SOME RESULT OF NON-COPRIME GRAPH OF INTEGERS MODULO \(n \) GROUP FOR \(n \) A PRIME POWER

Masriani\(^1\), Rina Juliana\(^2\), Abdul Gazir Syarifudin\(^3\), I Gede Adhitya Wisnu Wardhana\(^4\), Irwansyah\(^5\) and Ni Wayan Switrayni\(^6\)

\(^{1,2,3,4,5,6}\)Universitas Mataram, Mataram, Indonesia

Email: \(^1\)masriani@unram.ac.id, \(^2\)rinajuliana@unram.ac.id, \(^3\)abdulgazirs@gmail.com, \(^4\)adhitya.wardhana@unram.ac.id, \(^5\)irw@unram.ac.id, \(^6\)niwayan.switrayni@unram.ac.id

Penulis Korespondensi

Abstract. One interesting topic in algebra and graph theory is a graph representation of a group, especially the representation of a group using a non-coprime graph. In this paper, we describe the non-coprime graph of integers modulo \(n \) group and its subgroups, for \(n \) is a prime power or \(n \) is a product of two distinct primes.

Keywords: group, integer modulo, non-coprime.

I. INTRODUCTION

The non-coprime graph of a finite group was introduced by Mansoori et al. \cite{1}. In \cite{1}, the authors determined some numerical invariants of the non-coprime graph of a finite group, such as its diameter, girth, dominating number, independence, and chromatic number. Moreover, they characterize the planar non-coprime graph of a group and the regular non-coprime graph of a nilpotent group. Furthermore, they also stated a connection between the non-coprime graphs and some prime graphs.

Aghababaei-Beni and Jafarzadeh \cite{2} investigated the properties of Cartesian and tensor products of non-coprime graphs of finite groups such as the dihedral and semi-dihedral groups. They considered the properties such as the independence, clique, chromatic number, covering number, diameter, connectedness, and the existence of the Eulerian spanning subgraph. They also gave a characterization for such graphs to be an Eulerian graph and to be a planar graph. Recently, Aghababaei et al. \cite{3} extended some results in \cite{2}. They studied the non-coprime of a finite group with respect to a subgroup and investigated some properties of such a graph, including its diameter, chromatic number, clique, and the number of connected components. They also investigated some properties of the non-coprime graph of the nilpotent group.

Some authors give some properties of the non-coprime graph and the coprime graph to more specific groups. Rilwan et al. give some properties of the non-coprime graph of integer \cite{4}, Juliana et al. give some properties of the non-coprime graph of an integer modulo \cite{7}, and Syarifudin et al. give some properties of the non-coprime graph of dihedral groups \cite{8}.

In this paper, we describe the non-coprime graph of the group \(\mathbb{Z}_n \) and that of its subgroups, where \(n \) is a prime power or \(n \) is a product of two distinct primes. We used the result of the coprime graph of the group \(\mathbb{Z}_n \) as the non-coprime graph is the duality of the coprime graph \cite{6}. This paper is organized as follows. Section 2 (Some Basic Notions) collects some basic
notions related to group and graph. We give our main results in Section 3 (Main Results). Some concluding remarks are collected in Section 4 (Conclusions). Finally, we give some related references in the References section.

II. SOME BASIC NOTION

Let G be a finite group and $|G|$ be the number of elements in G or the order of G. The definition of the order of an element in G is as follows.

Definition 1. Let G be a finite group with the identity element e. The order of $g \in G$, denoted by $|g|$, is the smallest positive integer n such that $g^n = e$.

Let H be any subgroup of G. In the rest of the paper, if H is a subgroup of G, then we denote it by $H \leq G$. Also, let a be an element in G. A subgroup $\langle a \rangle = \{a^n | n \in \mathbb{Z}\}$ is called a cyclic subgroup of G generated by an element a. The following theorem states a relation between $|H|$ and $|G|$.

Theorem 1. (Lagrange’s Theorem [4]). If G is a finite group and $H \leq G$, then $|H|$ is a divisor of $|G|$.

As a consequence of Theorem 1, we have that $|\langle g \rangle|$ divides $|G|$.

A graph is one crucial object in mathematics, especially in discrete mathematics and its applications. The definition of a graph is as follows.

Definition 2. [5]. A graph is a pair $\Gamma = (V, E)$, where V is a non-empty set of vertices, and $E \subseteq V \times V$ is a set of edges.

We have to note that, in the rest of the paper, we only use a simple undirected graph, i.e., we assume that $(v_i, v_j) = (v_j, v_i)$ for all $(v_i, v_j) \in E$.

Definition 3. An undirected graph Γ is complete if for any $v_i, v_j \in V$, we have that $(v_i, v_j) \in E$. If $|V| = m$, then we denote an undirected complete graph Γ as K_m.

Let a and b be two integers. The greatest common divisor of a and b usually denoted by (a, b). The following definition defines the non-coprime graph of a finite group.

Definition 4. [1]. Let G be a finite group. The non-coprime graph of G denoted by \overline{G}, is a graph whose vertices are all elements of $G \setminus \{0\}$. Two different vertices x and y in \overline{G} are adjacent if $(|x|, |y|) \neq 1$.

III. MAIN RESULT

Let $\mathbb{Z}_n = \{0,1,\ldots,n-1\}$ be the group of integers modulo n with addition (mod n) operation. The following proposition gives the non-coprime graph of \mathbb{Z}_n when n is a prime number.
Proposition 1. If n is a prime number, then the non-coprime graph of \mathbb{Z}_n is a complete graph.

Proof. Since n is a prime number, we have that $|i| = n$, for all $i = 1, 2, ..., n - 1$. So, $|i| = n$, for all $i = 1, 2, ..., n - 1$. Therefore, the non-coprime graph of \mathbb{Z}_n is a complete graph K_{n-1}.

Here is an example of Proposition 1.

Example 1. Let $\mathbb{Z}_7 = \{0, 1, 2, 3, 4, 5, 6\}$. As we can see, $|1| = 7, |2| = 7, |3| = 7, |4| = 7, |5| = 7, |6| = 7$. So, we have that $|i| = n$, for all $i = 1, 2, ..., n - 1$. Therefore, the non-coprime graph of \mathbb{Z}_7 is a complete graph.

Let $n = p^s$ for some prime number p and a natural number $s \geq 2$. The following theorem describes the non-coprime graph of \mathbb{Z}_n, when $n = p^s$.

Theorem 2. If $n = p^s$, for some prime number p and natural number $s \geq 2$, then the non-coprime graph of \mathbb{Z}_n is a complete graph.

Proof. Let a be an element in \mathbb{Z}_{p^s} with $(p^s, a) \neq 1$. The element a can be written as $a = p^k q$, for some $1 \leq k < s$ and an integer q, where $(p, q) = 1$. As a consequence, we have that $|a| = p^{s-k}$. Also, for any $b \in \mathbb{Z}_{p^s}$ with $(p^s, b) = 1$, we have that $|b| = p^s$. These imply $|a| = n$, for all $a \in \mathbb{Z}_{p^s} - \{0\}$. Therefore, the non-coprime graph of \mathbb{Z}_{p^s} is a complete graph K_{p^s-1}.

Here is an example of Theorem 2.

Example 2. Let $\mathbb{Z}_{3^2} = \{0, 1, 2, 3, 4, 5, 6\}$. As we can see, $|1| = 9, |2| = 9, |3| = 3, |4| = 9, |5| = 9, |6| = 3, |7| = 9, |8| = 9$. Consequently, we have that a and b are adjacent in $\Gamma_{\mathbb{Z}_{3^2}}$ for all $a, b \in \mathbb{Z}_{3^2} - \{0\}$. The non-coprime graph of \mathbb{Z}_{3^2} is shown in Figure 2.
Let \(n \) be a product of two distinct primes. The following theorem describes the non-coprime graph of \(\mathbb{Z}_n \), when \(n \) is a product of two distinct primes.

Theorem 3. Let \(n = p_1 p_2 \), where \(p_1, p_2 \) are two distinct primes. If \(H \) is a proper subgroup of \(\mathbb{Z}_n \), then the non-coprime graph of \(H \) is complete.

Proof. Let \(H \) be any proper subgroup of \(\mathbb{Z}_n \). By Theorem 1 (Lagrange’s Theorem), we have that \(|H| = p_1 \) or \(|H| = p_2 \). Therefore, by Proposition 1, we have that \(\Gamma_H \) is a complete graph.

Here is an example of Theorem 3.

Example 3. Let \(\mathbb{Z}_{15} = \{0, 1, 2, \ldots, 14\} \). We can check that non-trivial subgroups of \(\mathbb{Z}_{15} \) are \(\langle 3 \rangle \) and \(\langle 5 \rangle \). Moreover, we can see that \(\langle 3 \rangle = \{0, 3, 6, 9, 12\} \) and \(\langle 5 \rangle = \{0, 5, 10\} \). The non-coprime graphs of \(\langle 3 \rangle \) and \(\langle 5 \rangle \) are shown in Figure 3.

![Figure 3. Non-coprime graph of subgroups in \(\mathbb{Z}_{15} \)](image)

IV. CONCLUSIONS

We have shown that the non-coprime graph of \(\mathbb{Z}_n \), when \(n \) is a prime power, is a complete graph \(K_{n-1} \). Moreover, when \(n \) is a product of two distinct primes, the non-coprime graphs of its non-trivial subgroups are complete graphs.

REFERENCE

