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Abstract. Upper bounds on the absolute values of polynomial roots in R[X], such as

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

(where an > 0), are typically represented as constraints within a certain region in the
complex plane. Lagrange and Cauchy were among the first to establish upper bounds
for all complex roots of such polynomials. Notably, Lagrange’s bound is sharper than
Cauchy’s bound when 1 >

∑
| ai
an

| for all i except the largest term.

In this paper, we introduce a general sequence of polynomials associated with a pos-
itive real sequence {an}∞n=1. Using the Lagrange and Cauchy bounds for polynomial
roots, we prove that the sum of the first and second-largest elements in the set{

i+1
√

|ai − ai+1|, a1 + 1 | 1 ≤ i < n
}

serves as an upper bound for the roots of f(x).
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6

Introduction7

The problem of approximately locating the roots of f(x) using simple operations on its8

coefficients is a well-established issue that has generated a substantial amount of research, as9

highlighted in the comprehensive surveys [6, 8] and the references cited within them. These10

simple location methods are employed for various theoretical purposes, such as providing suf-11

ficient conditions to ensure the stability of f(x) or that all its roots lie within the unit circle.12

Additionally, they are often utilized in iterative algorithms to compute the roots of f(x), par-13

ticularly to generate initial approximations that initiate the iterations [5, 7]. Recently, there has14

been growing interest in polynomial eigenvalue problems, leading to the development of simple15

criteria for estimating the eigenvalues of matrix polynomials [4]. However, to maintain brevity,16

matrix polynomials will not be addressed in this study.17

A number T is said to be an upper bound for the roots of a polynomial p(x) with real coeffi-18

cients if T is greater than or equal to the absolute value of all roots of p(x). Root bounds play19

a critical role in understanding the behavior of polynomials and have numerous applications in20

numerical analysis, algebraic equations, and approximation theory.21

For a polynomial f(x) of degree n,22

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0,



the roots are bounded above by the unique positive root of the associated Cauchy polynomial:1

|an|xn − |an−1|xn−1 − · · · − |a0| = 0.

According to the Cauchy formula, this upper bound is given by:2

max

{
1,

n−1∑
i=1

∣∣∣∣ aian
∣∣∣∣
}
[2].

We now present several important theorems related to upper bounds of polynomial roots.3

Theorem 1 Let f(x) = anx
n+an−1x

n−1+· · ·+a1x+a0 be a polynomial with real coefficients.4

Then, the number of positive real roots of f(x) is equal to the number of sign changes in its5

coefficients, or less than this by an even integer [4].6

Theorem 2 Let f(x) = xn + a1x
n−1 + · · · + an−1x + an ∈ R[X]. Then, an upper bound for7

the absolute value of f(x)’s roots is given by R + ρ, where R ≥ ρ are the largest numbers in8

the set
{

i
√

|ai| ; i ∈ N
}
[3].9

Theorem 3 Let f(x) = xn + a1x
n−1 + · · · + an−1x + an ∈ R[X], and let α be the unique10

positive root of the polynomial:11

g(x) = xn − |a1|xn−1 − · · · − |an−1|x− |an|.

Then, any α < b is a valid bound for the absolute values of the roots of f(x) [1].12

Theorem 4 Let pm(x) be the characteristic polynomial of the m-th order linear recursive se-13

quence u(n), related to an. Let αm be the unique, positive real root of pm(x). Then αm < αm+1.14

Proof. The polynomial pm(x) has a positive coefficient for xm+1, and αm is the unique positive15

real root. For any x ∈ (αm,∞), we have pm(x) > 0. Consider αm+1, the root of pm+1(x):16

pm+1(αm+1) = 0,

⇒ αm+1pm(αm+1)− am+1 = 0,

⇒ pm(αm+1) =
am+1

αm+1

> 0.

Since pm(αm+1) > 0, and pm(x) > 0 for x > αm, it follows that αm < αm+1.17

Theorem 5 Let {an}∞n=1 be a sequence in R+ such that limn→∞ n
√
an < ∞. Then, for any18

n ∈ N, µ(n) = R(n)+ρ(n) is an upper bound for the absolute value of all p(an, n;x) complex19

roots, where R(n) ≥ ρ(n) are the largest two elements of the set:20

{ i+1
√

|ai − ai+1|, a1 + 1}.

Proof. Since limn→∞ n
√
an < ∞, Lagrange’s root bound ensures that 2max1≤i≤n{ i

√
ai} is21

an upper bound for the roots of p(an, n;x). Therefore, {αn}∞n=1 is bounded and monotonic22



increasing. Consequently, it converges to a limit α such that p(an, n;α) = p(an, n + 1;α) as1

n → ∞.2

Define a sequence bn as:3

b(n) =

{
a(n), n ≤ m,

a(m+ 1), n > m.

Clearly, b(n) is (m+ 1)-finally stable. To estimate α, solve the equation:4

p(bn, n+ 1;x) = p(bn, n;x),

which expands to:5

xn+1 −
n+1∑
i=1

bix
n−i+1 = xn −

n∑
i=1

bix
n−i.

After simplification:6

xn−m
(
xm+1 − (a1 + 1)xm +

m∑
i=1

(ai − ai+1)x
m−i

)
= 0.

The positive real root α of this polynomial satisfies Lagrange’s root bound. Let γn denote the7

sum of the first and second-largest numbers in:8

{ i+1
√

|ai − ai+1|, a1 + 1}.

Thus, α ≤ γn, and by Cauchy’s root bound, γn is an upper bound for all complex roots of9

p(an, n;x) for n ≤ m.10

Example 1 Let a, b, c be positive real numbers, and define the sequence:11

a(n) =


a, if n = 1,

b, if n = 2,

c, if n ≥ 3.

For m ≥ 3:12

gm(x) = x3 − (a+ 1)x2 + (a− b)x+ (b− c).

The sequence a(n) is 3-finally stable, and α is the positive real root of gm(x), which bounds13

the absolute values of all roots of p(an, n;x).14

In the special case where b = c, we find:15

α =
1 + a+

√
1− 2a+ a2 + 4b

2
.

If a = b = c, then α = a+ 1. For example, if a = 1, α = 2.16

Example 2 Consider p(x) = x5 − 2x4 − 10x3 − 65x2 − 15x− 9. Using Cauchy’s root bound,17



the sum of the first and second-largest elements in the set:1

{2, 2
√
10,

3
√
65,

4
√
15,

5
√
9}

yields 7.183.2

Using the proposed bound, the sum of the first and second-largest numbers in:3

{3, 2
√
8,

3
√
55,

4
√
50,

5
√
6}

yields 6.8021.4

Hence, the new bound is sharper than Cauchy’s bound.5

Theorem 6 Let {an}∞n=1 be a sequence in R+ such that limn→∞ n
√
an < ∞. For n ∈ N,6

µ(n) = R(n) + ρ(n) is an upper bound for the absolute value of all roots of p(an, n;x), where7

R(n) ≥ ρ(n) are the largest two elements in:8

{ i+1
√

|ai − 2ai+1 + ai+2|, a1 + 2}.

Proof. This follows directly from Cauchy’s bound and Theorem 2.9

I. Application10

In this section, we present some convergence of real unique positive sequences relevant11

to certain elementary and useful mathematical sequences that appear in applicable branches of12

science. These sequences exhibit specific properties, such as being monotonic (increasing or13

decreasing), less than one, symmetric, or constant.14

Figure 1. Convergence of p(1, i;x) zeros for 1 ≤ i ≤ 6 to exact α = 2, relevant to the constant sequence
a(n) = 1.



Figure 2. Convergence of p(1/n, i;x) zeros for 1 ≤ i ≤ 6 to exact α = 1.58122, relevant to the decreasing
sequence a(n) = 1/n, which belongs to (0, 1].

Figure 3. Convergence of p(n, i;x) zeros for 1 ≤ i ≤ 6 to exact α = 2.6178, relevant to the increasing sequence
a(n) = n.



Figure 4. Convergence of p(3n, i;x) zeros for 1 ≤ i ≤ 6 to exact α = 6, relevant to the exponentially increasing
sequence a(n) = 3n.

Based on the plots corresponding to different sequences, the table below shows how the1

positive unique zeros of p(a(n), n;x), denoted as αn, converge to α∞ = α.2

Sequence a(n) n = 2 n = 3 n = 4 n = 5 n = 6 n → ∞
1 1 1.618 1.839 1.927 1.965 2

1/n 1 1.366 1.487 1.535 1.558 1.5812

n 1 2 2.374 2.518 2.576 2.6178

3n 3 4.854 5.517 5.782 5.897 6

3

As we can observe from all the above examples, limn→∞
n
√
a(n) < ∞ holds true.4
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