

Coprime Graph of Integer Modulo *n* **Group and its Subgroups**

Rina Juliana¹, Masriani², I Gede Adhitya Wisnu Wardhana^{3*}, Ni Wayan Switrayni⁴, Irwansyah⁵

^{1,2,3,4,5} Department of Mathematics, Universitas Mataram Email: ¹rina.juliana@unram.ac.id, ²masriani@unram.ac.id, ³adhitya.wardhana@unram.ac.id, ⁴niwayan.switrayni@unram.ac.id, ⁵irw@unram.ac.id *Corresponding author

Abstract. Coprime Graph is a geometric representation of a group in the form of undirected graph. The coprime graph of a group G, denoted by Γ_G is a graph whose vertices are all elements of group G; and two distinct vertices a and b are adjacent if and only if (|a|; |b|) = 1. In this paper, we study coprime graph of integers modulo n group and its subgroups. One of the results is if n is a prime number, then coprime graph of integers modulo n group is a bipartite graph.

Keywords: bipartite graph, coprime graph, integer modulo, multipartite graph.

I. INTRODUCTION

Mathematicians define specific graphs on algebraic structures, and use graph properties as a geometric representations of an algebraic structure. In 2014, Ma *et al* [1] define a coprime graph of a group as follows: take G as the vertices of Γ_G and two distinct vertices x and y are adjacent if and only if (|x|, |y|) = 1. In this paper, we will study the coprime graph of cyclic group, \mathbb{Z}_n . In 2016 Dorbidi [2] classify all the groups which Γ_G is a complete r-partite graph or a planar graph, he also studied the automorphism group of Γ_G .

II. Result

2.1. Coprime Graph of \mathbb{Z}_n

Some terminology of group and graph that used in this paper are given as follows.

Definition 1 ([3]) Two vertices on the non-directed graph G are said to be neighbors if they are connected directly by an edge. In other words, u is adjacent to v if (u, v) is an edge on graph G.

Definition 2 If G is a group with identity e and $x \in G$, the order of x is the least natural number k such that $x^k = e$ and we write |x| = k.

Definition 3 ([1]) The coprime graph of a group G, denoted by Γ_G is a graph whose vertices are elements of G and two distinct vertices u and v are adjacent if and only if (|a|, |b|) = 1.

Definition 4 ([3]) Graph G, whose set of vertices can be partitioned into two subsets V_1 and V_2 , such that each edge in G connecting a vertice in V_1 to a vertice in V_2 , is called a bipartite graph

and is expressed as $G(V_1, V_2)$. In other words, each pair of vertices in V_1 (as well as vertices in V_2) are not neighbors. If each node in V_1 is adjacent to all vertices at V_2 , then $G(V_1, V_2)$ is called a complete bipartite graph, denoted by $K_{(m,n)}$, where $m = |V_1|$ and $n = |V_2|$.

Definition 5 ([1]) *A k-partite graph is a graph whose vertices can be partitioned into k disjoint sets so that no two vertices within the same set are adjacent.*

As we know, \mathbb{Z}_n is a cyclic group. The elements of \mathbb{Z}_n can be written as $\mathbb{Z}_n = \{0, 1, 2, ..., n-1\}$. Some examples of coprime graphs that obtained from the group \mathbb{Z}_n are as follow.

Example 1 Let $\mathbb{Z}_3 = \{0, 1, 2\}$. We can see that the order of its elements are |0| = 1, |1| = 3, |2| = 3. Therefore, we have the coprime graph of \mathbb{Z}_3 as shown in Figure 1..

Figure 1. Coprime graph of \mathbb{Z}_3

Example 2 Let $\mathbb{Z}_4 = \{0, 1, 2, 3\}$. We can check that the order of its elements are |0| = 1, |1| = 4, |2| = 2, |3| = 4. Therefore, we have the coprime graph of \mathbb{Z}_4 as shown in Figure 2..

Figure 2. Coprime graph of \mathbb{Z}_4

By following the above examples, we can obtain some properties of the coprime graph of Group \mathbb{Z}_n as follow. The first results we obtained is the coprime graph of \mathbb{Z}_n is a complete bipartite graph whenever n is a prime.

Theorem 1 If *n* is a prime number, then the coprime graph of \mathbb{Z}_n is a complete bipartite graph.

Proof. Clearly $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ with |0| = 1. Since *n* is a prime number, then $|1| = |2| = \dots = |n-1| = n$. So, the set $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\}$ can be partitioned into $V_1 = \{0\}$ and $V_2 = \{1, 2, \dots, n-1\}$. For all $a, b \in V_2$, we have (|a|, |b|) = n > 1. This implies *a* and *b* are not neighbors. Because |0| = 1, then for each $a \in V_2$, we have (|0|, |a|) = 1. So 0 is adjacent to *a*. Thus coprime graph of the group \mathbb{Z}_n is a complete bipartite graph. \Box

The second results we obtained is the coprime graph of \mathbb{Z}_n is a complete bipartite graph whenever n is a prime power.

Theorem 2 If $n = p^k$, for some prime p and $k \in \mathbb{N}$, then the coprime graph of \mathbb{Z}_n is a complete bipartite graph.

Proof. Clearly $\mathbb{Z}_n = \{0, 1, 2, \dots, p^{k-1}\}$ with |0| = 1. Since p is a prime number, every $a \in \mathbb{Z}_n$ with $(p^k, a) \neq 1$, can be written as $a = p^l q$, for some l with l < k. This implies $|a| = p^{k-l}$. Also, for every $b \in \mathbb{Z}_n$ with $(p^k, b) = 1$, we have $|b| = p^k$. So, for every $a, b \in \mathbb{Z}_n$ with $a, b \neq 0$, we have $(|a|, |b|) \neq 1$. Thus, $\mathbb{Z}_n = \{0, 1, 2, \dots, p^{k-1}\}$ can be partitioned into $V_1 = \{0\}$ and $V_2 = \{1, 2, \dots, p^{k-1}\}$. Because |0| = 1, then for each $a \in V_2$, we have (|a|, |0|) = 1. Then, for all $a \in V_2$, a is adjacent to 0, thus coprime graph which is formed from \mathbb{Z}_n is a complete bipartite graph.

The second results we obtained is the coprime graph of \mathbb{Z}_n is a *t*-partite graph whenever *n* is not a prime power.

Theorem 3 If $n = p_1^{k_1} p_2^{k_2} \cdots p_j^{k_j}$, where p_1, p_2, \cdots, p_j are distinct prime numbers and k_1, k_2, \cdots, k_j are natural numbers, then coprime graph of \mathbb{Z}_n is a (j + 1)-partite graph.

Proof. Let \mathbb{Z}_n be the group of integers modulo n, with $n = p_1^{k_1} p_2^{k_2} \cdots p_j k_j$, where p_1, p_2, \cdots, p_j are distinct prime numbers and $k_1, k_2, \cdots, k_j \in \mathbb{N}$. Clearly $\mathbb{Z}_n = \{0, 1, 2, \cdots, (p_1^{k_1} p_2^{k_2} \cdots p_j^{k_j}) - 1\}$. Every $a \in \mathbb{Z}_n$ with $(a, n) \neq 1$, can be written as $a = p_1^{l_1} p_2^{k_2} \cdots p_j^{k_j}$ with $l_i \leq k_i$. This implies, $|a| = (p_1^{k_1-l_1} p_2^{k_2-l_2} \cdots p_j^{k_j-l_j})$. Any $b \in \mathbb{Z}_n$ with (b, n) = 1, we have $|b| = p_1^{k_1} p_2^{k_2} \cdots p_j^{k_j}$. So, $\mathbb{Z}_n = \{0, 1, 2, \cdots, (p_1^{k_1} p_2^{k_2} \cdots p_j^{k_j}) - 1\}$ can be partitioned into the following sets.

$$V_1 = \{0\}$$

$$V_{2} = \{a_{1}, a_{2}, \cdots, a_{j}\} \text{ with } |a_{i}| = \prod_{w=1}^{j} p_{w}^{\alpha_{w}}, 0 \le \alpha_{w} \le k_{w}, \alpha_{1} \ne 0$$
$$V_{3} = \{b_{1}, b_{2}, \cdots, b_{j}\} \text{ with } |b_{i}| = \prod_{w=2}^{j} p_{w}^{\alpha_{w}}, 0 \le \alpha_{w} \le k_{w}, \alpha_{2} \ne 0$$
$$\vdots$$
$$V_{j+1} = \{q_{1}, q_{2}, \cdots, q_{j}\} \text{ with } |q_{i}| = p_{j}^{\alpha_{j}}, 0 \le \alpha_{j} \le k_{j}$$

So, 0 is adjacent to all $x \in V_i$, $i = 2, 3, \dots, j+1$. Also, some $u \in V_i$ is adjacent to $v \in V_l$, $i \neq l$. Thus, coprime graph that formed from \mathbb{Z}_n is a graph (j+1)-partite.

2.2. Coprime Graph of Subgroups of \mathbb{Z}_n

In this part, we will describe coprime graphs of subgroups of \mathbb{Z}_n . The first result is the coprime graphs of nontrivial subgroups of \mathbb{Z}_n are bipartite whenever *n* is a prime power.

Theorem 4 If $n = p^k$, for some prime number p and $k \in \mathbb{N}$, then coprime graphs of nontrivial subgroups of \mathbb{Z}_n are bipartite.

17

Proof. Any non-trivial subgroup of \mathbb{Z}_{p^k} is isomorphic to \mathbb{Z}_{p^l} , for some 0 < l < k. Therefore, by Theorem 2, coprime graph of any nontrivial subgroup of \mathbb{Z}_{p^k} is bipartite.

The second result is whenever n is a product of two prime power, the the coprime graphs of nontrivial subgroups of \mathbb{Z}_n are bipartite or tripartite.

Theorem 5 If $n = p_1^{k_1} p_2^{k_2}$, with p_1, p_2 are distinct prime numbers, and k_1, k_2 are natural numbers, then coprime graphs of nontrivial subgroups of \mathbb{Z}_n are bipartite or multipartite (3-partite).

Proof. Any non-trivial subgroup of $\mathbb{Z}_{p_1^{k_1}p_2^{k_2}}$ is isomorphic to $\mathbb{Z}_{p_1^{l_1}p_2^{l_2}}$, for some $l_1 < k_1$ and $l_2 < k_2$. When $l_1 = 0$ or $l_2 = 0$, then by Theorem 2, the coprime graph of the corresponding subgroup is bipartite. Otherwise, by Theorem 3, the coprime graph of the corresponding subgroup is 3-partite.

The third result is whenever n is not a prime power, the coprime graphs of nontrivial subgroups of \mathbb{Z}_n are multipartite.

Theorem 6 If $n = p_1^{k_1} p_2^{k_2} \cdots p_j^{k_j}$, where p_1, p_2, \cdots, p_j are distinct prime numbers and $k_1, k_2, \cdots, k_j \in \mathbb{N}$, then the coprime graph of non-trivial subgroups of \mathbb{Z}_n is multipartite.

Proof. Any non-trivial subgroup of $\mathbb{Z}_{p_1^{k_1}\dots p_j^{k_j}}$ is isomorphic to $\mathbb{Z}_{p_1^{l_1}\dots p_j^{l_j}}$, for some $l_i < k_i$, for all $i = 1, 2, \dots, j$. If $l_{i_1}, l_{i_2}, \dots, l_{i_t}$ are the only non-zero powers, then by Theorem 3, the coprime graph of the corresponding subgroup is (t + 1)-partite.

III. CONCLUSIONS

We described coprime graphs of Z_n and its subgroups for all n. In general, the resulting coprime graphs are bipartite whenever n is a prime power and multipartite whenever n is not a prime power. But when we consider its subgroups, the coprime graph subgroup of Z_n may a bipartite even if n is not a prime power.

ACKNOWLEDGEMENT

Special thanks to Dr. Gustina Elfiyanti for the support and inspiration during 5BIGTC in Bandung.

REFERENCES

- [1] X.L. Ma, H.Q. Wei, and L.Y. Yang, "The coprime graph of a group," *International Journal of Group Theory*, vol. 3, no. 3, pp. 13–23, 2014.
- [2] H.M. Dorbidi, "A note on the coprime graph of a group," *International Journal of Group Theory*, vol. 5, no. 4, pp. 17–22, 2016.
- [3] R. Munir, Matematika Diskrit. Bandung: Penerbit Informatika, 2010.

18