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Abstract. A Secret sharing scheme is a method for dividing a secret into several partial
information. The secret can be reconstructed if a certain number of partial information
is collected. One of the known secret sharing schemes is the Shamir’s secret sharing
scheme. It uses Lagrange interpolation (with one indeterminate) for reconstructing the
secret. In this paper, we present a secret sharing scheme using multivariate polynomi-
als with the secret reconstruction process using the multivariate interpolation formula
derived by Saniee (2007). The resulted scheme can be considered as a generalization
of the Shamir’s secret sharing scheme.
Keywords: multivariate polynomial interpolation, secret sharing

I. INTRODUCTION

A secret sharing scheme is usually applied on a system to protect a secret from an in-
dividual or a group of people with less than a certain minimum number of members. For an
illustration, suppose a company employs five senior financial staff. Each staff is not allowed
to open the company’s vault alone because of the regulation of the company. The vault is only
allowed to be opened if at least two financial staffs simultaneous open the box. This rule antici-
pates the misuse of the access right of the vault key by each individual. Therefore, the company
needs a system for the vault to accommodate the company regulation.

In 1979 Shamir introduced a secret sharing scheme called Shamir threshold scheme [2].
The scheme divides a secret that is put on the constant term of a polynomial of one indeter-
minate, and the partial information is taken in the form of points of the polynomial. Based on
the theory of Lagrange interpolation, if we have n+ 1 points of a polynomial of degree n then
we can interpolate a unique polynomial of degree n that passes the points. This becomes the
foundation of the Shamir threshold scheme (see [3]).

Tassa and Dyn [4] introduced bivariate Lagrange interpolation and stated its potential for
designing a secret sharing scheme. They focused on how to design a multipartite access struc-
ture using bivariate interpolation. On the other hand, Saniee [1] derived a simple formula for
multivariate Lagrange interpolation. In this paper, we intend to use the multivariate Lagrange
interpolation formula for the secret sharing scheme.

The remainder of this paper is organized as follows. We start our presentation in Section 2
with Shamir’s secret sharing scheme for providing a brief knowledge of the scheme. In Section
3, we give a brief explanation of the multivariate polynomial interpolation introduced by Saniee
(2007). Furthermore, Section 4 contains the main discussion of this paper. Finally, we draw
some concluding remarks in Section 5.
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II. A SECRET SHARING SCHEME

Let ρ and r be two positive integers with ρ ≤ r. A (ρ, r)-threshold scheme is a method to
divide a secret K into r partial information and to distribute it to r participants such that every
group of ρ participants can reconstruct the value of K but not for every group of participants
with less than ρ− 1 members. The set of all participants that have the partial information of K
denoted by P = {P1, P2, · · · , Pr}.

The value ofK is chosen by a person called dealer, denoted byD, and we assume thatD /∈
P . The value of K is only known by D and a system given authority by D for reconstructingK
when ρ partial information is inputted on. The partial information of K provided by the dealer
to each participant is called share. Shares are secretly distributed by the dealer such that each
participant only knows his share and not know other shares.

One of the known (ρ, r)-threshold schemes is Shamir (ρ, r)-threshold scheme, or called
Shamir Secret Sharing Scheme. The Shamir (ρ, r)-threshold scheme can be explained as fol-
lows.

(i). D chooses r distinct elements in the field Zp, i.e. x1, · · · , xr. For all i = 1, · · · , r, D
distributes xi to Pi.

(ii). SupposeD wants to divide a secretK ∈ Zp into r shares.D choose secretly choose ρ−1
elements in Zp, i.e. a1, · · · , aρ−1.

(iii). For all i = 1, · · · , r, D calculates yi = a(xi), with a(x) = K +
ρ−1∑
j=1

ajx
j mod p.

(iv). For all i = 1, · · · , r, D distributes share yi to Pi secretly.

It is clear that K = a(0̄). Therefore, the value of K can be known if the polynomial a(x)
is known. A polynomial of degree ρ − 1 over Zp can be uniquely interpolated from ρ points
using the Lagrange interpolation.

Based on the scheme above, each participant Pi has (xi, yi) which is a point on the poly-
nomial a(x). Next, we will discuss about how a group of ρ participants can reconstruct K
using their shares. Let {Pi1 , · · · , Piρ} be a group of ρ participants who want to reconstruct K.
It means that share yij and the value xij , j = 1, · · · , ρ, are collected. In fact, yij = a(xij),
j = 1, · · · , ρ, where a(x) ∈ Zp[x] is a secret polynomial of order ρ − 1 that has been cho-
sen by D. Using the points (xij , yij), j = 1, · · · , ρ, we can interpolate polinomial a(x) using
Langrange interpolation formula:

a(x) =

ρ∑
j=1

(
yij

∏
1≤k≤ρ,k 6=j

x− xik
xij − xik

)
mod p.

Hence, the value of K is obtained, that is K = a(0̄).

III. THE MULTIVARIATE LAGRANGE INTERPOLATION

Saniee (2007) discussed the multivariate polynomial interpolation over field R. In this
section, we will extend it to be a multivariate polynomial interpolation over arbitrary field F .

Let F [X1, · · · , Xm] be a multivariate polynomial ring, where F is a field. A monomial of
variableX1, · · · , Xm is defined as a multiplicationXe1

1 X
e2
2 · · ·Xem

m , where e1, · · · , em are non-
negative integers. Let e = (e1, · · · , em) be an n-tuple of non-negative integers. Define Xe :=
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Xe1
1 X

e2
2 · · ·Xem

m . By this notation, every polynomial f(X1, · · · , Xm) ∈ F [X1, · · · , Xm] can
be written as a finite summation of monomials with coefficients in F , that is f(X1, · · · , Xm) =∑
e

αeX
e. The element αe in F is called coefficient of the monomial Xe, and αeXe is called

term of f(X1, · · · , Xm). Degree of f(X1, · · · , Xm) =
∑
e

αeX
e is defined as the value of

max
e

e. If f(X1, · · · , Xm) is a polynomial of degree n then f(X1, · · · , Xm) can be written as
follow:

f(X1, · · · , Xm) =
∑
ei·1≤n

αeiX
ei ,

where ei · 1 :=
m∑
j=1

eij .

Consider a polynomial f(X1, · · · , Xm) =
∑

ei·1≤n
αeiX

ei ∈ F [X1, · · · , Xm] of degree n.

Since f(X1, · · · , Xm) is a polynomial with m variables and of degree n, there exist ρ =
(
n+m
n

)
terms of f(X1, · · · , Xm). Let xi = (xi1 , · · · , xim , fi) ∈ Fm+1, where fi = f(xi1 , · · · , xim),
i ∈ {1, · · · , ρ}, is ρ distinct points. By using these points, consider a system of linear equations
fi =

∑
ej ·1≤n

αejx
ej
i , i = 1, 2, · · · , ρ. The system has a unique solution if the sample matrix

M =



xe11 · · · x
eρ
1

...
...

xe1i · · · x
eρ
i

...
...

xe1ρ · · · x
eρ
ρ


is a non-singular matrix. On the other word, if the sample matrix is non-singular then there
exists a unique αe1 , · · · , αeρ which meets the system of linear equations

fi =
∑
ej ·1≤n

αejx
ej
i , i = 1, 2, · · · , ρ. (1)

To sum up, by using the ρ points, we can uniquely determine a multivariate polynomial of
degree n.

In case the sample matrix M is singular, the system of linear equations (1) has either
infinite number of solution or inconsistent. When the system of linear equations (1) has in-
finite number of solution, it means that the ρ points do not uniquely determine polynomial
f(X1, · · · , Xm).

Let xi = (xi1 , · · · , xim , fi), fi = f(xi1 , · · · , xim), i ∈ {1, · · · , t} be t distinct points in
Fm+1, t < ρ. The points form a system of linear equations fi =

∑
ej ·1≤n

αejx
ej
i , i = 1, 2, · · · , t,

where the number of equations is less than the number of variables. With this condition, it is
clear that the system of linear equations has infinite solutions. It means that we do not have a
unique polynomial that passes the points.

Similarly with the Lagrange interpolation for polynomial of one indeterminate, the for-
mula of multivariate polynomial interpolation can also be determined. Define ∆ = det(M),
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with

M =



xe11 · · · x
eρ
1

...
...

xe1i · · · x
eρ
i

...
...

xe1ρ · · · x
eρ
ρ


which is called sample matrix. For all j = 1, · · · , ρ, define ∆j(X) = det(Mj(X)), with

Mj(X) =



xe11 · · · x
eρ
1

...
...

Xe1 · · · Xeρ

...
...

xe1ρ · · · x
eρ
ρ

 ← jth row

It is easy to prove that det(Mj(xi)) = 0F if i 6= j, and det(Mj(xj)) = ∆. Next, define

li(X) =
∆j(X)

∆
,

for all j = 1, · · · , ρ. With the notations above, we get the formula of Lagrange interpolation
for multivariate case as follow:

f(X) =

ρ∑
j=1

fjlj(X).

Example 3.1 Consider points

(1, 0,−1), (0, 1,−7), (2, 1, 3), (−1, 1,−6), (−3, 2, 1), (−2,−1, 11)

in z = f(x, y) (m = 2), where f(x, y) is a multivariate polynomial of degree n = 2 over R. we
will interpolate a multivariate polynomial of degree 2 with 2 variables, namely, z = f(x, y) =
α1x

2 + α2xy + α3y
2 + α4x+ α5y + α6, using the ρ =

(
2+2
2

)
= 6 points. First, create a system

of linear equations as follow, and check whether its sample matrix is non-singular.

−1 = α1 + α4 + α6

−7 = α3 + α5 + α6

3 = 4α1 + 2α2 + α3 + 2α4 + α5 + α6

−6 = α1 − α2 + α3 − α4 + α5 + α6

1 = 9α1 − 6α2 + 4α3 − 3α4 + 2α5 + α6

11 = 4α1 + 2α2 + α3 − 2α4 − α5 + α6


(2)

The sample matrix of (2) is

M =



1 0 0 1 0 1

0 0 1 0 1 1

4 2 1 2 1 1

1 −1 1 −1 1 1

9 −6 4 −3 2 1

4 2 1 −2 −1 1


.
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Since det(M) = −120 6= 0, the six points above define uniquely a multivariate polynomial of
degree 2. Define:

M1(x, y) =



x2 xy y2 x y 1

0 0 1 0 1 1

4 2 1 2 1 1

1 −1 1 −1 1 1

9 −6 4 −3 2 1

4 2 1 −2 −1 1


M2(x, y) =



1 0 0 1 0 1

x2 xy y2 x y 1

4 2 1 2 1 1

1 −1 1 −1 1 1

9 −6 4 −3 2 1

4 2 1 −2 −1 1



M3(x, y) =



1 0 0 1 0 1

0 0 1 0 1 1

x2 xy y2 x y 1

1 −1 1 −1 1 1

9 −6 4 −2 2 1

4 2 1 −2 −1 1


M4(x, y) =



1 0 0 1 0 1

0 0 1 0 1 1

4 2 1 2 1 1

x2 xy y2 x y 1

9 −6 4 −3 2 1

4 2 1 −2 −1 1



M5(x, y) =



1 0 0 1 0 1

0 0 1 0 1 1

4 2 1 2 1 1

1 −1 1 −1 1 1

x2 xy y2 x y 1

4 2 1 −2 −1 1


M6(x, y) =



1 0 0 1 0 1

0 0 1 0 1 1

4 2 1 2 1 1

1 −1 1 −1 1 1

9 −6 4 −3 2 1

x2 xy y2 x y 1


.

Then,

∆1(x, y) = 12y2 + 36xy − 36x+ 72y − 84

∆2(x, y) = 60x2 − 240y2 − 60x+ 120y

∆3(x, y) = −20x2 − 20xy + 40y2 − 60y + 20

∆4(x, y) = −40x2 − 16xy + 248y2 + 96x− 192y − 56

∆5(x, y) = 12xy − 36y2 + 24y − 12x+ 12

∆6(x, y) = −12xy − 24y2 + 12x+ 36y − 12.

Therefore, we have

f(x, y) = −∆1(x, y)

∆
− 7

∆2(x, y)

∆
+ 3

∆3(x, y)

∆
− 6

∆4(x, y)

∆
+

∆5(x, y)

∆
+ 11

∆6(x, y)

∆
= 2x2 + xy − 4y − 3.

Since we have know the matrix M of which the entries are coefficients of the system (2), we
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can also do an interpolation by solving the system (2) as follow:

α1

α2

α3

α4

α5

α6


= M−1



−1

−7

3

−6

1

11


=



2

1

0

0

−4

−3


.

Hence,

f(x, y) = α1x
2 + α2xy + α3y

2 + α4x+ α5y + α6

= 2x2 + xy − 4y − 3.

IV. A SECRET SHARING SCHEME USING MULTIVARIATE POLYNOMIALS

In this section, we give a secret sharing scheme based on multivariate polynomials. Sup-
pose D wants to divide a secret K ∈ Zp into r partial information and to distribute it to
participants P1, · · · , Pr. The scheme is given as follow:

(i). The dealer D secretly chooses a multivariate polynomial f(X1, · · · , Xm) of degree n in
Zp[X1, · · · , Xm], where

(
n+m
n

)
≤ r and its constant term is K.

(For simplicity,
(
n+m
n

)
is denoted by ρ.)

(ii). The dealer D secretly chooses r distinct points on z = f(X1, · · · , Xm), namely,

(x1i , · · · , xmi , fi) ∈ Zm+1
p , with fi = f(x1i , · · · , xmi), i = 1, · · · , r,

such that every ρ points of the r points, its sample matrix is non-singular.
(iii). For all i = 1, · · · , r, D distributes share (x1i , · · · , xmi , fi) to Pi secretly.

Suppose a group of participants {Pi1 , Pi2 , · · · , Piρ} ⊆ {P1, · · · , Pr} wants to reconstruct
the secret K using their shares: (xij , · · · , xij , fij), j = 1, 2, · · · , ρ. Note that each share is a
point in the multivariate polynomial f(X1, · · · , Xm). Therefore, once they successfully obtain
the multivariate polynomial f(X1, · · · , Xm), they get K = f(0̄, · · · , 0̄).

In the secret sharing scheme using multivariate polynomials, determining the number of
variable and the degree of the polynomial depends on threshold parameter (the parameter ρ).
The value of ρ should not be less than 3 since ρ = 2 is only associated to a polynomial with
m = 1 variable (not a multivariate polynomial).

For all threshold parameters, there exists a multivariate polynomial that associates with.
Suppose a dealer wants to divide K using threshold parameter ρ0 ≥ 3 and r0. It means that
the partial information of K will be given to r0 participants, and K can only be reconstructed
if at least ρ0 participants are gathered. The dealer can choose a multivariate polynomial with
m = ρ0 − 1 variable and of degree n = 1 since

(
n+m
n

)
=
(
(ρ0−1)+1

1

)
=
(
ρ0
1

)
= ρ0.

One of the weakness of this scheme is in determining the number of variable and the degree
of multivariate polynomial is not flexible when the threshold parameter has been determined
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first. For instance, if a dealer wants to divide a secret K using threshold parameter ρ = 5
then the only choice for the number of variable on polynomial is m = 4 and the degree of
polynomial is n = 1. There is no other m and n such that

(
n+m
n

)
= 5.

Example 4.1 Suppose a dealer D wants to divide a secret K = 234 ∈ Z313 into r = 10 shares
and to distribute it to participants P1, · · · , P10. The dealer wants to design a system in order
that K can be reconstructed if there exist at least ρ = 6 participants who are gathered. Secretly
D choose a multivariate polynomial of degree 2 and with 2 variable (see Table 1.):

f(x, y) = 37x2 + 12xy + 13y2 + 11x+ 5y + 234 ∈ Z313[x, y]

and choose 10 points on the polynomial:

s1 = (3, 103, 12), s2 = (121, 3, 20), s3 = (10, 33, 103), s4 = (23, 210, 78),

s5 = (300, 5, 280), s6 = (100, 27, 186), s7 = (18, 40, 118), s8 = (92, 22, 178),

s9 = (75, 32, 117), s10 = (42, 113, 266).

Every six points of the points above results a non-singular sample matrix. Therefore, the ten
points above can be used by the dealer as shares. Next, for all i = 1, · · · , 10, the dealer dis-
tributes si to Pi.

Suppose six participants P1, P4, P5, P7, P9, P10 wants to reconstruct K using their shares, i.e.
s1, s4, s5, s7, s9, s10. They have the sample matrix

M =



9 309 280 3 103 1

216 135 280 23 210 1

169 248 25 300 5 1

11 94 35 18 40 1

304 209 85 75 32 1

199 51 249 42 113 1


.

and ∆ = det(M) = 290. Define:

M1(x, y) =



x2 xy y2 x y 1

216 135 280 23 210 1

169 248 25 300 5 1

11 94 35 18 40 1

304 209 85 75 32 1

199 51 249 42 113 1


, M2(x, y) =



9 309 280 3 103 1

x2 xy y2 x y 1

169 248 25 300 5 1

11 94 35 18 40 1

304 209 85 75 32 1

199 51 249 42 113 1


,

M3(x, y) =



9 309 280 3 103 1

216 135 280 23 210 1

x2 xy y2 x y 1

11 94 35 18 40 1

304 209 85 75 32 1

199 51 249 42 113 1


, M4(x, y) =



9 309 280 3 103 1

216 135 280 23 210 1

169 248 25 300 5 1

x2 xy y2 x y 1

304 209 85 75 32 1

199 51 249 42 113 1


,
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M5(x, y) =



9 309 280 3 103 1

216 135 280 23 210 1

169 248 25 300 5 1

11 94 35 18 40 1

x2 xy y2 x y 1

199 51 249 42 113 1


, M6(x, y) =



9 309 280 3 103 1

216 135 280 23 210 1

169 248 25 300 5 1

11 94 35 18 40 1

304 209 85 75 32 1

x2 xy y2 x y 1


.

Then,

∆1(x, y) = 302x2 + 141xy + 138y2 + 90x+ 76y + 226

∆2(x, y) = 69x2 + 63xy + 143y2 + 215x+ 107y + 196

∆3(x, y) = 212x2 + 80xy + 57y2 + 227x+ 207y + 201

∆4(x, y) = 177x2 + 84xy + 273y2 + 144x+ 247y + 33

∆5(x, y) = 63x2 + 293xy + 207y2 + 96x+ 88y + 275

∆6(x, y) = 116x2 + 278xy + 121y2 + 167x+ 214y + 298.

Hence,

f(x, y) = 12
∆1(x, y)

∆
+ 78

∆2(x, y)

∆
+ 280

∆3(x, y)

∆
+ 118

∆4(x, y)

∆
+ 117

∆5(x, y)

∆
+ 266

∆6(x, y)

∆
= 37x2 + 12xy + 13y2 + 11x+ 5y + 234.

With other way, for determining the coefficient f(x, y) = α1x
2+α2xy+α3y

2+α4x+α5y+α6,
they can also use the invers of the sample matrix M .

α1

α2

α3

α4

α5

α6


= M−1



12

78

280

118

117

266


=



191 310 18 142 215 63

198 215 119 78 205 124

307 21 120 97 304 90

173 222 99 89 268 88

160 77 304 207 37 154

31 182 209 53 233 232





12

78

280

118

117

266


=



37

12

13

11

5

234


Hence, K = 234.

Note:
We used MAGMA (http://magma.maths.usyd.edu.au/) for doing the calculation above. The
program script can be found in the Appendices.

V. CONCLUSION

The secret sharing scheme based on multivariate polynomials can be constructed by adopt-
ing the Shamir’s secret sharing scheme. However, when the dealer wants to divide the secret
K with threshold parameter (ρ0, r0), the choice of the number of variables (m) and the degree
(n) for the polynomial used in the scheme are not flexible. For example, if he has decided to
determine ρ = 4 then the only choice of the parameters are m = 3 and n = 1 (see Table 1.).
This becomes a weakness of the scheme.
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In our scheme, the parameter m should be greater than or equal to 2 in order that the used
polynomial is multivariate. If m = 1 then the polynomial used on the scheme is a polynomial
with one indeterminate. Because our scheme is adopted from Shamir’s secret sharing scheme,
our scheme is equal to the Shamir’s scheme when m = 1. Therefore, we can conclude that our
scheme can be considered as a generalization of Shamir’s secret sharing scheme.

Table 1. Some threshold parameters ρ

m n ρ =
(
n+m
n

)
m n ρ =

(
n+m
n

)
m n ρ =

(
n+m
n

)
2 1 3 4 1 5 6 1 7
2 2 6 4 2 15 6 2 28
2 3 10 4 3 35 6 3 84
2 4 15 4 4 70 6 4 210
2 5 21 4 5 126 6 5 462
3 1 4 5 1 6 7 1 8
3 2 10 5 2 21 7 2 36
3 3 20 5 3 56 7 3 120
3 4 35 5 4 126 7 4 330
3 5 56 5 5 252 7 5 792
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APPENDICES

Program Script: Secret Sharing Scheme Based on Multivariate Polynomials
//Defining some parameters
r := 10; //number of participant
n := 2; //degree of the secret polynomial
m := 2; //number of the secret polynomial variable
p := 313; //a prime number (as order of the finite field Zp)

rho := Binomial(n+m,n);

//Defining a finite field of order p and a polynomial ring
FF := GF(p);
F<x,y> := PolynomialRing(FF,m,"glex");

//a secret K and a secret polynomial
K := 234;
p := 37*xˆ2 + 12*x*y + 13*yˆ2 + 11*x +5*y + K;

//r choosen points (W) ==============
S := Matrix(FF,r,m+1,

[3, 103, 0,
121, 3, 0,
10, 33, 0,
23, 210, 0,
300, 5, 0,
100, 27, 0,
18, 40, 0,
92, 22, 0,
75, 32, 0,
42, 113, 0]

);

mon := MonomialsOfWeightedDegree(F, n);
for i in [n-1..0 by -1] do

mon := mon join MonomialsOfWeightedDegree(F, i);
end for;

w := ZeroMatrix(FF,1,r*rho);
w := Eltseq(w);
k := 0;
for i in [1..r] do

s := Submatrix(S,i,1,1,m);
S[i,m+1] := Evaluate(p, Eltseq(s));

for j in [1..#mon] do
k := k+1;
w[k] := Evaluate(mon[j], Eltseq(s));

end for;
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end for;
W := Matrix(FF,r,rho,w);
//===================================

//Checking whether the r points can be used for shares
comb := Subsets({1..r},rho);
Comb := SetToSequence(comb);
for i in [2..#Comb] do

idM := SetToSequence(Comb[1]);
M := Submatrix(W,idM[1],1,1,rho);
for j in [2..rho] do

M := VerticalJoin(M,Submatrix(W,idM[j],1,1,rho));
end for;
if Determinant(M) eq 0 then
M;

print "The following points can not be used for shares.";
S;
status := 0;
break;

else
status := 1;

end if;
end for;

if status eq 1 then
print "The following points can be used for shares:";
S;

end if;

Program Script: Reconstructing A Key

//Defining some parameters
r := 10; //number of participant
n := 2; //degree of the secret polynomial
m := 2; //number of the secret polynomial variable
p := 313; //a prime number (as order of the finite field Zp)

rho := Binomial(n+m,n);

//Defining a finite field of order p and a polynomial ring
FF := GF(p);
F<x,y> := PolynomialRing(FF,m,"glex");

//shares ==============
S := Matrix(FF,rho,m+1,

[3, 103, 12,
23, 210, 78,
300, 5, 280,
18, 40, 118,
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75, 32, 117,
42, 113, 266]

);

mon := MonomialsOfWeightedDegree(F, n);
for i in [n-1..0 by -1] do

mon := mon join MonomialsOfWeightedDegree(F, i);
end for;

w := ZeroMatrix(FF,1,rho*rho);
w := Eltseq(w);
k := 0;
for i in [1..rho] do

s := Submatrix(S,i,1,1,m);

for j in [1..#mon] do
k := k+1;
w[k] := Evaluate(mon[j], Eltseq(s));

end for;
end for;
W := Matrix(F,rho,rho,w);
//===================================

D := Determinant(W);
"Delta =",D,"\n";

P := 0;
for i in [1..rho] do

M := W;
mo := SetToSequence(mon);
InsertBlock(˜M, Matrix(F,1,rho,mo), i,1);
d := Determinant(M);
"Delta",i,"=",d;

p := p + S[i,m+1]*(d/D);
end for;
C := Coefficients(p);

"\n The secret polynomial:\n p =",p;
"\n The secret:\n K =", C[#C];
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