# Coprime Graph of Integer Modulo $n$ Group and its Subgroups 

Rina Juliana ${ }^{1}$, Masriani ${ }^{2}$, I Gede Adhitya Wisnu Wardhana ${ }^{3 *}$, Ni Wayan Switrayni ${ }^{4}$, Irwansyah ${ }^{5}$<br>1,2,3,4,5 Department of Mathematics, Universitas Mataram<br>Email: ${ }^{1}$ rina.juliana@unram.ac.id, ${ }^{2}$ masriani@unram.ac.id, ${ }^{3}$ adhitya.wardhana@unram.ac.id,<br>${ }^{4}$ niwayan.switrayni@unram.ac.id, ${ }^{5}$ irw@unram.ac.id<br>*Corresponding author


#### Abstract

Coprime Graph is a geometric representation of a group in the form of undirected graph. The coprime graph of a group $G$, denoted by $\Gamma_{G}$ is a graph whose vertices are all elements of group $G$; and two distinct vertices a and b are adjacent if and only if $(|a| ;|b|)=1$. In this paper, we study coprime graph of integers modulo n group and its subgroups. One of the results is if n is a prime number, then coprime graph of integers modulo n group is a bipartite graph.


Keywords: bipartite graph, coprime graph, integer modulo, multipartite graph.

## I. INTRODUCTION

Mathematicians define specific graphs on algebraic structures, and use graph properties as a geometric representations of an algebraic structure. In 2014, Ma et al [1] define a coprime graph of a group as follows: take $G$ as the vertices of $\Gamma_{G}$ and two distinct vertices $x$ and $y$ are adjacent if and only if $(|x|,|y|)=1$. In this paper, we will study the coprime graph of cyclic group, $\mathbb{Z}_{n}$. In 2016 Dorbidi [2] classify all the groups which $\Gamma_{G}$ is a complete $r$-partite graph or a planar graph, he also studied the automorphism group of $\Gamma_{G}$.

## II. Result

### 2.1. Coprime Graph of $\mathbb{Z}_{n}$

Some terminology of group and graph that used in this paper are given as follows.

Definition 1 ([3]) Two vertices on the non-directed graph $G$ are said to be neighbors if they are connected directly by an edge. In other words, $u$ is adjacent to $v$ if $(u, v)$ is an edge on graph $G$.

Definition 2 If $G$ is a group with identity $e$ and $x \in G$, the order of $x$ is the least natural number $k$ such that $x^{k}=e$ and we write $|x|=k$.

Definition 3 ([1]) The coprime graph of a group $G$, denoted by $\Gamma_{G}$ is a graph whose vertices are elements of $G$ and two distinct vertices $u$ and $v$ are adjacent if and only if $(|a|,|b|)=1$.

Definition 4 ([3]) Graph $G$, whose set of vertices can be partitioned into two subsets $V_{1}$ and $V_{2}$, such that each edge in $G$ connecting a vertice in $V_{1}$ to a vertice in $V_{2}$, is called a bipartite graph
and is expressed as $G\left(V_{1}, V_{2}\right)$. In other words, each pair of vertices in $V_{1}$ (as well as vertices in $V_{2}$ ) are not neighbors. If each node in $V_{1}$ is adjacent to all vertices at $V_{2}$, then $G\left(V_{1}, V_{2}\right)$ is called a complete bipartite graph, denoted by $K_{( }(m, n)$, where $m=\left|V_{1}\right|$ and $n=\left|V_{2}\right|$.

Definition 5 ([1]) A k-partite graph is a graph whose vertices can be partitioned into $k$ disjoint sets so that no two vertices within the same set are adjacent.

As we know, $\mathbb{Z}_{n}$ is a cyclic group. The elements of $\mathbb{Z}_{n}$ can be written as $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-$ $1\}$. Some examples of coprime graphs that obtained from the group $\mathbb{Z}_{n}$ are as follow.

Example 1 Let $\mathbb{Z}_{3}=\{0,1,2\}$. We can see that the order of its elements are $|0|=1,|1|=$ $3,|2|=3$. Therefore, we have the coprime graph of $\mathbb{Z}_{3}$ as shown in Figure 1..


Figure 1. Coprime graph of $\mathbb{Z}_{3}$
Example 2 Let $\mathbb{Z}_{4}=\{0,1,2,3\}$. We can check that the order of its elements are $|0|=1,|1|=$ $4,|2|=2,|3|=4$. Therefore, we have the coprime graph of $\mathbb{Z}_{4}$ as shown in Figure 2..


Figure 2. Coprime graph of $\mathbb{Z}_{4}$

By following the above examples, we can obtain some properties of the coprime graph of Group $\mathbb{Z}_{n}$ as follow. The first results we obtained is the coprime graph of $\mathbb{Z}_{n}$ is a complete bipartite graph whenever $n$ is a prime.

Theorem 1 If $n$ is a prime number, then the coprime graph of $\mathbb{Z}_{n}$ is a complete bipartite graph.

Proof. Clearly $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ with $|0|=1$. Since $n$ is a prime number, then $|1|=|2|=\ldots=|n-1|=n$. So, the set $\mathbb{Z}_{n}=\{0,1,2, \cdots, n-1\}$ can be partitioned into $V_{1}=\{0\}$ and $V_{2}=\{1,2, \cdots, n-1\}$. For all $a, b \in V_{2}$, we have $(|a|,|b|)=n>1$. This implies $a$ and $b$ are not neighbors. Because $|0|=1$, then for each $a \in V_{2}$, we have $(|0|,|a|)=1$. So 0 is adjacent to $a$. Thus coprime graph of the group $\mathbb{Z}_{n}$ is a complete bipartite graph.

The second results we obtained is the coprime graph of $\mathbb{Z}_{n}$ is a complete bipartite graph whenever $n$ is a prime power.

Theorem 2 If $n=p^{k}$, for some prime $p$ and $k \in \mathbb{N}$, then the coprime graph of $\mathbb{Z}_{n}$ is a complete bipartite graph.

Proof. Clearly $\mathbb{Z}_{n}=\left\{0,1,2, \cdots, p^{k-1}\right\}$ with $|0|=1$. Since $p$ is a prime number, every $a \in \mathbb{Z}_{n}$ with $\left(p^{k}, a\right) \neq 1$, can be written as $a=p^{l} q$, for some $l$ with $l<k$. This implies $|a|=p^{k-l}$. Also, for every $b \in \mathbb{Z}_{n}$ with $\left(p^{k}, b\right)=1$, we have $|b|=p^{k}$. So, for every $a, b \in \mathbb{Z}_{n}$ with $a, b \neq 0$, we have $(|a|,|b|) \neq 1$. Thus, $\mathbb{Z}_{n}=\left\{0,1,2, \cdots, p^{k-1}\right\}$ can be partitioned into $V_{1}=\{0\}$ and $V_{2}=\left\{1,2, \cdots, p^{k-1}\right\}$. Because $|0|=1$, then for each $a \in V_{2}$, we have $(|a|,|0|)=1$. Then, for all $a \in V_{2}, a$ is adjacent to 0 , thus coprime graph which is formed from $\mathbb{Z}_{n}$ is a complete bipartite graph.

The second results we obtained is the coprime graph of $\mathbb{Z}_{n}$ is a $t$-partite graph whenever $n$ is not a prime power.
Theorem 3 If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}$, where $p_{1}, p_{2}, \cdots, p_{j}$ are distinct prime numbers and $k_{1}, k_{2}, \cdots, k_{j}$ are natural numbers, then coprime graph of $\mathbb{Z}_{n}$ is a $(j+1)$-partite graph.

Proof. Let $\mathbb{Z}_{n}$ be the group of integers modulo $n$, with $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j} k_{j}$, where $p_{1}, p_{2}, \cdots, p_{j}$ are distinct prime numbers and $k_{1}, k_{2}, \cdots, k_{j} \in \mathbb{N}$. Clearly $\mathbb{Z}_{n}=\left\{0,1,2, \cdots,\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}\right)\right.$ $1\}$. Every $a \in \mathbb{Z}_{n}$ with $(a, n) \neq 1$, can be written as $a=p_{1}^{l_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}$ with $l_{i} \leq k_{i}$. This implies, $|a|=\left(p_{1}^{k_{1}-l_{1}} p_{2}^{k_{2}-l_{2}} \cdots p_{j}^{k_{j}-l_{j}}\right)$. Any $b \in \mathbb{Z}_{n}$ with $(b, n)=1$, we have $|b|=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}$. So, $\mathbb{Z}_{n}=\left\{0,1,2, \cdots,\left(p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}\right)-1\right\}$ can be partitioned into the following sets.

$$
\begin{gathered}
V_{1}=\{0\} \\
V_{2}=\left\{a_{1}, a_{2}, \cdots, a_{j}\right\} \text { with }\left|a_{i}\right|=\prod_{w=1}^{j} p_{w}^{\alpha_{w}}, 0 \leq \alpha_{w} \leq k_{w}, \alpha_{1} \neq 0 \\
V_{3}=\left\{b_{1}, b_{2}, \cdots, b_{j}\right\} \text { with }\left|\left|b_{i}\right|=\prod_{w=2}^{j} p_{w}^{\alpha_{w}}, 0 \leq \alpha_{w} \leq k_{w}, \alpha_{2} \neq 0\right. \\
\vdots \\
V_{j+1}=\left\{q_{1}, q_{2}, \cdots, q_{j}\right\} \text { with }\left|q_{i}\right|=p_{j}^{\alpha_{j}}, 0 \leq \alpha_{j} \leq k_{j}
\end{gathered}
$$

So, 0 is adjacent to all $x \in V_{i}, i=2,3, \cdots, j+1$. Also, some $u \in V_{i}$ is adjacent to $v \in V_{l}, i \neq l$. Thus, coprime graph that formed from $\mathbb{Z}_{n}$ is a graph $(j+1)$-partite.

### 2.2. Coprime Graph of Subgroups of $\mathbb{Z}_{n}$

In this part, we will describe coprime graphs of subgroups of $\mathbb{Z}_{n}$. The first result is the coprime graphs of nontrivial subgroups of $\mathbb{Z}_{n}$ are bipartite whenever $n$ is a prime power.

Theorem 4 If $n=p^{k}$, for some prime number $p$ and $k \in \mathbb{N}$, then coprime graphs of nontrivial subgroups of $\mathbb{Z}_{n}$ are bipartite.

Proof. Any non-trivial subgroup of $\mathbb{Z}_{p^{k}}$ is isomorphic to $\mathbb{Z}_{p^{l}}$, for some $0<l<k$. Therefore, by Theorem 2 , coprime graph of any nontrivial subgroup of $\mathbb{Z}_{p^{k}}$ is bipartite.

The second result is whenever $n$ is a product of two prime power, the the coprime graphs of nontrivial subgroups of $\mathbb{Z}_{n}$ are bipartite or tripartite.

Theorem 5 If $n=p_{1}^{k_{1}} p_{2}^{k_{2}}$, with $p_{1}, p_{2}$ are distinct prime numbers, and $k_{1}, k_{2}$ are natural numbers, then coprime graphs of nontrivial subgroups of $\mathbb{Z}_{n}$ are bipartite or multipartite (3-partite).

Proof. Any non-trivial subgroup of $\mathbb{Z}_{p_{1}^{k_{1}} p_{2}^{k_{2}}}$ is isomorphic to $\mathbb{Z}_{p_{1}^{l_{1}} p_{2}^{l_{2}}}$, for some $l_{1}<k_{1}$ and $l_{2}<k_{2}$. When $l_{1}=0$ or $l_{2}=0$, then by Theorem 2 , the coprime graph of the corresponding subgroup is bipartite. Otherwise, by Theorem 3, the coprime graph of the corresponding subgroup is 3-partite.

The third result is whenever $n$ is not a prime power, the coprime graphs of nontrivial subgroups of $\mathbb{Z}_{n}$ are multipartite.

Theorem 6 If $n=p_{1}^{k_{1}} p_{2}^{k_{2}} \cdots p_{j}^{k_{j}}$, where $p_{1}, p_{2}, \cdots, p_{j}$ are distinct prime numbers and $k_{1}, k_{2}, \cdots, k_{j} \in$ $\mathbb{N}$, then the coprime graph of non-trivial subgroups of $\mathbb{Z}_{n}$ is multipartite.

Proof. Any non-trivial subgroup of $\mathbb{Z}_{p_{1}^{k_{1} \ldots p_{j}^{k_{j}}}}$ is isomorphic to $\mathbb{Z}_{p_{1}^{l_{1} \ldots p_{j}^{l_{j}}}}$, for some $l_{i}<k_{i}$, for all $i=1,2, \ldots, j$. If $l_{i_{1}}, l_{i_{2}}, \ldots, l_{i_{t}}$ are the only non-zero powers, then by Theorem 3 , the coprime graph of the corresponding subgroup is $(t+1)$-partite.

## III. CONCLUSIONS

We described coprime graphs of $Z_{n}$ and its subgroups for all $n$. In general, the resulting coprime graphs are bipartite whenever $n$ is a prime power and multipartite whenever $n$ is not a prime power. But when we consider its subgroups, the coprime graph subgroup of $Z_{n}$ may a bipartite even if $n$ is not a prime power.

## ACKNOWLEDGEMENT

Special thanks to Dr. Gustina Elfiyanti for the support and inspiration during 5BIGTC in Bandung.

## REFERENCES

[1] X.L. Ma, H.Q. Wei, and L.Y. Yang, "The coprime graph of a group," International Journal of Group Theory, vol. 3, no. 3, pp. 13-23, 2014.
[2] H.M. Dorbidi, "A note on the coprime graph of a group," International Journal of Group Theory, vol. 5, no. 4, pp. 17-22, 2016.
[3] R. Munir, Matematika Diskrit. Bandung: Penerbit Informatika, 2010.

