude was calculated using the standard 
deviation formula for the 49 ROIs. 

 

3. Results and Discussion  
Uniform noise 
The NGD curves for noise uniformities for various 
gradients are shown in Fig 7(a) for the 1D phantom, 
and in Fig 7(b) for the 2D phantom. Measured 
noises are constant for all gradients depending on 
the given ground truth noises (σG), i.e. 5, 10, 25, and 
50 HUs. It is found that in the 1D phantom, the noise 
fluctuations are very small and all measured noises 
are within ± 5% of ground truth noises. Noise 
fluctuations are slightly greater in the 2D phantom, 
with some measured noises fluctuating more than ± 
5% from the ground truth noises. All of the noise 
measurements are uniform for all gradients, from 0 
to 48 HU/pixel for both the 1D and 2D phantoms. 

The NGD curves for noise uniformities for CT 
images scanned with two tube currents of 50 mA 

and 200 mA for various gradients are shown in Fig 
8. The noises are constant at about 10 HU for 50 mA, 
and about 5 HU for 200 mA. It is found that the 
noise fluctuations are relatively large and 
sometimes more than ± 10% of its average values. 
 
3.2. Non-uniform noise 
The NGD curves for the noisy 1D phantom filtered 
with the 1D-BF using various pixel intensity spreads 
(σ), produces non-uniform noises, which are shown 
in Fig 9. As expected, at high gradients, the 
measured noises are similar to the given ground 
truth noises (σG). For a gradient of equal or smaller 
than σ, the measured noises are much smaller than 
σG, while for a gradient greater than σ, the measured 
noises are fairly similar to the values of σG. 

Fig 9 shows that if the noisy 1D phantom is 
filtered with the 1D-BF using σ = σG, then the 
measured noise levels at zero-gradient are about 
75% of σG. At a gradient level of around σ, it 
produces measured noise levels of about 85-90% of 
σG, and at a gradient value of around 2σ, the 
measured noise levels are equal to σG. If the noisy 
1D phantom is filtered with the 1D-BF using the σ = 
0.5 σG, the measured noise levels at zero-gradient 
are around 90% of σG. And if the noisy 1D-phantom 
is filtered with 1D-BF using σ = 0.25 σG, the 
measured noise levels for all gradients are equal to 
σG. i.e. no significant filtering.   

 

Fig 7. The NGD curves for uniform noises for several levels of ground truth noises (σG), i.e. 5, 10, 25, and 50 HUs 
with gradients of 0-48 HU/pixel. (a) for 1D phantom and (b) for 2D phantom. 



54 
 

 

Fig 8. The NGD curves for uniform noises for images scanned with tube currents of 50 and 200 mA for various 
gradients of 0-48 HU/pixel. 

 

 

Fig 9. The NGD curves for non-uniform noises for variations of ground truth noises (σG) in the 1D phantom. The 
noisy phantom was filtered by a 1D-BF using pixel intensity spreads (σ) of 0.25, 0.5, and 1 σG. The values of σG are 
(a) 5 HU, (b) 10 HU, (c) 25 HU, and (d) 50 HU. 

 

The NGD curves for the noise non-uniformities 
in the 2D phantom for various gradients are shown 
in Fig 10. Similar noise patterns are obtained for the 
2D phantom as for the 1D phantom, except that the 
magnitude of the noise fluctuations with the 2D 

phantom are greater. The same noise patterns are 
also found in CT images scanned with two tube 
currents, 50 mA and 200 mA (Fig 11). 
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Fig 10. The NGD curves for non-uniform noise for variations in ground truth noises (σG) in the 2D phantom. The 
noises objects were filtered with a 2D-BF using pixel intensity spreads (σ) of 0.25, 0.5, and 1 σG. This filtering 
produced non-uniform noise. Values of σG are (a) 5 HU, (b) 10 HU, (c) 25 HU, and (d) 50 HU. 

 

Fig 11. The NGD curves for non-uniform noise for variations in CT images. The images were filtered with a 2D-
BF using pixel intensity spreads (σ) of 0.25, 0.5, and 1 σG. This filtering produced non-uniform noise. Image was 
scanned with tube currents of (a) 50 mA and (b) 200 mA. 

 

This study introduced and validated new 
methods for quantifying noise non-uniformity using 
an NGD. To the best of our knowledge, this is the 
first study introducing a concept of an NGD for 
quantifying non-uniformity. The challenge of 
calculating the NGD is the availability of gradient 
phantoms. As the first study, we only developed 1D 
and 2D gradient phantoms computationally. 
Physical realization of the designed phantom is a 
challenging task. However, it may be possible to 
realize a physical gradient phantom using the 
partial volume artifact (PVA), i.e. by scanning an 
object in an oblique position, so that a gradient of 
HU can be obtained. 

With these two computational gradient 
phantoms, various amounts of noise can be added 

as ground truth noise and the resulting noisy 
phantoms can be filtered using non-linear filters, 
such as bilateral filters (BF) [26], non-local mean 
filters [28], or others. In this study, we used the BF 
to produce a non-uniform noise image. The 
effectiveness of a non-linear filter can be 
comprehensively assessed with these 
computational phantoms. We found that with 
uniform noise, the measured noise is independently 
with the image gradient. In contrary, in non-
uniform noise, the measured noise varies with the 
magnitude of the image gradient, increasing with 
the magnitude of the image gradient, as expected. 
The noisy phantoms filtered using the BF produce a 
noise magnitude that is strongly influenced by the 
image gradient and magnitude of the pixel intensity 
range (σ) of the BF.  
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Both the 1D and 2D filtered noisy phantoms 
produces similar patterns, albeit with larger noise 
fluctuations in the 2D phantom. If a small ground 
truth noise (σG) is given the 2D phantom, for 
example σG = 5 HU, then the filtered 2D noisy image 
using a pixel intensity range of σ will produce the 
noise magnitude equal to the σG at gradients above 
10 HU/pixel. However, we found that the measured 
noise is about 20% smaller than σG. This is due to 
the limitation of the 2D gradient phantom design. 
For a certain pixel, not all of the neighbor pixel 
values differ according to the gradient. For example, 
in pixel (i, j), the four of the neighboring pixels, i.e. 
(i-1, j), (i, j-1), (i + 1, j) and (i, j + 1), differ by an 
amount equal to the gradient magnitude from the 
pixel of (i, j), while two other neighboring pixels, i.e. 
(i-1, j-1) and (i + 1, j + 1), differ by 2 gradient 
magnitudes, and the other two neighboring pixels, 
i.e. (i + 1, j-1) and (i -1, j + 1), have pixel values equal 
to the pixel at (i, j). As a result, the total noise 
decreases slightly. As a result, the 2D phantom is 
not as perfect as the 1D phantom although it can be 
used to obtain reliable NGD for non-uniform noise 
images. 

 
 
4. Conclusions  
A single metric such as SD or NPS does not 
comprehensively characterize noise non-uniformity, 
since the magnitude of the noise varies with the 
gradient of the image. To remedy this, we have 
introduced noise-gradient dependency (NGD). We 
have developed 1D and 2D computational 
phantoms to implement and verify our new 
methodology. We find that noisy 1D and 2D 
phantoms, filtered with a bilateral filter, produce 
non-uniform noise and the NGD curves are able to 
determine the dependencies of the noise magnitude 
on the gradient level. We found that in the filtered 
noisy phantoms, the measured noise varies along 
with the magnitude of image gradient. Using the 
NGD enables an evaluation of the effectiveness of 
the available algorithms used in noise reduction and 
iterative reconstruction. However, realizing a 
physical gradient phantom remains challenging. 
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