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Abstract. The COVID-19 pandemic has presented a major challenge in understanding
the dynamics of disease transmission in a region. DKI Jakarta is the province with the
highest number of COVID-19 cases in Indonesia. In this article, the SVELI,R model
(Susceptible, Vaccinated, Exposed, Asymptomatic, Symptomatic, and Recovered) is
examined to model the spread of COVID-19 in DKI Jakarta Province. The basic
reproduction number is obtained through the Next Generation Matrix (NGM) approach,
whereas the local stability analysis is carried out using the Routh—Hurwitz criterion.
Furthermore, there are two equilibrium points obtained, which are the disease-free
equilibrium and the endemic equilibrium. The stability of the equilibrium point is
analyzed based on the value of the basic reproduction number. The endemic equilibrium
point is considered asymptotically stable if the basic reproduction number is less than
one. To demonstrate the behavior of the COVID-19 transmission model, numerical
simulations are conducted using data obtained from DKI Jakarta Province. The results of
the analysis indicate that, the COVID-19 transmission model is asymptotically stable at
the diseas-free equilibrium point with R, = 0.001897843854. This indicates that, over
time, the COVID-19 disease will eventually disappear from the population.

Keywords: Basic reproduction number; Stability Analysis; Vaccination; COVID-19.

I. INTRODUCTION

SARS-CoV-2, the virus responsible for COVID-19, is a novel human-infecting strain of the
coronavirus family. This virus is capable of infecting individuals of all age groups, including
infants, children, adults, the elderly, as well as pregnant and lactating women. The infection
caused by this virus is known as COVID-19 and was first identified in Wuhan, China, in late
December 2019. SARS-CoV-2 can cause an infectious disease characterized by symptoms
such as coughing, fever, loss of taste or smell, and shortness of breath. The virus can be
transmitted by both symptomatic and asymptomatic infected individuals, making its spread
difficult to predict [1]. Transmission by asymptomatic individuals is believed to be one of the
main factors contributing to the rapid spread of the disease. COVID-19 transmission occurs
through contact between an infected individual and a susceptible one, primarily via respiratory
droplets expelled when an infected person coughs or sneezes.

One of the measures to control the spread of COVID-19 is through the use of mathematical
modeling. Mathematical models are widely applied across various scientific fields, including
health sciences, particularly in addressing infectious disease control. Mathematical modeling
is a branch of mathematics that describes and explains real-world problems in mathematical
form, allowing for a more precise understanding of those problems [2]. Furthermore, to
describe continuous changes in population dynamics over time, mathematical modeling can be

https://doi.org/10.14710/jfma.v0i0.29819 228 p-ISSN: 2621-6019 e-ISSN: 2621-6035



" JOURNAL OF FUNDAMENTAL MATHEMATICS
{2IFMAD AND APPLICATIONS (JEMA) VOL. § NO. 2 (2025)

Available online at www.jfma.math.fsm.undip.ac.id

employed—for example, in studying the spread of infectious diseases, where mathematical
models play an essential role in analyzing disease transmission and control [3].

In studying the transmission of COVID-19, several common mathematical models have
been widely used, including the SIS, SIR, and SEIR models. These models are employed to
predict the epidemiological dynamics of COVID-19 transmission. Several previous studies
have proposed various modifications of these basic models. For instance, the SVEAIR model
proposed by Zhong Hua Shen et al. [4] incorporates control measures such as self-isolation,
vaccination, and rapid testing. Another study by Naba Kumar Goswami et al. [5] introduced
the SEQI,IsMR model, which considers control strategies including self-protection, medical
facility inspection and treatment, and administration of medication to infected individuals. The
SEI; I;QR model proposed by Jiraporn Lamwong et al. [6] includes social distancing, mask
usage, and vaccination as control measures. M. Aakash et al. [7] proposed the SEIDQR model,
considering control variables such as treatment, quarantine, and deduction efficacy. Similarly,
Ammar ElHasan et al. [8] introduced the SEIQR model, which includes self-protection as a
control variable. Anip Kumar Paul et al. [9] developed the SV,V, By EAIN,HR model, which
divides vaccinated individuals into three groups based on the number of vaccine doses
received. Meanwhile, Shraddha Ramdas Bandekar and Mini Ghosh [10] proposed the
§S4EIH,HR model, employing self-protection measures to reduce disease transmission, along
with rapid testing and contact tracing to detect both symptomatic and asymptomatic
individuals. Furthermore, Nurul Aini Istigomah et al. [11] proposed the STQIR model, which
considers physical distancing and self-protection measures as part of the model parameters,
while U. A. Fitriani et al. [12] proposed another STQIR model that includes self-protection,
treatment, and quarantine as control variables. In addition, Omar Forrest et al. [13] proposed
the SVIR model, which considers vaccination as the primary control measure. Lastly, Kaijing
Chen et al. [14] introduced the SVEIR model, which distinguishes the Exposed and Infected
subpopulations based on new COVID-19 variants, and Mo’tassem Al Arydah [15] proposed
the SVIRD model, incorporating optimal vaccination control.

In this article, the SVEAIR model developed by Hussain et al. [16] is extended by
introducing an interaction between asymptomatic and symptomatic infected individuals. After
constructing the model, the basic reproduction number (Ro) is calculated to investigate the
transmission rate of COVID-19. The analysis is then carried out to determine the stability of
both the disease-free and endemic equilibrium states. To validate the effectiveness of the
proposed model, numerical simulations are performed using data obtained from DKI Jakarta
Province [17]. The simulation results indicate that the disease-free equilibrium point is
asymptotically stable.

II. MATHEMATICAL MODEL FORMULATION

The COVID-19 transmission model presented in this study describes the interactions among
six population compartments: the susceptible subpopulation that has not received vaccination
(S), the vaccinated susceptible subpopulation that has received two doses (V), the exposed
subpopulation (E’), the asymptomatic infected subpopulation (I,), the symptomatic infected
subpopulation (I), and the recovered subpopulation (R). The interactions among these six
subpopulations are illustrated in the compartmental diagram shown in Fig. 1, while the
descriptions of the parameters used in the model are provided in Table 1,
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Fig. 1. Transmission Diagram of COVID-19 Disease.

Table 1. Description of Parameter in System (1)

A Rate of increase of unvaccinated susceptible individuals

B1 Interaction rate between unvaccinated susceptible and asymptomatic
infected individuals

a  Vaccination rate of first and second doses for unvaccinated individuals

u  Proportion of natural mortality in all compartments

y1  The proportion of exposed individuals who become asymptomatically
infected

v,  The proportion of exposed individuals who become symptomatically
infected

6; The proportion of asymptomatically infected individuals who develop
disease symptoms

0,  The recovery rate of asymptomatically infected individuals

o, The recovery rate of symptomatically infected individuals

0, Death rate due to infection among symptomatic individuals

The susceptible subpopulation that has not received vaccination (S) increases by A,
representing the recruitment rate of new individuals, and decreases as a result of vaccination at
a rate a, moving individuals into the vaccinated susceptible subpopulation (V). In addition,
interactions between susceptible and infected individuals cause susceptible individuals to
become exposed and move into the exposed subpopulation (E) at a rate ;. The vaccinated
susceptible subpopulation (V) increases as unvaccinated susceptible individuals receive
vaccination at a rate @, and decreases through interactions between vaccinated susceptible and
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infected individuals, causing them to become exposed and move into the exposed
subpopulation at a rate f,. The exposed subpopulation (E) increases due to interactions
between unvaccinated susceptible and infected individuals at a rate 3, and between vaccinated
susceptible and infected individuals at a rate f,. The exposed subpopulation decreases as
exposed individuals progress to the asymptomatically infected subpopulation (/) at a rate y,
and to the symptomatically infected subpopulation (I5) at a rate y,. In the asymptomatic
infected subpopulation (I,), the population increases due to exposed individuals becoming
asymptomatic at a rate of y;, while it decreases as asymptomatic individuals progress to the
symptomatic stage at a rate of §,or recover at a rate §,. Meanwhile, the symptomatically
infected subpopulation (I5) grows when exposed individuals become symptomatic at a rate of
¥, and when asymptomatic individuals develop symptoms at a rate §;. It decreases as
symptomatic individuals either recover at a rate o;or die due to infection at a rate o,. The
recovered subpopulation (R) increases when asymptomatic individuals recover at a rate of
d, and symptomatic individuals recover at a rate of g;. Furthermore, each subpopulation
experiences natural mortality at a rate g. In this study, the spread of COVID-19 is modeled
through the following system of ordinary differential equations (1):

ds

E=A—a5—[)’151a—u5

dv

E =aS —,BZVIa —uv

dE

dar = B1Sly + BoVIg — v1E — v2E — pE

dl, (1)
—— =nE -6l — 621, —ply

dt

dl,

E =Y2E + 611, — 0115 — 0,1 — pl
dR

E = 621a - 0'11S - ‘UR

with initial values S(0) > 0, V(0) >0, E(0) >0,1,(0) =0,I; = 0,R(0) = 0.

III. BASIC REPRODUCTION NUMBER

In the disease transmission model, one of the key parameters used to predict the rate of
disease spread is the basic reproduction number. The basic reproduction number represents the
average number of secondary infection cases generated by a single primary infection in a fully
susceptible population [18]. If Ry > 1, each infected person can infect more than one
susceptible individual, allowing the disease to spread through the population and making the
disease-free equilibrium unstable, which can result in an epidemic [1]. On the other hand, if
Ry < 1, each infected person infects fewer than one susceptible individual, so the disease
cannot spread, and the disease-free equilibrium becomes asymptotically stable [19]. The basic
reproduction number can be determined using the Next Generation Matrix method. The
infected compartments in this study are denoted by E, I, I, and R. Let x = (E, I,, I, R), so
that system (1) can be rewritten as follows:
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‘4

= F@ -V ,x = [E, I, I, R]T

where F(x) represents the matrix containing individuals newly infected with the COVID-19
virus at the initial stage, and V(x) represents the matrix containing actively infected
individuals, as follows:

Fy B1SI, + B,VI, 4} V1E +v2E + pE
— FZ _ VZ _ 611(1 + (62 + :u)la - )/1E
Feo = F; l V(@) = Vil [(o1 + 0x)Is + uls — v2E — 811,
F, Va UR + 01l — 631,

Next, the Jacobian matrices Fand Vwill be determined.
[0F, OFL O0Fi 9F;]
9E 0l, 0ls 9R
dF, O0F, O0F, O0F, 0 B.S+ B,V
J0E 0dl, 0dI; OR 0 0
0
0

6F3 % aF‘3 6F3 0
9F 01, dl; BR| O
JF, O0F, O0F, OF,
|0E 01, 0I; ORI
v, Vi Vi 9V
0E Ol 0I; QR

aVZ aVZ aVZ aVZ Y1 +.y2 +‘Ll 0 0 0
v, dVz dVz gy, Y2 —6; opto,+p 0
9F 01, 0l; 3R 0 =5 o
av, av, av, adv,
[0E 0dI, 0I; OR.
The Jacobian matrices F and V are obtained by evaluating the functions F (x) and V(x) at the
disease-free equilibrium pointThen by substituting the value of the disease-free equilibrium

Aa . . .
point £ (SO, Vo, Eo, Iao, sor RO) a+u ) 0,0,0,0) into the matrix F, we obtain:
Aa
B1A N B 0
() at+p wpla+u) o o
:F(SO) - 0 O O )
0 0 0 0
0

Then, the eigenvalues of the NGM matrix are determined, where the Next Generation Matrix
is given by NGM = F(E,). V! and the result is obtained as follows:

d11 912 0 O

0 0O 00

NGM=145 o 0o o

0 0O 00

with

(ﬁl + P2 Aa ) piA + B2 Aa
un = a+u u(a+u) p _atu pla + u)
U gty B+ 8, +u) 81+ 6, +u
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The transmission rate of COVID-19 within a population shows how fast the virus spreads and
helps determine the measures needed to prevent further infections, or the spectral radius of the
NGM, R, is obtained as follows:

_ Ay, (aBy + upq)
O utyr v, (6 + 8, + ) (a+ p)

IV. EQUILIBRIUM POINT

An equilibrium point refers to a stable state of the system achieved at a particular point. The

COVID-19 transmission model attains equilibrium if the condition below is fulfilled:

ds_ dv_ dE _ dl, _ dl_ dR_ 2)
dt  'dt dt dt dt dt

System (1) has two equilibrium points: the endemic equilibrium (EE), denoted by
€ (S V*E*1,°,I,',R*) and the disease-free equilibrium (DFE), denoted by

0 — (A A
g (SO; VO; EO; IaOJ Isol RO) - (a+u'(a+;4)(ﬁz+,u)'
finding the endemic equilibrium of System (1), and the endemic equilibrium E£* =
(S*,V* E* 1, 1I,", R*) was obtained as follows:

0,0,0,0). Maple software was used to assist in

o1t 7 )6 46, + 1B, + )
71(a182 +ﬁ1ﬂ2 +181,U)
o _a(n 7+ 1) (848, + )
7/1(aﬂ2 +ﬁ1ﬁ2 +ﬁ1,u)

. 1
E' = R -1

(71+72+ﬂ)(ﬂ2+,u)ﬂ17/1( )
. 1
fa= ~1
a '81(71+72+'u)(51+52+,u)(ﬂ2+,u)(R0 )
[ = (8.7, + 8,7, + 8,7, + 1,10) .

ﬁ1(71 +7, +/u)(51 +0, + )0, +o, + ) (B, + 1)

*_ (51710-1 +0,7,0,+06,7,0, +6,7,0, + 6,7,0, +}/2y0'1)
Bym (7 +7,+u) (6, + 8, + )0, + 0, + w)( B, + 1)

(R, =1)

V. STABILITY ANALYSIS

Before presenting the stability results, we first clarify the definition of stability adopted in
this study. An equilibrium point is said to be locally asymptotically stable if solutions starting
sufficiently close to the equilibrium converge to it as time approaches infinity, and unstable if
solutions diverge from it. These definitions follow standard formulations in dynamical systems
theory as presented in [20]. Based on this concept, stability analysis is carried out to determine
whether a disease will spread or disappear from a population, in order to identify appropriate
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further actions. The stability analysis can be performed around the disease-free equilibrium
point & O(SO, Vo, Eoy lag Is RO) and around the endemic equilibrium point € =
(S* V5 E* I, I,", R").

The stability of the equilibrium points is then analyzed using the Jacobian matrix to calculate
the eigenvalues at € O(SO, VO,EO,IaO,ISO,RO). The local stability analysis of the disease-free
equilibrium point of System (1) can be demonstrated based on the following theorem.

Theorem 1. Given R, = Avi(@PotPiBotub) ___ [f ) < 1, then the disease-free equilibrium
(B2+m)(Y1+y2+1)(81+82+1) (a+p)

point 80(50, Vo, Eo, IaO,ISO,RO) is locally asymptotically stable, whereas if R, > 1, the

equilibrium point £° (SO, Vo, Eo, g Isgs RO) is unstable.
Proof :

Assume & (SO, Vo, Eo, 1oy, SO,RO) ,0,0,0,0). Using the following formula,

6H‘Ii (@) (By+w)”
the eigenvalues of the Jacobian matrix at € (SO, Vo, Eos lag Is g RO) are obtained:
V(€ —xI| =0

After determining the eigenvalues, the characteristic equation is obtained as follows:
(u+xH)(u+0o,+0, +x)(a+u+x)(agx? + a;x + a)

with

a, =1

a,=06;+6,+y,+vy, +4u

G @b + Babut Bn+ (5,
+ 1)1 + vz + 16 + 6, + wa+ p)

a, =

According to the Routh—Hurwitz criterion, the equilibrium point £ 0(50, Vo, Eoy Lag Is RO)
achieves asymptotic stability if its characteristic equation has coefficients that fulfill a; > 0
and a, > 0.

Since all model parameters are positive, the condition a; > 0 is automatically satisfied. To
prove a, > 0, algebraic manipulation based on the Routh—Hurwitz criterion is carried out. This
condition is fulfilled whenever Ry < 1, which therefore implies that the equilibrium point is
asymptotically stable.

It will be shown that a, > 0 whenever R, < 1

a; = (,82 + M)(a + ,Ll) (_Vl(“ﬁz + ﬁZﬁl + ﬁlﬂ)A‘i‘ (32

+ (1 +y2 + w6 + 6, +p)a+w)
Since the denominator is positive, a, > 0 if the following condition is satisfied:
& (=y1(aBy + B2f1 + fr)A+ (B + W (1 + v + ) (61 + 6, + w(a+p) >0
© y1(afy + B2fr + BiA < (B2 + 1) (v +v2 + (61 + 87 + ) (a + 1)
y1(aBz + B2fy + Br)A —®o<1
B+ 1 +y2+ WG+ & +wa+p)  ~°

Hence, it is proven that the condition a, > 0 is satisfied if ERO <1
The disease-free equilibrium &£ (SO,VO,EO,IaO, SO,RO) ——,0,0,0,0) is locally

0!+# (a+#)(ﬁ2+#)
asymptotically stable if Ry < 1. This indicates that each actively infected individual can
transmit the disease to fewer than one susceptible person, and over time, the disease will
gradually disappear from the population (disease-free state).
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Ayi(aBz+B1B2+uB1)
B2+ (v +Y2+1) (81 +82+1) (a+p)’
€ = (S V5E* I, ", R*) is locally asymptotically stable, whereas if R, > 1, the
equilibrium point £ = (S*,V*, E*, 1,5, 1", R*) is unstable.
Proof :
The eigenvalues will be determined based on the Jacobian matrix at &' =
(8%, V*,E*, 1,7, I.", R*) using the following formula:

J(E") —xI| =0

After determining the determinant of the matrix, the following characteristic equation is
obtained:

Theorem 2. Given %, = If Ry > 1, the endemic equilibrium point

(u+x)(u+ 0 + 0, + x)(agx® + a;x3 + a,x? + azx + ay)

with,
a, =1 (2)
a; =B+ B)la+ay+8,+8+y,+y,+4u (3)
a; = 3132122 + ((ﬁ1 +B)v1+ Buty,+a+d;+6)p; 4

+@Bu+y,+6;+ 52),31)12
+ (=S*By —V*By + a+ 8 + 8, + 3u)y, + 6u?
+ By, +3a+36; +36)u+ (6, +y, +6)a; +v,(6, + 6,)
az = (_31]/13212 — Bryi(a + 2.“))5* + (—31)’1321; — foyi(a + 2#))V* (5)
+ B, Ru+y +y, + 6, + 52)311;2
+ (aB261 + af,6; + afyyr + afoys + 2afou + B161y1 + B16172
+ 21611 + B162y1 + B162y2 + 2B + 2B,y 1 + 2B1y21
+ 311231 + 2611 + B201Y2 + 22611 + B2b2y1 + B262y2 + 2B,6,u
+ 2711 + 2B27u + 311232)1; + ady, + adiy, + 2ab 1 + adyyq
+ adyy, + 2a8,u + 2ay u + 2ay,u + 3uta + 26,;y,u + 281y,
+ 3u?8; + 28,110 + 28,724 + 3?8, + 3uPyy + 3uPy, + 4pd
ay = (‘ﬂﬂﬁﬂzﬂlé — fryiu(a + #))S* + (_.81]/1,32#]; — foyiu(a + .U))V* (6)
+ B1B2(y1 + vz + )61 + 85, + H)Iéz
+ (1 +v2 + )61+ 8 +w(afy + P+ Pot)la + vy + 72
+ )61 + 6, + W) (a + 1)

Based on the Routh-Hurwitz criterion, the endemic equilibrium, € = (S*,V*, E*, 1%, 1", R*)
is locally asymptotically stable when all the roots of the polynomial have negative real parts,
as shown below :

xl+x2+x3+X4=_a<O
where b = a4 in equation (3) and a = ay = 1, thus we obtain :
_((31+:82)12+“1+51+52+V1+}/2 +4-#) <0
(B1+ B2)(Ro— 1)

TRttt 06+ 0, + (B + )
Let:

—(a1+61+52+)/1+]/2+4‘ﬂ)<0

p=PB1(y1 +v, + )01 + 6 + w)(By + 1)
g=(a;+06;+8; +y1+v, + 4w
We obtain:
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(B1+B2)Ro— 1)
@ J— J—
V4

S =1+ P2)Ro—1)—pg <0
This condition is satisfied when

g<0

mo - 1 > O
Ro>1
In a similar manner, it is also obtained that:

X1Xp + X1X3 + X1Xq + XpX3 + X3X4 + X3Xy =X = 2 >0
where ¢ = a, in equation (4) and a = aq, = 1.
X1XX3 + X1 X3Xq + X1 X3X4 + X3X3X4 = _E <0
where d = a3 in equation (5) and a = qy = 1.
X1X2X3Xy = 2 >0

where e = a, in equation (6) and a = a5 = 1.

Based on the analysis, the fourth-degree polynomial satisfies the required conditions, and
Ry > 1, which means that the polynomial roots have negative real parts. It has been proven
that the endemic equilibrium € = (§%,V* E* I,%, 1", R*) is locally asymptotically stable,
indicating that each infected individual has the potential to transmit the infection to several
susceptible individuals, leading to an endemic spread of the disease

VI. NUMERICAL SIMULATION

Based on the case study in Jakarta Province with a total population of 10,680,000 individuals
[21], numerical simulations will be performed to illustrate the dynamics of COVID-19
transmission. From references [22,23], the following parameter values were obtained:

A = 416,6258; u = 3,91389 X 1075; B; = 2,00142 X 1077; 8, =2 x 10710 ¢ =
0,0085; y; = 0,20441; y, = 1,07550; §; = 0,32160; §, = 0,6784; 0, = 1,01218; o0, =
0,00001.

Using the parameter values listed in Table 2 and the given initial conditions, the endemic
simulation is presented as follows:

S(0) = 8.138.149,V(0) = 10.703.334,E(0) = 1.944.154,1,(0) = 1.023.447,1,(0) =
227.433,R(0) = 1.234.566.

The following illustrates the dynamic behavior of the SVEI IR model (susceptible
unvaccinated, susceptible vaccinated, exposed, asymptomatically infected, symptomatically
infected, and recovered) in relation to the transmission of COVID-19.

Fig. 2 shows the change in the number of susceptible unvaccinated individuals. At t = 0,
the number of unvaccinated susceptible individuals is approximately 8.140.000. At t = 500 it
decreases to around 48.791. The decline occurs gradually until day 9, while on day 10, a rapid
decrease is observed due to the high number of susceptible individuals receiving vaccination
and interactions with the asymptomatically infected subpopulation. This leads to susceptible
unvaccinated individuals moving into the vaccinated and exposed subpopulations, and over
time, the population approaches its equilibrium point around S, = 48.791.
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Fig. 2. Plot of The Susceptible Subpopulation Over Time

Fig. 3 shows an increase in the vaccinated subpopulation. Initially (t = 0) the number is
approximately 10.700.000 and continues to rise, reaching around 13.800.000 by day 500. This
increase occurs due to the large number of susceptible individuals receiving vaccination. Over
time, the population gradually approaches its equilibrium point around V, = 13.800.000.

Vaceinated

1610

Population

0 100 200 300 400 500
times{day)

Fig. 3. Plot of The Vaccinated Subpopulation Over Time

Fig. 4 shows the change in the number of exposed individuals. At t = 0, the exposed population
is approximately 1,950,000, whereas by t = 20, it decreases to around 5. This decline occurs
because exposed individuals progress to become infected, either asymptomatically or
symptomatically. Starting from day 25, the exposed subpopulation begins to stabilize around
0 and gradually decreases toward its equilibrium point at E, = 0.

https://doi.org/10.14710/jfma.v0i0.29819 237 p-ISSN: 2621-6019 e-ISSN: 2621-6035



5 JOURNAL OF FUNDAMENTAL MATHEMATICS
<PIFMAD AND APPLICATIONS (JEMA) VOL. 8 NO. 2 (2025)

Available online at www.jfma.math.fsm.undip.ac.id

Exposed

Population

5]
*
[=1

] 10 20 30 40 50
times(day)

Fig. 4. Plot of The Exposed Subpopulation Over Time

Fig. 5 shows the change in the number of asymptomatically infected individuals. At t = 0, this
subpopulation is approximately 1,020,000, whereas by t = 19, it decreases to around 5. This
decline occurs as asymptomatically infected individuals begin to develop symptoms and
recover. Starting from day 25, the subpopulation stabilizes around 0 and gradually decreases
toward its equilibrium point at I, , = 0.

Asymptomatic

Population

]
*
(=1

T T T T 1
i] 10 20 30 40 50
times(day)

Fig. 5. Plot of The Asymptomatic Subpopulation Over Time

Fig. 6 shows the change in the number of symptomatically infected individuals. At t = 0,
this subpopulation is approximately 227.500, whereas by t = 20, it decreases to around 5. The
symptomatically infected subpopulation increases rapidly until day 5, reaching about
1,230,000, and then gradually decreases until day 13. This decline occurs as symptomatically
infected individuals recover and some succumb to the infection. Starting from day 26, the
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subpopulation begins to stabilize around 0 and gradually decreases toward its equilibrium point
at [ So = 0.

Infected

Population 6. % 10°-

%]
*
[=1

o 10 20 30 40 50
times(day)

Fig. 6. Plot of The Infected Subpopulation Over Time

Thus, the equilibrium point £°(S,, V;, Eo, Iy I,

R, < 1. Consequently, COVID-19 gradually disappears from the population over time.

Ro) is locally asymptotically stable since

VII. CONCLUSION

A SVEIR model was developed by incorporating interactions between asymptomatically
infected and symptomatically infected individuals. In this study, the spread of COVID-19
depends on the value of ‘R at the equilibrium point, which helps determine the stability of the
model. To analyze the local stability of the disease-free equilibrium, the Routh—Hurwitz
method was employed. Based on the analysis, it was found that if Ry < 1, the model is locally
asymptotically stable at the disease-free equilibrium.

Numerical simulations were also conducted in this study to illustrate the dynamics of
COVID-19 transmission. From the simulation results, R, = 0.001897843854, which shows
that the COVID-19 transmission model is locally asymptotically stable at the disease-free
equilibrium. These results suggest that effective control strategies aimed at reducing the basic
reproduction number below unity are essential to eliminate the disease. Therefore, public health
stakeholders should focus on interventions that reduce transmission rates, such as minimizing
contact between individuals, improving preventive measures, and enhancing early detection
and treatment, in order to ensure that the disease eventually disappears from the population.
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