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Abstract. Let 𝐺 = (𝑉(𝐺), 𝐸(𝐺)) be a path or cycle graph. A subset 𝐷 of 𝑉(𝐺) is a 

dominating set of 𝐺 if for every 𝑢 ∈ (𝑉(𝐺)\𝐷), there exists 𝑣 ∈ 𝐷 such that 𝑢𝑣 ∈ 𝐸(𝐺), 
that is, 𝑁[𝐷] = 𝑉(𝐺). The domination number of 𝐺, denoted by 𝛾(𝐺), is the smallest 

cardinality of a dominating set of 𝐺. A set 𝐷1 ⊆ 𝑉(𝐺) is a set containing dominating 

vertices of degree 2, that is, each vertex is internally stable. A set 𝐷2 ⊆ 𝑉(𝐺) is a set 

containing dominating vertices where one of the element say 𝑎 ∈ 𝐷2, deg(𝑎) = 1 and 

the rest are of degree 2. A set 𝐷3 ⊆ 𝑉(𝐺) is a set containing dominating vertices in which 

two of the elements say 𝑏, 𝑐 ∈ 𝐷3, deg(𝑏) = deg(𝑐) = 1. This paper developed a new 

combinatorial formula that determines the number of ways of putting a dominating set 

in a path and cycle graphs of order 𝑛 ≥ 1 and 𝑛 ≥ 3, respectively. Further, a 

combinatorial function 𝑃𝐺
1(𝑛), 𝑃𝐺

2(𝑛), and 𝑃𝐺
3(𝑛) that determines the probability of 

getting the set 𝐷1,  𝐷2, and 𝐷3, respectively in graph 𝐺 of order 𝑛 were constructed. 
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I. INTRODUCTION 

A connected graph 𝐺 is a pair of set 𝑉(𝐺) and 𝐸(𝐺), where 𝑉(𝐺)  is a finite non-empty set 

called the vertex-set of 𝐺 and 𝐸(𝐺) is a set of unordered pair {𝑎, 𝑏} or simply 𝑎𝑏 of distinct 

elements from 𝐸(𝐺) called the edge-set of 𝐺 where 𝑎 and 𝑏 are distinct elements in 𝑉(𝐺).  Let 

𝑣 ∈ 𝑉 (𝐺). The degree of vertex 𝑣 ∈ 𝑉(𝐺),  denoted by deg (𝑣) is the number of edges incident 

with 𝑣 in 𝐺. Then neighborhood of 𝑣 is the set 𝑁𝐺(𝑣) =  𝑁(𝑣) = {𝑢 ∈ 𝑉 (𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}. If 
𝑋 ⊆ 𝑉 (𝐺), then the open neighborhood of 𝑋 is the set 𝑁𝐺(𝑋) =  𝑁(𝑋) = ⋃𝑣∈𝑋 𝑁𝐺(𝑣). The 

closed neighborhood of 𝑋 is 𝑁𝐺[𝑋]  =  𝑁[𝑋]  =  𝑋⋃𝑁(𝑋). A walk is a sequence 𝑢1, 𝑢2, … , 𝑢𝑛 

of vertices of graph 𝐺 such that {𝑢𝑖, 𝑢𝑖+1} ∈ 𝐸(𝐺) for each 𝑖 =  1, 2, … , 𝑛 − 1. Vertices 𝑢1 and 

𝑢𝑛 are the endpoints of the walk while the vertices 𝑢2, 𝑢3, … , 𝑢𝑛−1 are internal vertices of the 

walk. The length of walk is the number of edges on the walk, i.e., the walk 𝑢1, 𝑢2, … , 𝑢𝑛 has 

length 𝑛 − 1. A path is a walk that does not repeat edges and does not end where it starts, i.e., 

𝑢1 → 𝑢2 → … → 𝑢𝑛, 𝑢1 ≠ 𝑢𝑛. A path of order 𝑛 and length 𝑛 − 1 is denoted by 𝑃𝑛 where 𝑛 ≥
1. A cycle is a walk that does not repeat edges and does end where it starts, i.e., 𝑢1 → 𝑢2 →
 … → 𝑢𝑛 → 𝑢1. A cycle graph of order 𝑛 and length 𝑛 is denoted by 𝐶𝑛 where 𝑛 ≥ 3. For other 

types of graphs, readers may refer to [6, 10]. Let 𝑎 and 𝑏 be two distinct vertices in graph 𝐺. 

The distance 𝑑𝐺(𝑎, 𝑏) between two vertices 𝑎 and  𝑏 of a graph 𝐺 is defined as the length of 

the shortest walk between 𝑎 and 𝑏 in 𝐺. If there is no walk between 𝑎 and 𝑏 then we declare 

𝑑𝐺(𝑎, 𝑏) = ∞.  The eccentricity 𝑒(𝑎) is the distance to a vertex farthest from 𝑏, that is, 𝑒(𝑎) =
max {𝑑𝐺(𝑎, 𝑏)}. For more information on the concepts of graphs, please refer to [5, 6, 10]. 
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A subset 𝐷 of 𝑉(𝐺) is a dominating set of 𝐺 if for every 𝑎 ∈ 𝑉(𝐺)\𝐷, there exists 𝑏 ∈ 𝐷 

such that 𝑎𝑏 ∈ 𝐸(𝐺), i.e., 𝑁[𝐷] = 𝑉(𝐺) where the elements of 𝐷 is called dominating vertices. 

The domination number of 𝐺, denoted by 𝛾(𝐺), is the smallest cardinality of a dominating set 

of 𝐺. Let 𝐼 ⊆ 𝐺. Then, 𝐼 is an independent dominating set if it is a dominating set in 𝐺 and no 

two vertices in set 𝐼 are adjacent. The independent domination number of 𝐺, denoted by 𝑖(𝐺) =
𝛾𝑖(𝐺), is the smallest cardinality of an independent dominating set of 𝐺. The concepts of 

domination in graphs is investigated in [1, 4, 7, 9, 11, 12]. In the study of Casinillo [3], the sum 

of two paths 𝑃𝑛 and  𝑃𝑚  is defined as connecting the last vertex of 𝑃𝑛 to the first vertex of 𝑃𝑚 

and it is denoted as 𝑃𝑛Φ𝑃𝑛 = 𝑃𝑛+𝑚. Also, it is introduced that path of order 𝑛 with one 

dominating vertex at 𝑖𝑡ℎ vertex is denoted by 𝑃𝑛
𝑖 . A set 𝐷1 ⊆ 𝑉(𝐺) is a set containing 

dominating vertices of degree 2. A set 𝐷2 ⊆ 𝑉(𝐺) is a set containing dominating vertices where 

one of the element say 𝑢 ∈ 𝐷2, deg(𝑢) = 1. A set 𝐷3 ⊆ 𝑉(𝐺) is a set containing dominating 

vertices in which two of the elements say 𝑐,  𝑑 ∈ 𝐷3, deg(𝑐) = deg(𝑑) = 1. Hence, 𝐷 =
𝐷1⋃𝐷2⋃𝐷3. Let 𝑆𝐺 be the set of all possible ways of getting dominating set 𝐷 in a graph 𝐺 and 

let 𝜑𝐺(𝑛) = |𝑆𝐺| be a function that determines the number of ways of putting dominating set 

in a graph 𝐺. In addition, let 𝑓𝐺(𝑛),  𝑔𝐺(𝑛) and ℎ𝐺(𝑛) be functions that determines the number 

of ways of putting set 𝐷1,  𝐷2 and 𝐷3,  respectively in a graph 𝐺, that is, 𝑓𝐺(𝑛) = 𝑓(𝐷1), 
𝑔𝐺(𝑛) = 𝑔(𝐷2), and ℎ𝐺(𝑛) = ℎ(𝐷3). The probability of getting 𝐷1,  𝐷2 and 𝐷3 in a graph 𝐺 

are denoted by 𝑃𝐺
1(𝑛),  𝑃𝐺

2(𝑛) and 𝑃𝐺
3(𝑛),  respectively and defined as follows: 

i.) 𝑃𝐺
1(𝑛) = 𝑃𝑟𝑜𝑏(𝐷1) =

𝑓𝐺(𝑛)

𝜑𝐺(𝑛)
 ; 

ii.) 𝑃𝐺
2(𝑛) = 𝑃𝑟𝑜𝑏(𝐷2) =

𝑔𝐺(𝑛)

𝜑𝐺(𝑛)
 ; and 

iii.) 𝑃𝐺
3(𝑛) = 𝑃𝑟𝑜𝑏(𝐷3) =

ℎ𝐺(𝑛)

𝜑𝐺(𝑛)
 

where 𝑃𝐺
1(𝑛)+𝑃𝐺

2(𝑛)+𝑃𝐺
3(𝑛) = 1.  

Currently, in the paper of Casinillo [3], the number of independent domination in path is 

determined using the Fibonacci binary string and in the paper of Samanmoo et al. [13], the 𝛾-

independent dominating graphs of paths and cycles were presented. Furthermore, Arocha and 

Llano [2] computed the number of dominating 𝑘-sets of paths, cycles and wheels using the 

concept of domination polynomials. Hence, the purpose of this paper is to present new counting 

formula for the number of dominating sets of path and cycle graphs that depends on the order 

of graph. In particular, a new combinatorial formula that determines the number of ways of 

putting a dominating set in a path and cycle graphs of order 𝑛 ≥ 1 and 𝑛 ≥ 3, respectively 

were developed. Furthermore, the combinatorial functions 𝑃𝐺
1(𝑛), 𝑃𝐺

2(𝑛), and 𝑃𝐺
3(𝑛) that 

determines the probability of getting the set 𝐷1,  𝐷2, and 𝐷3, respectively in graph 𝐺 were 

constructed. 

II. RESULTS 

We begin this section by considering a remark which is immediate from above definition of 

dominating vertex in graph 𝐺. This result determines the minimum domination number of path 

and cycle graphs. 

 

Remark 2.1. [2, 8] Let 𝑃𝑛 be a path of order 𝑛 ≥ 1 and 𝐶𝑛 be a cycle graph of order 𝑛 ≥ 3.  
Then, 
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𝛾(𝑃𝑛) = 𝛾(𝐶𝑛) = ⌈
𝑛

3
⌉ =

{
 
 

 
 
𝑛

3
           𝑖𝑓 𝑛 ≡ 0(𝑚𝑜𝑑3)

𝑛 + 2

3
     𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑3)

𝑛 + 1

3
     𝑖𝑓 𝑛 ≡ 2(𝑚𝑜𝑑3)

 

 

For path 𝑃1 and 𝑃2, it is clear that the dominating number is 1. The next Theorem is a direct 

consequence of Remark 2.1. The Theorem is different meaning to the result of Casinillo [2] 

that deals with Fibonacci number of domination in path which only generates independent 

dominating sets. We have to note that in path and cycle graphs, |𝐷| = |𝐼|, however, the number 

of ways of getting set 𝐷 and 𝐼 are different. In particular, this Theorem determines the number 

of all possible ways of putting a dominating sets (connected and independent) in path graph 𝑃𝑛 

which depends on the order 𝑛. 
 

Theorem 2.1. Let 𝐺 = 𝑃𝑛  where 𝑛 ∈ ℕ. Then, 

|𝑆𝐺| = 𝜑𝐺(𝑛) =

{
 
 

 
 
1                                  if  𝑛 ≡ 0(𝑚𝑜𝑑 3)
1

18
(𝑛2 + 13𝑛 + 4)  if  𝑛 ≡ 1(𝑚𝑜𝑑 3)

1

3
(𝑛 + 4)                   if  𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

       

Proof: To prove Theorem 2.1, we consider the following cases below: 

Case 1. Let 𝐺 = 𝑃3𝑗  where 𝑗 ∈ ℕ. By Remark 2.1, 𝛾(𝐺) = 𝑗 for all 𝑗 ∈ ℕ and implies that for 

all 𝑢𝑖 ∈ 𝐷,⋂𝑎𝑙𝑙 𝑖𝑁(𝑢𝑖) = ∅ and deg(𝑢𝑖) = 2. Thus, there is a unique configuration that for any 

𝑢𝑗 ∈ 𝐷, ∃ 𝑎, 𝑏 ∈ 𝑉(𝐺)\𝐷 such that 𝑁(𝑢𝑖) = {𝑎, 𝑏} and 𝑑𝐺(𝑢𝑖, 𝑢𝑖+1) = 3. Hence, it clearly 

follows that |𝑆𝐺| = 𝜑𝐺(𝑛 = 3𝑗) = 1. 
Case 2. Let 𝐺 = 𝑃3𝑗+1 where 𝑗 ∈ {0, 1, 2, … }. Obviously, if 𝑗 = 0, then 𝑛 = 1, |𝐷| = |𝐼| = 1 

and |𝑆𝐺| = 1. By Remark 2.1, it follows that 𝛾(𝐺) = 𝑗 + 1 and we obtained the following 

subcases below: 

Subcase 1.  Firstly, there is a unique configuration of independent dominating set considering 

that ∃ 𝑢, 𝑣 ∈ 𝐼 = 𝐷 such that deg(𝑢) = deg(𝑣) = 1.   
Subcase 2. Considering that there exists 𝑎, 𝑏 ∈ 𝑉(𝐺)\𝐷 and deg(𝑎) = deg(𝑏) = 1 such that 

𝑁(𝑎)⋃𝑁(𝑏) ⊂ 𝐷. When 𝑛 = 7, there is 1 possibility that the arrangement of the independent 

dominating and non-dominating vertices are alternate. On the other hand, if 𝑛 ≥ 10, then there 

exists edge/s such that it is incident of two non-dominating vertices. Let 𝐸𝑖 be the edges. Note 

that 𝑃2
2 and 𝑃2

1 are in the first and last position of path 𝐺, respectively. Hence, 

|𝑉(𝐺)\𝑉(𝑃2
2 Φ𝑃2

1 )| = 𝑛 − 4 and implies that the dominating number remaining is 
𝑛−4

3
. This 

follows that there are 
𝑛−7

3
 edges incident of two non-dominating vertices, that is, 

𝐸1, 𝐸2, … , 𝐸𝑛−7
3

. Combinatorically speaking, the 
𝑛−4

3
 independent dominating vertices and edges  

𝐸1, 𝐸2, … , 𝐸𝑛−7
3

 can be arranged in (
𝑛−4

3
)
2

 ways. However, the 
𝑛−4

3
 independent dominating 

vertices and edges  𝐸1, 𝐸2, … , 𝐸𝑛−7
3

 are not distinct, then the possible arrangement is given by  

∑𝑖 =
𝑛2 − 5𝑛 + 4

18

𝑛−4
3

𝑖=1

. 
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Subcase 3. Suppose that there exists 𝑢 ∈ 𝐷 and  𝑣 ∈ 𝑉(𝐺)\𝐷 such that deg(𝑢) = deg(𝑣) = 1 

and 𝑁(𝑣) ⊂ 𝐷, then there are 
2(𝑛−1)

3
 distinct arrangement can be form for 𝛾(𝐺) = 𝑗 + 1 by 

Remark 2.1. 

Subcase 4. Lastly, if no vertex in 𝐷 is an end vertex in 𝐺, then ∃ 𝑢, 𝑣 ∈ 𝐷 such that 𝑢𝑣 ∈ 𝐸(𝐺). 
This implies that the position of vertex 𝑢 is in 𝑃𝑛

3𝑖−1 and vertex 𝑣 is in 𝑃𝑛
3𝑖 where 𝑖 ∈

{1, 2, … ,
𝑛−1

3
}. Clearly, there are 

𝑛−1

3
 configuration of this form.  

Combining the 4 subcases, then it follows that 

𝜑𝐺(𝑛 = 3𝑗 + 1) = 1 +
𝑛2−5𝑛+4

18
+
2(𝑛−1)

3
+
𝑛−1

3
=

𝑛2+13𝑛+4

18
. 

Case 3. Let 𝐺 = 𝑃3𝑗+2 where 𝑗 ∈ {0, 1, 2, … }. Clearly, if 𝑛 = 2, then there are 2 possible ways 

of generating a dominating set.  Now we consider 𝑛 ≥ 5. By Remark 2.1, clearly, we have 

𝛾(𝐺) = 𝑗 + 1, and again, we consider the following subcases below: 

Subcase 1. If one of the vertex in 𝐷 has degree 1, i.e., there exists 𝑢 ∈ 𝑉(𝐺)\𝐷 such that 

deg(𝑢) = 1 , then it follows that for all 𝑢𝑗+1 ∈ 𝐷, ⋂𝑎𝑙𝑙 𝑗𝑁(𝑢𝑗+1) = ∅. And it is concluded that 

there are 2 possible arrangement of this form in graph 𝐺. 

Subcase 2. On the other hand, if for all 𝑣𝑗 ∈ 𝐷, deg(𝑣𝑗) = 2, then there exists edge/s 𝐸𝑖 ∈ 𝐸(𝐺) 

such that it is incident with non-dominating vertices. Obviously, if 𝑛 = 5, then there is only 1 

possible way to generate a dominating set in 𝐺.  Now consider 𝑛 ≥ 8.  Since 𝑃2
2 and 𝑃2

1 are in 

the first and last position of 𝐺, respectively, then |𝑉(𝐺)\𝑉(𝑃2
2 Φ𝑃2

1 )| = 𝑛 − 4 and the 

dominating vertices remaining is 
𝑛−5

3
. So, there are  

𝑛−5

3
 edges incident of two non-dominating 

vertices, that is, 𝐸1, 𝐸2, … , 𝐸𝑛−5
3

. So, it follows that there are 
𝑛−5

3
+ 1 =

𝑛−2

3
  distinct 

configuration of dominating sets of this form in graph 𝐺. Combining the 2 subcases, then we 

end up with 

𝜑𝐺(𝑛 = 3𝑗 + 2) = 2 +
𝑛−2

3
=

𝑛+4

3
. 

Hence, if we combine all three cases, then this completes the proof.                                      

 

The following corollaries are immediate results of Theorem 2.1 above. The result shows the 

combinatorial formula of getting the number of ways of generating sets 𝐷1, 𝐷2, and 𝐷3 in graph 

𝐺. For a trivial graph 𝐺 = 𝑃1, sets 𝐷1, 𝐷2, and 𝐷3 are not applicable. 

 

Corollary 2.1. Let 𝐺 be a path of order 𝑛 ≥ 3. Then,  

𝑓𝐺(𝑛) = 𝑓(𝐷1) = {

1                                if  𝑛 ≡ 0(𝑚𝑜𝑑 3)
1

18
(𝑛2 + 𝑛 − 2)      if  𝑛 ≡ 1(𝑚𝑜𝑑 3)

1

3
(𝑛 − 2)                  if  𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

 

Proof: Obvious from Theorem 2.1.                                                                                           

 

Corollary 2.2. Let 𝐺 be a path of order 𝑛 ≥ 1. Then,  

  𝑔𝐺(𝑛) = 𝑔(𝐷2) = {

0                  if  𝑛 ≡ 0(𝑚𝑜𝑑 3)
2

3
(𝑛 − 1)     if  𝑛 ≡ 1(𝑚𝑜𝑑 3)

2                     if  𝑛 ≡ 2(𝑚𝑜𝑑 3)

       

 

Proof: Obvious from Theorem 2.1.                                                                                           
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Corollary 2.3. Let 𝐺 be a path of order 𝑛 ≥ 4. Then, 

ℎ𝐺(𝑛) = ℎ(𝐷3) = {
0            𝑖𝑓 𝑛 ≡ 0 𝑜𝑟 2 (𝑚𝑜𝑑 3) 
1                      𝑖𝑓  𝑛 ≡ 1(𝑚𝑜𝑑 3)

 

 

Proof: Obvious from Theorem 2.1.                                                                                           

 

The following Remarks are direct consequence of the Corollaries above. We have to note that 

if 𝐺 = 𝑃𝑛, then 𝜑𝐺(𝑛) = 𝑓𝐺(𝑛) + 𝑔𝐺(𝑛) + ℎ𝐺(𝑛). 
 

Remark 2.2. Let 𝐺 = 𝑃𝑛 .  If 𝑛 ≡ 0(𝑚𝑜𝑑 3), then ℎ𝐺(𝑛) = 𝑔𝐺(𝑛) < 𝑓𝐺(𝑛) = 𝜑𝐺(𝑛). 
 

Remark 2.3. Let 𝐺 = 𝑃𝑛 .  If 𝑛 ≥ 8 and 𝑛 ≡ 1 𝑜𝑟 2 (𝑚𝑜𝑑 3), then 

ℎ𝐺(𝑛) < 𝑔𝐺(𝑛) ≤ 𝑓𝐺(𝑛) < 𝜑𝐺(𝑛). 
 

The following results determine the probability of getting sets 𝐷1, 𝐷2, and 𝐷3 in graph 𝐺 = 𝑃𝑛 

where 𝑛 ≥ 1 with certain restrictions. 

  

Theorem 2.2. Let 𝐺 be a path of order 𝑛 ≥ 3. Then,  

𝑃𝐺
1(𝑛) = 

{
 

 
1                     if  𝑛 ≡ 0(𝑚𝑜𝑑 3)
𝑛2+𝑛−2

𝑛2+13𝑛+4
     if  𝑛 ≡ 1(𝑚𝑜𝑑 3)

𝑛−2

𝑛+4
                if  𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

  

Proof: Let 𝐺 = 𝑃𝑛 where 𝑛 ∈ ℕ\{1, 2}. By getting the ratio of Corollary 2.1 and Theorem 

2.1, that is, 𝑓𝐺(𝑛)/𝜑𝐺(𝑛), then this completes the proof.                                                         

 

Remark 2.4. Let 𝐺 = 𝑃𝑛. If 𝑛 ≤ 2, then  𝑃𝐺
1(𝑛) = 0. 

 

Theorem 2.3. Let 𝐺 be a path of order 𝑛 ≥ 1. Then,      

𝑃𝐺
2(𝑛) =      

{
 
 

 
 
0                           if  𝑛 ≡ 0(𝑚𝑜𝑑 3)
12𝑛 − 12

𝑛2 + 13𝑛 + 4
    if  𝑛 ≡ 1(𝑚𝑜𝑑 3)

6

𝑛 + 4
                    if  𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

 

Proof: Let 𝐺 = 𝑃𝑛 where 𝑛 ∈ ℕ. Then, by getting the ratio of Corollary 2.2 and Theorem 2.1, 

that is, 𝑔𝐺(𝑛)/𝜑𝐺(𝑛). And this completes the proof.                                                               

 

Theorem 2.4. Let 𝐺 be a path of order 𝑛 ≥ 4. Then, 

𝑃𝐺
3(𝑛) = {

0                              𝑖𝑓 𝑛 ≡ 0 𝑜𝑟 2 (𝑚𝑜𝑑 3)
18

𝑛2 + 13𝑛 + 4
               𝑖𝑓 𝑛 ≡ 1(𝑚𝑜𝑑 3)

 

 

Proof: Let 𝐺 = 𝑃𝑛 where 𝑛 ∈ ℕ\{1}. Hence, by getting the ratio of Corollary 2.3 and 

Theorem 2.1, that is, ℎ𝐺(𝑛)/𝜑𝐺(𝑛), then this completes the proof.                                         
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Remark 2.5. Let 𝐺 = 𝑃𝑛. If 𝑛 = 1, then  𝑃𝐺
3(𝑛) = 0. 

 

By the definition of independent domination in graphs above, we obtained the following 

remark. 

 

Remark 2.6. Let 𝐺 = 𝑃𝑛 . Then, the following holds: 

 

 i.) ∑ 𝑑𝑒𝑔𝐺(𝑣) = 2𝛾𝑖(𝐺)𝑣∈𝐷1 ; 

 ii.) ∑ 𝑑𝑒𝑔𝐺(𝑣) = 2𝛾𝑖(𝐺)𝑣∈𝐷2 − 1; 𝑎𝑛𝑑  

 iii.) ∑ 𝑑𝑒𝑔𝐺(𝑣) = 2(𝛾𝑖(𝐺) − 1).𝑣∈𝐷3  

 

The following result determines the number of all possible ways of generating a dominating 

set in cycle graph 𝐶𝑛 where 𝑛 ≥ 3. 
 

Theorem 2.5. Let 𝐺 = 𝐶𝑛 where 𝑛 ∈ ℕ\{1, 2}. Then, 

|𝑆𝐺| = 𝜑𝐺(𝑛) =

{
 
 

 
 

6                                         if  𝑛 = 4

3                        if  𝑛 ≡ 0(𝑚𝑜𝑑 3)
1

18
(𝑛3 − 5𝑛2 + 22𝑛)     if   7≤ 𝑛 ≡ 1(𝑚𝑜𝑑 3)

1

3
(𝑛2 − 2𝑛)                   if  𝑛 ≡ 2(𝑚𝑜𝑑 3)

 

 

Proof. Suppose that 𝐺 = 𝐶𝑛 where 𝑛 ∈ ℕ\{1, 2}. Then, we consider that following 4 cases 

below:  

Case 1. If 𝑛 = 4, then we have |𝑉(𝐺)\𝐷| = |𝐷| = 2. When the elements of 𝐷 are alternate 

with the elements of 𝑉(𝐺)\𝐷, this implies that there are 2 possible arrangement of this form in 

graph 𝐺. On the other hand, if the elements of 𝐷 are connected in 𝐺, then there are 4 possible 

ways since the eccentricity of 𝑢 ∈ 𝐷 to 𝑣 ∈ 𝐷 is 𝑒(𝑢) = 3. Thus,  |𝑆𝐺| = 𝜑𝐺(𝑛 = 4) = 6. 

Case 2. Considering 𝑛 ≡ 0(𝑚𝑜𝑑 3),  then ∀ 𝑢𝑗 ∈ 𝐷,  ∃ 𝑎,  𝑏 ∈ 𝑉(𝐺)\𝐷 such that 𝑢𝑗 ∈ 𝑁(𝑎) ∩

𝑁(𝑏) and ⋂𝑎𝑙𝑙 𝑗𝑁(𝑢𝑗) = ∅. Since 𝐺 is a cycle and 𝑑𝐺(𝑢𝑗 , 𝑢𝑗+1) = 3, then this follows that 

|𝑆𝐺| = 𝜑𝐺(𝑛) = 3. 

Case 3. Let 7≤ 𝑛 ≡ 1(mod 3). Consider first a graph 𝐻 = 𝑃𝑛. Then, we reflect on the 

following subcases below: 

Subcase 1. By Remark 2.1 and Theorem 2.1, there is only one configuration of independent 

dominating set considering that there exists 𝑢, 𝑣 ∈ 𝐷 = 𝐼 such that deg(𝑢) = deg(𝑣) = 1. Let 

𝑢1, 𝑢2, … , 𝑢𝑛 be the vertices of graph 𝐻. Then, 𝑢1 and 𝑢𝑛 are dominating vertex. Now, to form 

a cycle graph we connect the two vertices 𝑢1 and 𝑢𝑛 by adding an edge. This implies that 𝑒(𝑢1) 
from 𝑢𝑛 is 𝑛 − 1 and it obviously follows that there are 𝑛 possible ways of generating 

dominating vertex of this form in graph 𝐺. 

Subcase 2. Again, by Remark 2.1 and Theorem 2.1, there are 
𝑛2−5𝑛+4

18
 arrangement of 

dominating set given that two vertices in 𝐷 are in the second vertex and second to last vertex 

of 𝐻. Let 𝑣1, 𝑣2, … , 𝑣𝑛 be the vertices of path 𝐻. Connecting 𝑣1 and 𝑣𝑛 by adding an edge, we 

form a cycle graph 𝐺. Since 𝑒(𝑣1) = 𝑛 − 1 from vertex 𝑣𝑛, then this implies that there are 

𝑛 (
𝑛2−5𝑛+4

18
) ways to generate dominating vertices of this form. If we combine the two sub 
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cases, then we obtain, |𝑆𝐺| = 𝜑𝐺(𝑛) = 𝑛 (
𝑛2−5𝑛+4

18
) + 𝑛. Simplifying the equation, we end up 

with, 

|𝑆𝐺| = 𝜑𝐺(𝑛) =
𝑛3−5𝑛2+22𝑛

18
. 

Case 4. Lastly, we let 𝑛 ≡ 2(𝑚𝑜𝑑 3) and 𝐻 = 𝑃𝑛. Then, by Remark 2.1 and Theorem 2.1, there 

are 
𝑛−2

3
  configuration in graph 𝐻 considering that ∀ 𝑢𝑗 ∈ 𝐷, deg(𝑢𝑗) = 2. Let 𝑢1, 𝑢2, … , 𝑢𝑛 be 

the vertices of graph 𝐻. By connecting 𝑢1 and 𝑢𝑛 by adding an edge, we obtain a cycle graph 

𝐺. Since 𝑒(𝑢1) = 𝑛 − 1 from vertex 𝑢𝑛, then it follows that |𝑆𝐺| = 𝜑𝐺(𝑛) = 𝑛 (
𝑛−2

3
) =

𝑛2−2𝑛

3
. 

Hence, combining all cases and this completes the proof.                                                            
 

By the Theorem 2.5 above, we obtain the following remarks. 
 

Remark 2.7.   Let 𝐺 = 𝐶𝑛 where 𝑛 ≥ 3. Then, 𝜑𝐺(𝑛) = 𝑓𝐺(𝑛) and 𝑔𝐺(𝑛) = ℎ𝐺(𝑛) = 0. 

 

Remark 2.8.   Let 𝐺 = 𝐶𝑛 where 𝑛 ≥ 3. Then, 𝑃𝐺
1(𝑛) = 1 and 𝑃𝐺

2(𝑛) = 𝑃𝐺
3(𝑛) = 0 

 

III. CONCLUSION 

This paper constructed a new combinatorial formulae that counts the number of ways of 

putting dominating set in path and cycle graphs. These formulae are function of the order of 

the said two graphs.  
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