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Abstract. Separation of pure saponin and saponin-BSA protein mixture by nanofiltration membranes have 

been investigated in this study to understand the nanofiltration potential to obtain high purity saponin. 

Commercial NF membranes: NF, NF270, and DSS-ETNA01PP were used. The effects of the operating 

conditions such as pressure, the concentration of feed, and the composition of feed were evaluated. The 

permeate flux and rejection rate of saponin and saponin-BSA were the criteria of this evaluation. The 

increasing operating pressure increased the permeate flux. In addition to the membranes‘ MWCO, 

electrostatic repulsion between the charged membrane interface and solute determined the saponin and 

saponin-BSA solution's rejection rate. The flux of pure saponin feed was greater but generated lower 

rejection rates than the saponin-BSA feed.  Increasing feed concentration resulted in an increased rejection 

rate. However, the flux decreased with increasing pure saponin concentration but increased with a higher 

dose of saponin-BSA. The DSS-ETNA01PP membrane had the largest flux value and the smallest 

rejection value compared to other membranes. The results indicated that nanofiltration was potential for 

the saponin purifying process. 
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1. Introduction 

Saponins are secondary metabolic products found in plants with high molecular weight. 

Saponins can be found in dicot and monocot plants, including Camellia sinensis, Aesculus 

hippocastanum, Rosa centifolia, Swietenia mahogany. Saponins function as chemical barriers or 

protectors in plant self-defense systems against pathogenic bacteria and herbivores (Augustin et 

al., 2011). Saponins are composed of sugar units linked to triterpene or steroid aglycones. 

Saponins generally have detergent-like properties, reducing the surface tension in aqueous 

solutions and forming a stable foam. Saponins can dissolve in various solvents such as water, 

ethanol, and methanol. It is partly soluble in ether, chloroform, benzene, ethyl acetate, or acetic 

acid (Hostettmann and Marston, 1995). 

Saponins are widely used in the cosmetics, agriculture, food, and pharmaceutical industry. 

They have hemolytic, anti-inflammatory, anti-yeast, antimicrobial, antiparasitic, anti-tumor, and 

antiviral properties (Sparg et al., 2004). The discovery of saponins' biological activity triggered 

the semi-synthesis of steroid drugs in the pharmaceutical industry. 

With the increasing use of saponins, many studies have been conducted to obtain 

commercial-scale saponins from plants (Guclu-Untundag and Mazza, 2007). The most used 

attempt is by carrying out extraction, which several methods can do, including maceration 
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(Takeuchi et al., 2009), reflux and soxhlet (Bart, 2011), ultrasonic (Wu et al., 2001), and 

microwave (Vongsangnak, 2004). 

However, the extracted saponin content is still insufficient, so further purification steps are 

needed to obtain high saponin content (Guclu-Untundag and Mazza, 2007). The saponin 

purification process can be conducted in several ways, including solvent precipitation (Kitagawa, 

1986; Nozomi et al., 1986), adsorption (Giichi, 1987), and chromatography (Kensil and Marciani, 

1991). Chromatography is often used in laboratory-scale saponin purification processes such as 

open column chromatography, thin-layer chromatography (TLC), liquid chromatography, and 

countercurrent chromatography (Hostettmann and Marston, 1995). However, commercial-scale 

saponin production using this method is not economical (Guclu-Untundag and Mazza, 2007).  

Another method that can be applied for saponin purification is nanofiltration. This 

technology does not require additional chemicals, operates isothermally at room temperature, and 

consumes low energy (Susanto, 2009). Nanofiltration membranes procure very high rejections 

for multivalent ions (>99%), low to moderate rejections for monovalent ions (0–70%), and high 

rejection (>90%) for organic compounds with a molecular weight above the membrane’s 

(Norman et al., 2008). 

This study aimed to discover the potential of nanofiltration membranes for obtaining high 

purity saponins. The membranes' performance and characteristics would be assessed for the 

process with various membrane types, pressures, feed compositions, and feed concentrations. 

 

2. Methods 

 2.1. Materials 

 The materials used in this study were saponins (Sigma Aldrich, 8-25%), BSA protein (Sigma 

Aldrich, ≥98%), vanillin (Sigma Aldrich, 99%), H2SO4 (Sigma Aldrich, 96 %). The membranes 

used were NF (Alfa Laval), NF270 (FILMTEC), and DSS-ETNA01PP (Alva Laval). 

2.2. Flux Measurement 

 The membrane was cut with a diameter of 4.2 cm, then soaked for 30 minutes in distilled 

water. The membrane was inserted into the membrane module and compacted for 30 minutes 

with pressure above the operating pressure (5, 6, 7 bar). The feed was filled with distilled water. 

The distilled water flowed through the filtration unit for 15 minutes at operating pressure (4, 5, 6 

bar) to obtain J0. Afterward, the permeate was collected and weighed. Then, the saponin feeds 

(pure/mixed with BSA) were put in the feed tank, filtered for 2 hours at specific operating 

pressures. The permeate was collected and weighed every 15 minutes to measure the flux. 

2.3. Rejection Analysis 

 The rejection analysis was done spectrophotometrically. The water was heated to 60°C. Five 

ml of 72% H2SO4 solution was put in a container covered with aluminum foil. Vanillin solution 

of 8% w/v was made. Half ml of it was put in the container containing H2SO4 solution and rested 

for 1 minute. Half ml of permeate from the filtration process was added into the container 

containing vanillin and H2SO4 mixture and rested for a minute. The container was then heated for 

10 minutes in hot water and cooled in the ice water for 5 minutes. The mixture's absorbance was 

measured using a spectrophotometer (Genesys 20) at the wavelength of 544 nm. 

 

3. Results and Discussion 

3.1. Effect of Pressure on Flux in NF270 and DSS-ETNA01PP Membrane 

The filtration process of pure saponin and saponin-BSA protein with operating pressures of 

4, 5, and 6 bar using NF270 and DSS-ETNA01PP membranes was done to investigate the effect 

of pressure on flux. The feed concentrations were varied from 50, 100, to 150 ppm. The results 

can be seen in Figure 1. 
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Figure 1 Flux profiles of various feed concentrations: a) NF270-50 ppm, b) NF270-100 ppm, c) NF270-

150 ppm, d) DSS-ETNA01PP-50 ppm, e) DSS-ETNA01PP-100 ppm, f) DSS-ETNA01PP-150 ppm 

Figure 1 shows that the flux profile decreased with a longer operating time on both 

membrane types. The flux drop was relatively consistent with each pressure variation. For NF270, 

the flux of 5 bar had the most optimal value than of 4 and 6 bar at 50 ppm. On the other hand, at 

the concentration of 100 ppm and 150 ppm, there was no significant difference in each pressure 

variation's flux. 

The pressure of 4 bar resulted in the smallest flux; this was because the crossflow's driving 

force was less significant. So that the molecules accumulated on the membrane surface were not 

swept away by the recycle flow. 
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The flux reduction using the DSS-ETNA01PP membrane was relatively consistent at each 

pressure variation. As the filtration operation time increased, the resulting flux also decreased 

and became more stable at the end of the operation time. This phenomenon occurred both in pure 

saponin and saponin-BSA feed. 

 Mixed feed solution of saponin and BSA showed increased flux value with increasing 

operating pressure. At a pressure of 6 bar, the resulting flux was higher compared to other 

operating pressures because the driving force applied was more significant so that more solutions 

could pass through the membrane. 

According to Lin et al. (2004), the decrease in normalized flux occurred due to fouling and 

polarization concentration on the membrane surface. Besides, protein molecules' nature is easily 

adsorbed by membrane surfaces and pores, making BSA a foulant that is quite difficult to control 

(Wei et al., 2006). The longer the operating time, the more BSA would be deposited on the 

membrane's surface and pores. It resulted in the flux decrease. 

As the operating time increased, the resulting flux decreased, while at the end of the 

operating time, the flux value became more stable. This phenomenon was caused by fouling and 

polarization concentration on the membrane surface. Fouling is the deposition of suspended 

substances, usually solutes, which results in decreased membrane performance and is irreversible. 

Meanwhile, polarization concentration occurred due to solute accumulation that stuck on the 

membrane surface, so that it caused flux decrease and is reversible (Lin et al., 2004; Sutzkover-

Gutman et al., 2010). 

In this saponin filtration, fouling occurred because of the sieving mechanism—the molecule 

size difference between the solute molecules and the membrane pore size caused the separation 

process. Saponin compounds have a molecular weight of 414.63 Da, and BSA has a molecular 

weight of 66,430 Da. Meanwhile, the pore size or Molecular Weight Cut Off (MWCO) of the 

NF-270 membrane is 180 Dalton. Theoretically, saponin compounds and BSA protein 

compounds would be stuck on the membrane surface because they had a larger molecular size 

than the membrane pores. As the filtration operation time increased, more molecules would cause 

fouling on the membrane, resulting in the flux decreasing. 

 

3.2. Effect of Pressure, Feed Composition, and Feed Concentration on Rejection Rate 

Pure saponin and saponin-BSA protein filtration processes using NF, NF270, and DSS-

ETNA01PP were done to investigate the effect of pressure on rejection rate. The operating 

pressures were 4, 5, and 6 bar while the feed concentrations were 50, 100, and 150 ppm. The 

results are presented in Table 1. 

The pure saponin solution feed that passed on the NF270 membrane showed that the higher 

the feed concentration, the greater the rejection rate. Pedebos et al. (2014) reported that carboxyl 

groups in saponin made the feed solution negatively charged. The NF membrane's surface has 

been known to be negatively charged. As the concentration of the solution increased, the number 

of saponin molecules would also increase. It resulted in greater repulsion force (electrostatic 

repulsion) between the membrane surface and the solution. Therefore, the higher saponin feed 

concentration increased the rejection rate of the NF270 membrane. 

In the saponin-BSA mixed feed, the rejection data show an increase in the rejection rate from 

50 ppm to 100 ppm then slightly decreased at a concentration of 150 ppm. The increase in 

rejection rate was caused by electrostatic repulsion from the membrane surface and solute 

interaction. In a study conducted by Chaiyasut and Tsuda (2001), the BSA molecule had an 

isoelectric point at pH 4.6-4.7. It is a condition where the BSA molecule's net charge is zero 

(Salgin et al., 2012). In this study, the saponin-BSA mixed feed solution pH was above 5, 

indicating that the BSA molecule was negatively charged. Therefore, the electrostatic repulsion 

became more significant with increasing feed concentration, resulting in a higher rejection rate. 
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Table 1 Rejection Rate of the Membranes 

Membrane Feed Concentration 
% Rejection 

4 bar 5 bar 6 bar 

NF270 

Pure Saponin 

50 ppm 23.3 21.6 24.4 

100 ppm 35.9 30 31.1 

150 ppm 56.8 55 43 

Saponin - BSA 

50 ppm 43.8 41 40 

100 ppm 74 70.5 67 

150 ppm 73.7 68.7 62.5 

NF 
Pure Saponin 

100 ppm 
N/A 55.5 N/A 

Saponin - BSA N/A 63.4 N/A 

DSS-

ETNA01PP 

Pure Saponin 

50 ppm 40.7 57.1 60.5 

100 ppm 31.7 60.5 71.6 

150 ppm 33.7 41.2 53 

Saponin - BSA 

50 ppm 33.8 35.3 29.4 

100 ppm 52 48.1 29.4 

150 ppm 52 63.9 59.8 

 

At the same operating condition, the rejection rate of the saponin-BSA mixture feed was 

greater than the pure saponin feed. Carvalho et al. (2011) reported that the membrane and ionic 

charges in the solution provided additional rejection because of the electric and dielectric effects. 

Thus, apart from the sieving mechanism effect, saponin separation on the NF membrane also 

occurred through an electrostatic repulsion mechanism. The NF membrane's surface and the pure 

saponin solution were negatively charged, inducing repulsive force. 

Saponin-BSA mixture was more negatively charged than the pure saponin, creating greater 

electrostatic repulsion that generated a higher rejection rate and increasing feed concentration. 

The rejection data of filtration using DSS-ETNA01PP membrane in Table 1 shows a 

decrease in rejection rate with increasing pure saponin solution feed concentration. Meanwhile, 

the saponin-BSA mixture filtration's rejection rate had the opposite phenomenon with the pure 

saponin feed. As the mixed feed concentration increased, the resulting rejection also increased. It 

was because the saponin-BSA mixed solution had different properties than the pure saponin. 

Kezwon and Wojciehjowski (2014), in their research on saponin-protein interactions in food, 

concluded that saponins would aggregate with protein molecules due to the saponin properties, 

which could reduce surface tension and also had a high aggregation behavior. Based on these 

properties, the higher the solute concentration in the feed solution, the more molecules would 

form the aggregates resulting in a wider molecular diameter. With a wider molecular diameter, 

theoretically, it could not pass through the smaller membrane pores. Therefore, the rejection rate 

would increase as the concentration of the saponin-BSA mixture feed increased. 

3.3. Characterization of membrane fouling 

 SEM analysis is one way to characterize membrane fouling from the membrane surface and 

membrane pore cross-sections. The SEM test results of the three membranes used to filter pure 

saponin solution and saponin-BSA protein solution are presented in Figure 2. 

According to Figure 2, there was no significant difference seen in both the membrane 

used to filter pure saponin and saponin-BSA protein. There was fouling on both used membranes 

indicated by oval-shaped molecules, which belonged to saponins. In the membrane used to filter 

saponin-BSA protein solution, round molecules were seen, representing the BSA protein. If we 
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look at the cross-section SEM analysis results, the used DSS-ETNA01PP membranes had the 

largest pores shaped like fingers. 

 Pure Saponin Saponin – BSA Mixture 

 Membrane Surface Cross Section Membrane Surface Cross Section 

NF270 

    

NF 

    

DSS-

ETNA 

01PP 

    

Figure 2 SEM characterization of the membranes used to filter 100 ppm of pure saponin and saponin-

BSA protein  

 

4. Conclusions 

This research aimed to know the potential of purifying saponins using a nanofiltration 

membrane. Increasing operating pressure caused the flux to increase and the decreased rejection 

value. The flux of pure saponin feed was greater but generated lower rejection rates than the 

saponin-BSA feed.  

Increasing feed concentration resulted in an increased rejection rate. However, the flux 

decreased with increasing pure saponin concentration but increased with a higher dose of 

saponin-BSA. The DSS-ETNA01PP membrane had the largest flux value and the smallest 

rejection value compared to other membranes. The results indicated that nanofiltration was 

potential for the saponin purifying process.  
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