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Abstract. The COVID-19 pandemic has presented a major challenge in understanding 

the dynamics of disease transmission in a region. DKI Jakarta is the province with the 

highest number of COVID-19 cases in Indonesia. In this article, the SVEIₐIₛR model 

(Susceptible, Vaccinated, Exposed, Asymptomatic, Symptomatic, and Recovered) is 

examined to model the spread of COVID-19 in DKI Jakarta Province. The basic 

reproduction number is obtained through the Next Generation Matrix (NGM) approach, 

whereas the local stability analysis is carried out using the Routh–Hurwitz criterion. 

Furthermore, there are two equilibrium points obtained, which are the disease-free 

equilibrium and the endemic equilibrium. The stability of the equilibrium point is 

analyzed based on the value of the basic reproduction number. The endemic equilibrium 

point is considered asymptotically stable if the basic reproduction number is less than 

one. To demonstrate the behavior of the COVID-19 transmission model, numerical 

simulations are conducted using data obtained from DKI Jakarta Province. The results of 

the analysis indicate that, the COVID-19 transmission model is asymptotically stable at 

the diseas-free equilibrium point with ℜ0 = 0.001897843854. This indicates that, over 

time, the COVID-19 disease will eventually disappear from the population. 

Keywords: Basic reproduction number; Stability Analysis; Vaccination; COVID-19. 

I. INTRODUCTION

SARS-CoV-2, the virus responsible for COVID-19, is a novel human-infecting strain of the 

coronavirus family. This virus is capable of infecting individuals of all age groups, including 

infants, children, adults, the elderly, as well as pregnant and lactating women. The infection 

caused by this virus is known as COVID-19 and was first identified in Wuhan, China, in late 

December 2019. SARS-CoV-2 can cause an infectious disease characterized by symptoms 

such as coughing, fever, loss of taste or smell, and shortness of breath. The virus can be 

transmitted by both symptomatic and asymptomatic infected individuals, making its spread 

difficult to predict [1]. Transmission by asymptomatic individuals is believed to be one of the 

main factors contributing to the rapid spread of the disease. COVID-19 transmission occurs 

through contact between an infected individual and a susceptible one, primarily via respiratory 

droplets expelled when an infected person coughs or sneezes. 

One of the measures to control the spread of COVID-19 is through the use of mathematical 

modeling. Mathematical models are widely applied across various scientific fields, including 

health sciences, particularly in addressing infectious disease control. Mathematical modeling 

is a branch of mathematics that describes and explains real-world problems in mathematical 

form, allowing for a more precise understanding of those problems [2]. Furthermore, to 

describe continuous changes in population dynamics over time, mathematical modeling can be 
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employed—for example, in studying the spread of infectious diseases, where mathematical 

models play an essential role in analyzing disease transmission and control [3]. 

In studying the transmission of COVID-19, several common mathematical models have 

been widely used, including the SIS, SIR, and SEIR models. These models are employed to 

predict the epidemiological dynamics of COVID-19 transmission. Several previous studies 

have proposed various modifications of these basic models. For instance, the SVEAIR model 

proposed by Zhong Hua Shen et al. [4] incorporates control measures such as self-isolation, 

vaccination, and rapid testing. Another study by Naba Kumar Goswami et al. [5] introduced 

the SEQIaIsMR model, which considers control strategies including self-protection, medical 

facility inspection and treatment, and administration of medication to infected individuals. The 

SEI1I2QR model proposed by Jiraporn Lamwong et al. [6] includes social distancing, mask 

usage, and vaccination as control measures. M. Aakash et al. [7] proposed the SEIDQR model, 

considering control variables such as treatment, quarantine, and deduction efficacy. Similarly, 

Ammar ElHasan et al. [8] introduced the SEIQR model, which includes self-protection as a 

control variable. Anip Kumar Paul et al. [9] developed the SVaVbBVEAINhHR model, which 

divides vaccinated individuals into three groups based on the number of vaccine doses 

received. Meanwhile, Shraddha Ramdas Bandekar and Mini Ghosh [10] proposed the 

𝑆𝑆𝑞𝐸𝐼𝐻𝑞𝐻𝑅 model, employing self-protection measures to reduce disease transmission, along 

with rapid testing and contact tracing to detect both symptomatic and asymptomatic 

individuals. Furthermore, Nurul Aini Istiqomah et al. [11] proposed the STQIR model, which 

considers physical distancing and self-protection measures as part of the model parameters, 

while U. A. Fitriani et al. [12] proposed another STQIR model that includes self-protection, 

treatment, and quarantine as control variables. In addition, Omar Forrest et al. [13] proposed 

the SVIR model, which considers vaccination as the primary control measure. Lastly, Kaijing 

Chen et al. [14] introduced the SVEIR model, which distinguishes the Exposed and Infected 

subpopulations based on new COVID-19 variants, and Mo’tassem Al Arydah [15] proposed 

the SVIRD model, incorporating optimal vaccination control. 

In this article, the SVEAIR model developed by Hussain et al. [16] is extended by 

introducing an interaction between asymptomatic and symptomatic infected individuals. After 

constructing the model, the basic reproduction number (ℜ0) is calculated to investigate the 

transmission rate of COVID-19. The analysis is then carried out to determine the stability of 

both the disease-free and endemic equilibrium states. To validate the effectiveness of the 

proposed model, numerical simulations are performed using data obtained from DKI Jakarta 

Province [17]. The simulation results indicate that the disease-free equilibrium point is 

asymptotically stable. 

II. MATHEMATICAL MODEL FORMULATION 

The COVID-19 transmission model presented in this study describes the interactions among 

six population compartments: the susceptible subpopulation that has not received vaccination 

(𝑆), the vaccinated susceptible subpopulation that has received two doses (𝑉), the exposed 

subpopulation (𝐸), the asymptomatic infected subpopulation (𝐼𝑎), the symptomatic infected 

subpopulation (𝐼𝑠), and the recovered subpopulation (𝑅). The interactions among these six 

subpopulations are illustrated in the compartmental diagram shown in Fig. 1, while the 

descriptions of the parameters used in the model are provided in Table 1, 
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Fig. 1. Transmission Diagram of COVID-19 Disease. 

 

Table 1. Description of Parameter in System (1) 

Λ Rate of increase of unvaccinated susceptible individuals 

𝛽1 Interaction rate between unvaccinated susceptible and asymptomatic 

infected individuals 

𝛼 Vaccination rate of first and second doses for unvaccinated individuals 

𝜇 Proportion of natural mortality in all compartments 

𝛾1 The proportion of exposed individuals who become asymptomatically 

infected 

𝛾2 The proportion of exposed individuals who become symptomatically 

infected 

𝛿1 The proportion of asymptomatically infected individuals who develop 

disease symptoms 

𝛿2 The recovery rate of asymptomatically infected individuals 

𝜎1 The recovery rate of symptomatically infected individuals 

𝜎2 Death rate due to infection among symptomatic individuals 
 

 

The susceptible subpopulation that has not received vaccination (𝑆) increases by Λ, 

representing the recruitment rate of new individuals, and decreases as a result of vaccination at 

a rate 𝛼, moving individuals into the vaccinated susceptible subpopulation (𝑉). In addition, 

interactions between susceptible and infected individuals cause susceptible individuals to 

become exposed and move into the exposed subpopulation (𝐸) at a rate 𝛽1. The vaccinated 

susceptible subpopulation (𝑉) increases as unvaccinated susceptible individuals receive 

vaccination at a rate 𝛼, and decreases through interactions between vaccinated susceptible and 
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infected individuals, causing them to become exposed and move into the exposed 

subpopulation at a rate 𝛽2. The exposed subpopulation (𝐸) increases due to interactions 

between unvaccinated susceptible and infected individuals at a rate 𝛽1, and between vaccinated 

susceptible and infected individuals at a rate 𝛽2. The exposed subpopulation decreases as 

exposed individuals progress to the asymptomatically infected subpopulation (𝐼𝑎) at a rate 𝛾1, 

and to the symptomatically infected subpopulation (𝐼𝑠) at a rate 𝛾2. In the asymptomatic 

infected subpopulation (𝐼𝑎), the population increases due to exposed individuals becoming 

asymptomatic at a rate of  𝛾1, while it decreases as asymptomatic individuals progress to the 

symptomatic stage at a rate of 𝛿1or recover at a rate 𝛿2. Meanwhile, the symptomatically 

infected subpopulation (𝐼𝑠) grows when exposed individuals become symptomatic at a rate of 

𝛾2 and when asymptomatic individuals develop symptoms at a rate 𝛿1. It decreases as 

symptomatic individuals either recover at a rate 𝜎1or die due to infection at a rate 𝜎2. The 

recovered subpopulation (𝑅) increases when asymptomatic individuals recover at a rate of 

𝛿2 and symptomatic individuals recover at a rate of 𝜎1. Furthermore, each subpopulation 

experiences natural mortality at a rate 𝜇. In this study, the spread of COVID-19 is modeled 

through the following system of ordinary differential equations (1): 

 
𝑑𝑆

𝑑𝑡
= Λ − 𝛼𝑆 − 𝛽1𝑆𝐼𝑎 − 𝜇𝑆 

𝑑𝑉

𝑑𝑡
= 𝛼𝑆 − 𝛽2𝑉𝐼𝑎 − 𝜇𝑉 

𝑑𝐸

𝑑𝑡
= 𝛽1𝑆𝐼𝑎 + 𝛽2𝑉𝐼𝑎 − 𝛾1𝐸 − 𝛾2𝐸 − 𝜇𝐸 

𝑑𝐼𝑎
𝑑𝑡

= 𝛾1𝐸 − 𝛿1𝐼𝑎 − 𝛿2𝐼𝑎 − 𝜇𝐼𝑎 

𝑑𝐼𝑠
𝑑𝑡

= 𝛾2𝐸 + 𝛿1𝐼𝑎 − 𝜎1𝐼𝑠 − 𝜎2𝐼𝑠 − 𝜇𝐼𝑠 

𝑑𝑅

𝑑𝑡
= 𝛿2𝐼𝑎 − 𝜎1𝐼𝑠 − 𝜇𝑅 

(1) 

 

with initial values 𝑆(0) > 0, 𝑉(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼𝑎(0) ≥ 0, 𝐼𝑠 ≥ 0, 𝑅(0) ≥ 0. 

 

III. BASIC REPRODUCTION NUMBER 

In the disease transmission model, one of the key parameters used to predict the rate of 

disease spread is the basic reproduction number. The basic reproduction number represents the 

average number of secondary infection cases generated by a single primary infection in a fully 

susceptible population [18]. If ℜ0 > 1, each infected person can infect more than one 

susceptible individual, allowing the disease to spread through the population and making the 

disease-free equilibrium unstable, which can result in an epidemic [1]. On the other hand, if 

ℜ0 < 1, each infected person infects fewer than one susceptible individual, so the disease 

cannot spread, and the disease-free equilibrium becomes asymptotically stable [19]. The basic 

reproduction number can be determined using the Next Generation Matrix method. The 

infected compartments in this study are denoted by 𝐸, 𝐼𝑎, 𝐼𝑠, and 𝑅. Let 𝑥 = (𝐸, 𝐼𝑎, 𝐼𝑠, 𝑅), so 

that system (1) can be rewritten as follows: 
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𝑑𝑥

𝑑𝑡
= 𝐹(𝑥) − 𝑉(𝑥)                  , 𝑥 = [𝐸, 𝐼𝑎 , 𝐼𝑠, 𝑅]𝑇 

where 𝐹(𝑥) represents the matrix containing individuals newly infected with the COVID-19 

virus at the initial stage, and 𝑉(𝑥) represents the matrix containing actively infected 

individuals, as follows: 

𝐹(𝑥) = [

𝐹1

𝐹2

𝐹3

𝐹4

] = [

𝛽1𝑆𝐼𝑎 + 𝛽2𝑉𝐼𝑎
0
0
0

] , 𝑉(𝑥) = [

𝑉1

𝑉2

𝑉3

𝑉4

] = [

𝛾1𝐸 + 𝛾2𝐸 + 𝜇𝐸
𝛿1𝐼𝑎 + (𝛿2 + 𝜇)𝐼𝑎 − 𝛾1𝐸

(𝜎1 + 𝜎2)𝐼𝑠 + 𝜇𝐼𝑠 − 𝛾2𝐸 − 𝛿1𝐼𝑎
𝜇𝑅 + 𝜎1𝐼𝑠 − 𝛿2𝐼𝑎

] 

 

Next, the Jacobian matrices ℱand 𝒱will be determined. 

ℱ =

[
 
 
 
 
 
 
 
 
𝜕𝐹1

𝜕𝐸
    

𝜕𝐹2

𝜕𝐸
    

𝜕𝐹1

𝜕𝐼𝑎
    

𝜕𝐹2

𝜕𝐼𝑎
    

𝜕𝐹1

𝜕𝐼𝑠
    

𝜕𝐹2

𝜕𝐼𝑠
    

𝜕𝐹1

𝜕𝑅
𝜕𝐹2

𝜕𝑅

𝜕𝐹3

𝜕𝐸
𝜕𝐹4

𝜕𝐸

    
𝜕𝐹3

𝜕𝐼𝑎

    
𝜕𝐹4

𝜕𝐼𝑎

    
𝜕𝐹3

𝜕𝐼𝑠

    
𝜕𝐹4

𝜕𝐼𝑠

    
𝜕𝐹3

𝜕𝑅

    
𝜕𝐹4

𝜕𝑅 ]
 
 
 
 
 
 
 
 

= [

0    
0    

𝛽1𝑆 + 𝛽2𝑉    
      0   

0    
0    

0
0

0                  
0                  

0          
0          

 0    
0    

0
0

] 

𝒱 =

[
 
 
 
 
 
 
 
 
𝜕𝑉1

𝜕𝐸
    

𝜕𝑉2

𝜕𝐸
    

𝜕𝑉1

𝜕𝐼𝑎
    

𝜕𝑉2

𝜕𝐼𝑎
    

𝜕𝑉1

𝜕𝐼𝑠
    

𝜕𝑉2

𝜕𝐼𝑠
    

𝜕𝑉1

𝜕𝑅
𝜕𝑉2

𝜕𝑅

𝜕𝑉3

𝜕𝐸
𝜕𝑉4

𝜕𝐸

    
𝜕𝑉3

𝜕𝐼𝑎

    
𝜕𝑉4

𝜕𝐼𝑎

    
𝜕𝑉3

𝜕𝐼𝑠

    
𝜕𝑉4

𝜕𝐼𝑠

    
𝜕𝑉3

𝜕𝑅

    
𝜕𝑉4

𝜕𝑅 ]
 
 
 
 
 
 
 
 

= [

𝛾1 + 𝛾2 + 𝜇
−𝛾1 
−𝛾2

0

   

0
 𝛿1 + 𝛿2 + 𝜇 

−𝛿1

−𝛿2

   

0
 0 

𝜎1 + 𝜎2 + 𝜇
−𝜎1

   

0
 0 
0
𝜇

] 

The Jacobian matrices ℱ and 𝒱 are obtained by evaluating the functions 𝐹(𝑥) and 𝑉(𝑥) at the 

disease-free equilibrium pointThen, by substituting the value of the disease-free equilibrium 

point ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) = (
Λ

𝛼+𝜇
,

Λ𝛼

𝜇(𝛼+𝜇)
, 0,0,0,0) into the matrix 𝐹, we obtain:  

ℱ(ℰ0) =

[
 
 
 
 0
0
0
0

    

𝛽1Λ

𝛼 + 𝜇
+

𝛽2Λ𝛼

𝜇(𝛼 + 𝜇)
0
0
0

    

0
0
0
0

    

0
0
0
0
]
 
 
 
 

, 

Then, the eigenvalues of the NGM matrix are determined, where the Next Generation Matrix 

is given by 𝑁𝐺𝑀 =  ℱ(ℰ0). 𝒱
−1 and the result is obtained as follows: 

𝑁𝐺𝑀 = [

𝑔11

0
0
0

    

𝑔12

0
0
0

    

0
0
0
0

    

0
0
0
0

] 

with 

𝑔11 =
(

𝛽1Λ
𝛼 + 𝜇 +

𝛽2Λ𝛼
𝜇(𝛼 + 𝜇)

) 𝛾1

(𝛾1 + 𝛾2 + 𝜇) (𝛿1 + 𝛿2 + 𝜇 )
, 𝑔12 =

𝛽1Λ
𝛼 + 𝜇 +

𝛽2Λ𝛼
𝜇(𝛼 + 𝜇)

 𝛿1 + 𝛿2 + 𝜇
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The transmission rate of COVID-19 within a population shows how fast the virus spreads and 

helps determine the measures needed to prevent further infections, or the spectral radius of the 

NGM, ℜ0 is obtained as follows: 

ℜ0 =
Λγ1(𝛼β2 + 𝜇β1)

𝜇(γ1 + γ2 + 𝜇)(δ1 + δ2 + 𝜇)(𝛼 + 𝜇)
. 

 

IV. EQUILIBRIUM POINT 

An equilibrium point refers to a stable state of the system achieved at a particular point. The 

COVID-19 transmission model attains equilibrium if the condition below is fulfilled: 
𝑑𝑆

𝑑𝑡
= 0,

𝑑𝑉

𝑑𝑡
= 0,

𝑑𝐸

𝑑𝑡
= 0,

𝑑𝐼𝑎
𝑑𝑡

= 0,
𝑑𝐼𝑠
𝑑𝑡

= 0,
𝑑𝑅

𝑑𝑡
= 0 

 

(2) 

System (1) has two equilibrium points: the endemic equilibrium (EE), denoted by 

ℇ∗(𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎
∗, 𝐼𝑠

∗, 𝑅∗) and the disease-free equilibrium (DFE), denoted by 

ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) = (
Λ

𝛼+𝜇
,

Λ𝛼

(𝛼+𝜇)(𝛽2+𝜇)
, 0,0,0,0). Maple software was used to assist in 

finding the endemic equilibrium of System (1), and the endemic equilibrium ℇ∗ =
(𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎

∗, 𝐼𝑠
∗, 𝑅∗) was obtained as follows: 

( )1 2 1 2 2*

1 2 1 2 1

( )( )

( )
S

       

     

+ + + + +
=

+ +
 

( )1 2 1 2*

1 2 1 2 1

( )

( )
V

      

     

+ + + +
=

+ +
 

( )( )
*

0

1 2 2 1 1

1
( 1)E R

      
= −

+ + +
 

( )
*

0

1 1 2 1 2 2

1
( 1)

( )( )
aI R

        
= −

+ + + + +
 

( )

( )
1 1 1 2 2 2 2*

0

1 1 2 1 2 1 2 2

( 1)
( )( )( )

sI R
       

           

+ + +
= −

+ + + + + + +
 

 

( )

( )
1 1 1 1 2 1 2 1 1 2 1 2 2 2 1 2 1*

0

1 1 1 2 1 2 1 2 2

( 1)
( )( )( )

R R
                

             

+ + + + +
= −

+ + + + + + +
 

 

 

V. STABILITY ANALYSIS 

Before presenting the stability results, we first clarify the definition of stability adopted in 

this study. An equilibrium point is said to be locally asymptotically stable if solutions starting 

sufficiently close to the equilibrium converge to it as time approaches infinity, and unstable if 

solutions diverge from it. These definitions follow standard formulations in dynamical systems 

theory as presented in [20]. Based on this concept, stability analysis is carried out to determine 

whether a disease will spread or disappear from a population, in order to identify appropriate 
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further actions. The stability analysis can be performed around the disease-free equilibrium 

point ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) and around the endemic equilibrium point ℇ∗ =

(𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎
∗, 𝐼𝑠

∗, 𝑅∗). 

The stability of the equilibrium points is then analyzed using the Jacobian matrix to calculate 

the eigenvalues at ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0). The local stability analysis of the disease-free 

equilibrium point of System (1) can be demonstrated based on the following theorem. 

Theorem 1. Given ℜ0 =
Λγ1(𝛼β2+β1β2+𝜇β1)

(β2+𝜇)(γ1+γ2+𝜇)(δ1+δ2+𝜇)(𝛼+𝜇)
. If ℜ0 < 1, then the disease-free equilibrium 

point ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) is locally asymptotically stable, whereas if ℜ0 > 1, the 

equilibrium point ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) is unstable. 

Proof : 

Assume ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) = (
Λ

𝛼+𝜇
,

Λ𝛼

(𝛼+𝜇)(𝛽2+𝜇)
, 0,0,0,0). Using the following formula, 

the eigenvalues of the Jacobian matrix at ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) are obtained: 

|𝐽(ℰ0) − 𝑥𝐼| = 0 

After determining the eigenvalues, the characteristic equation is obtained as follows: 

(𝜇 + 𝑥2)(𝜇 + 𝜎1 + 𝜎2 + 𝑥)(𝛼 + 𝜇 + 𝑥)(𝑎0𝑥
2 + 𝑎1𝑥 + 𝑎2) 

with 

𝑎0 = 1 

𝑎1 = 𝛿1 + 𝛿2 + 𝛾1 + 𝛾2 + 4𝜇 

𝑎2 =
1

(𝛽2 + 𝜇)(𝛼 + 𝜇)
(−𝛾1(𝛼𝛽2 + 𝛽2𝛽1 + 𝛽1𝜇)Λ + (𝛽2

+ 𝜇)(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼 + 𝜇) 

 

According to the Routh–Hurwitz criterion, the equilibrium point ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) 

achieves asymptotic stability if its characteristic equation has coefficients that fulfill 𝑎1 > 0 

and 𝑎2 > 0. 

Since all model parameters are positive, the condition 𝑎1 > 0 is automatically satisfied. To 

prove 𝑎2 > 0, algebraic manipulation based on the Routh–Hurwitz criterion is carried out. This 

condition is fulfilled whenever ℜ0 < 1, which therefore implies that the equilibrium point is 

asymptotically stable. 

It will be shown that 𝑎2 > 0 whenever ℜ0 < 1 

𝑎2 =
1

(𝛽2 + 𝜇)(𝛼 + 𝜇)
(−𝛾1(𝛼𝛽2 + 𝛽2𝛽1 + 𝛽1𝜇)Λ + (𝛽2

+ 𝜇)(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼 + 𝜇) 

Since the denominator is positive, 𝑎2 > 0 if the following condition is satisfied: 

⇔ (−𝛾1(𝛼𝛽2 + 𝛽2𝛽1 + 𝛽1𝜇)Λ + (𝛽2 + 𝜇)(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼 + 𝜇) > 0 

⇔ 𝛾1(𝛼𝛽2 + 𝛽2𝛽1 + 𝛽1𝜇)Λ < (𝛽2 + 𝜇)(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼 + 𝜇) 

⇔
𝛾1(𝛼𝛽2 + 𝛽2𝛽1 + 𝛽1𝜇)Λ

(𝛽2 + 𝜇)(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼 + 𝜇)
= ℜ0 < 1 

 

Hence, it is proven that the condition 𝑎2 > 0 is satisfied if ℜ0 < 1. 

The disease-free equilibrium ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) = (
Λ

𝛼+𝜇
,

Λ𝛼

(𝛼+𝜇)(𝛽2+𝜇)
, 0,0,0,0) is locally 

asymptotically stable if ℜ0 < 1. This indicates that each actively infected individual can 

transmit the disease to fewer than one susceptible person, and over time, the disease will 

gradually disappear from the population (disease-free state). 
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Theorem 2. Given ℜ0 =
Λγ1(𝛼β2+β1β2+𝜇β1)

(β2+𝜇)(γ1+γ2+𝜇)(δ1+δ2+𝜇)(𝛼+𝜇)
. If ℜ0 > 1, the endemic equilibrium point 

ℇ∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎
∗, 𝐼𝑠

∗, 𝑅∗) is locally asymptotically stable, whereas if ℜ0 > 1, the 

equilibrium point ℇ∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎
∗, 𝐼𝑠

∗, 𝑅∗) is unstable. 

Proof : 

The eigenvalues will be determined based on the Jacobian matrix at ℇ∗ =
(𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎

∗, 𝐼𝑠
∗, 𝑅∗) using the following formula: 

|𝐽(ℰ∗) − 𝑥𝐼| = 0 

After determining the determinant of the matrix, the following characteristic equation is 

obtained: 

(𝜇 + 𝑥)(𝜇 + 𝜎1 + 𝜎2 + 𝑥)(𝑎0𝑥
4 + 𝑎1𝑥

3 + 𝑎2𝑥
2 + 𝑎3𝑥 + 𝑎4) 

with, 

𝑎0 = 1 (2) 

𝑎1 = (𝛽1 + 𝛽2)𝐼𝑎
∗ + 𝛼1 + 𝛿1 + 𝛿2 + 𝛾1 + 𝛾2 + 4𝜇 (3) 

𝑎2 = 𝛽1𝛽2𝐼𝑎
∗2 + ((𝛽1 + 𝛽2)𝛾1 + (3𝜇 + 𝛾2 + 𝛼 + 𝛿1 + 𝛿2)𝛽2

+ (3𝜇 + 𝛾2 + 𝛿1 + 𝛿2)𝛽1)𝐼𝑎
∗  

+ (−𝑆∗𝛽1 − 𝑉∗𝛽2 + 𝛼 + 𝛿1 + 𝛿2 + 3𝜇)𝛾1 + 6𝜇2

+ (3𝛾2 + 3𝛼 + 3𝛿1 + 3𝛿2)𝜇 + (𝛿2 + 𝛾2 + 𝛿1)𝛼1 + 𝛾2(𝛿1 + 𝛿2)  

(4) 

𝑎3 = (−𝛽1𝛾1𝛽2𝐼𝑎
∗ − 𝛽1𝛾1(𝛼 + 2𝜇))𝑆∗ + (−𝛽1𝛾1𝛽2𝐼𝑎

∗ − 𝛽2𝛾1(𝛼 + 2𝜇))𝑉∗

+ 𝛽2(2𝜇 + 𝛾1 + 𝛾2 + 𝛿1 + 𝛿2)𝛽1𝐼𝑎
∗2

+ (𝛼𝛽2𝛿1 + 𝛼𝛽2𝛿2 + 𝛼𝛽2𝛾1 + 𝛼𝛽2𝛾2 + 2𝛼𝛽2𝜇 + 𝛽1𝛿1𝛾1 + 𝛽1𝛿1𝛾2

+ 2𝛽1𝛿1𝜇 + 𝛽1𝛿2𝛾1 + 𝛽1𝛿2𝛾2 + 2𝛽1𝛿2𝜇 + 2𝛽1𝛾1𝜇 + 2𝛽1𝛾2𝜇
+ 3𝜇2𝛽1 + 𝛽2𝛿1𝛾1 + 𝛽2𝛿1𝛾2 + 2𝛽2𝛿1𝜇 + 𝛽2𝛿2𝛾1 + 𝛽2𝛿2𝛾2 + 2𝛽2𝛿2𝜇
+ 2𝛽2𝛾1𝜇 + 2𝛽2𝛾2𝜇 + 3𝜇2𝛽2)𝐼𝑎

∗ + 𝛼𝛿1𝛾1 + 𝛼𝛿1𝛾2 + 2𝛼𝛿1𝜇 + 𝛼𝛿2𝛾1

+ 𝛼𝛿2𝛾2 + 2𝛼𝛿2𝜇 + 2𝛼𝛾1𝜇 + 2𝛼𝛾2𝜇 + 3𝜇2𝛼 + 2𝛿1𝛾1𝜇 + 2𝛿1𝛾2

+ 3𝜇2𝛿1 + 2𝛿2𝛾1𝜇 + 2𝛿2𝛾2𝜇 + 3𝜇2𝛿2 + 3𝜇2𝛾1 + 3𝜇2𝛾2 + 4𝜇3 

(5) 

𝑎4 = (−𝛽1𝛾1𝛽2𝜇𝐼𝑎
∗ − 𝛽1𝛾1𝜇(𝛼 + 𝜇))𝑆∗ + (−𝛽1𝛾1𝛽2𝜇𝐼𝑎

∗ − 𝛽2𝛾1𝜇(𝛼 + 𝜇))𝑉∗

+ 𝛽1𝛽2(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)𝐼𝑎
∗2

+ (𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼𝛽2 + 𝛽1𝜇 + 𝛽2𝜇)𝐼𝑎
∗ + 𝜇(𝛾1 + 𝛾2

+ 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛼 + 𝜇) 

(6) 

 

Based on the Routh–Hurwitz criterion, the endemic equilibrium, ℇ∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎
∗, 𝐼𝑠

∗, 𝑅∗) 

is locally asymptotically stable when all the roots of the polynomial have negative real parts, 

as shown below : 

𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = −
𝑏

𝑎
< 0 

where 𝑏 = 𝑎1 in equation (3) and 𝑎 = 𝑎0 = 1, thus we obtain : 

−((𝛽1 + 𝛽2)𝐼𝑎
∗ + 𝛼1 + 𝛿1 + 𝛿2 + 𝛾1 + 𝛾2 + 4𝜇) < 0 

⟺ −
(𝛽1 + 𝛽2)(ℜ0 − 1)

𝛽1(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛽2 + 𝜇)
− (𝛼1 + 𝛿1 + 𝛿2 + 𝛾1 + 𝛾2 + 4𝜇) < 0 

Let: 

𝓅 = 𝛽1(𝛾1 + 𝛾2 + 𝜇)(𝛿1 + 𝛿2 + 𝜇)(𝛽2 + 𝜇) 

𝓆 = (𝛼1 + 𝛿1 + 𝛿2 + 𝛾1 + 𝛾2 + 4𝜇) 

We obtain: 
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⟺ −
(𝛽1 + 𝛽2)(ℜ0 − 1)

𝓅
− 𝓆 < 0 

 

⟺ −(𝛽1 + 𝛽2)(ℜ0 − 1) − 𝓅𝓆 < 0 

This condition is satisfied when 

ℜ0 − 1 > 0 

ℜ0 > 1 

In a similar manner, it is also obtained that: 

𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥3𝑥4 = 𝑥 =
𝑐

𝑎
> 0 

where 𝑐 = 𝑎2 in equation (4) and 𝑎 = 𝑎0 = 1. 

𝑥1𝑥2𝑥3 + 𝑥1𝑥2𝑥4 + 𝑥1𝑥3𝑥4 + 𝑥2𝑥3𝑥4 = −
𝑑

𝑎
< 0 

where 𝑑 = 𝑎3 in equation (5) and 𝑎 = 𝑎0 = 1. 

𝑥1𝑥2𝑥3𝑥4 =
𝑒

𝑎
> 0 

where 𝑒 = 𝑎4 in equation (6) and 𝑎 = 𝑎0 = 1. 
Based on the analysis, the fourth-degree polynomial satisfies the required conditions, and 

ℜ0 > 1, which means that the polynomial roots have negative real parts. It has been proven 

that the endemic equilibrium ℇ∗ = (𝑆∗, 𝑉∗, 𝐸∗, 𝐼𝑎
∗, 𝐼𝑠

∗, 𝑅∗) is locally asymptotically stable, 

indicating that each infected individual has the potential to transmit the infection to several 

susceptible individuals, leading to an endemic spread of the disease 

VI. NUMERICAL SIMULATION 

Based on the case study in Jakarta Province with a total population of 10,680,000 individuals 

[21], numerical simulations will be performed to illustrate the dynamics of COVID-19 

transmission. From references [22,23], the following parameter values were obtained: 

Λ = 416,6258;  𝜇 = 3,91389 × 10−5;  𝛽1 = 2,00142 × 10−7; 𝛽2 = 2 × 10−10; 𝛼 =
0,0085;  𝛾1 = 0,20441; 𝛾2 = 1,07550; 𝛿1 = 0,32160; 𝛿2 = 0,6784; 𝜎1 = 1,01218; 𝜎2 =
0,00001. 

Using the parameter values listed in Table 2 and the given initial conditions, the endemic 

simulation is presented as follows: 

𝑆(0) = 8.138.149, 𝑉(0) = 10.703.334, 𝐸(0) = 1.944.154, 𝐼𝑎(0) = 1.023.447, 𝐼𝑠(0) =
227.433, 𝑅(0) = 1.234.566. 

The following illustrates the dynamic behavior of the SVEIaIsR model (susceptible 

unvaccinated, susceptible vaccinated, exposed, asymptomatically infected, symptomatically 

infected, and recovered) in relation to the transmission of COVID-19. 

Fig. 2 shows the change in the number of susceptible unvaccinated individuals. At t = 0, 

the number of unvaccinated susceptible individuals is approximately 8.140.000. At t = 500 it 
decreases to around 48.791. The decline occurs gradually until day 9, while on day 10, a rapid 

decrease is observed due to the high number of susceptible individuals receiving vaccination 

and interactions with the asymptomatically infected subpopulation. This leads to susceptible 

unvaccinated individuals moving into the vaccinated and exposed subpopulations, and over 

time, the population approaches its equilibrium point around 𝑆0 = 48.791. 
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Fig. 2. Plot of The Susceptible Subpopulation Over Time 

 

Fig. 3 shows an increase in the vaccinated subpopulation. Initially (t = 0) the number is 

approximately 10.700.000 and continues to rise, reaching around 13.800.000 by day 500. This 

increase occurs due to the large number of susceptible individuals receiving vaccination. Over 

time, the population gradually approaches its equilibrium point around 𝑉0 = 13.800.000. 

 
Fig. 3. Plot of The Vaccinated Subpopulation Over Time 

 

Fig. 4 shows the change in the number of exposed individuals. At 𝑡 = 0, the exposed population 

is approximately 1,950,000, whereas by 𝑡 = 20, it decreases to around 5. This decline occurs 

because exposed individuals progress to become infected, either asymptomatically or 

symptomatically. Starting from day 25, the exposed subpopulation begins to stabilize around 

0 and gradually decreases toward its equilibrium point at 𝐸0 = 0.  
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Fig. 4. Plot of The Exposed Subpopulation Over Time 

 

Fig. 5 shows the change in the number of asymptomatically infected individuals. At 𝑡 = 0, this 

subpopulation is approximately 1,020,000, whereas by 𝑡 = 19, it decreases to around 5. This 

decline occurs as asymptomatically infected individuals begin to develop symptoms and 

recover. Starting from day 25, the subpopulation stabilizes around 0 and gradually decreases 

toward its equilibrium point at 𝐼𝑎0
= 0. 

 
Fig. 5. Plot of The Asymptomatic Subpopulation Over Time 

 

Fig. 6 shows the change in the number of symptomatically infected individuals. At 𝑡 = 0, 

this subpopulation is approximately 227.500, whereas by 𝑡 = 20, it decreases to around 5. The 

symptomatically infected subpopulation increases rapidly until day 5, reaching about 

1,230,000, and then gradually decreases until day 13. This decline occurs as symptomatically 

infected individuals recover and some succumb to the infection. Starting from day 26, the 
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subpopulation begins to stabilize around 0 and gradually decreases toward its equilibrium point 

at 𝐼𝑆0
= 0. 

 

 
Fig. 6. Plot of The Infected Subpopulation Over Time 

 
 

Thus, the equilibrium point ℰ0(𝑆0, 𝑉0, 𝐸0, 𝐼𝑎0
, 𝐼𝑠0

, 𝑅0) is locally asymptotically stable since 

ℜ0 < 1. Consequently, COVID-19 gradually disappears from the population over time. 

 

VII. CONCLUSION 

A SVEIR model was developed by incorporating interactions between asymptomatically 

infected and symptomatically infected individuals. In this study, the spread of COVID-19 

depends on the value of ℜ0 at the equilibrium point, which helps determine the stability of the 

model. To analyze the local stability of the disease-free equilibrium, the Routh–Hurwitz 

method was employed. Based on the analysis, it was found that if  ℜ0 < 1, the model is locally 

asymptotically stable at the disease-free equilibrium.  

Numerical simulations were also conducted in this study to illustrate the dynamics of 

COVID-19 transmission. From the simulation results, ℜ0 = 0.001897843854, which shows 

that the COVID-19 transmission model is locally asymptotically stable at the disease-free 

equilibrium. These results suggest that effective control strategies aimed at reducing the basic 

reproduction number below unity are essential to eliminate the disease. Therefore, public health 

stakeholders should focus on interventions that reduce transmission rates, such as minimizing 

contact between individuals, improving preventive measures, and enhancing early detection 

and treatment, in order to ensure that the disease eventually disappears from the population. 
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