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Abstract. This paper addresses the estimation of multistate models in discrete time, 

which are widely used to describe complex event histories involving transitions between 

multiple health states. Accurate estimation of transition intensities and probabilities is 

essential for understanding disease progression and evaluating the impact of covariates. 

However, conventional estimators such as the Nelson–Aalen estimator often produce 

rough estimates, especially in sparse data settings. To improve estimation, we apply 

kernel smoothing to Nelson–Aalen estimators of transition intensities. Transition 

probabilities are then derived via product-integrals of the smoothed intensities. Covariate 

effects on transition intensities are modeled using the Cox proportional hazards model. 

Rather than modeling covariate effects on transition probabilities indirectly through their 

influence on transition intensities, we model them directly using pseudo-values of state 

occupation probabilities obtained through a jackknife procedure. These pseudo-values 

are treated as outcome variables in a Generalized Estimating Equation (GEE) framework. 

The proposed methodology is applied to patient visit data from a clinic in West Java, 

Indonesia, where it successfully captures both the progression dynamics across health 

states and the influence of key covariates. 

Keywords: Multistate model; Transition intensities; Transition probabilities; State 

occupation probabilities; Generalized Estimating Equation (GEE). 

I. INTRODUCTION

In event history analysis, individuals are followed over time and the occurrence of events is 

recorded, where events may be transient (such as disease onset or recovery) or terminal (such 

as death). Multistate models provide a flexible and powerful framework for analyzing such 

complex longitudinal processes by representing individual trajectories as transitions between a 

finite number of discrete states [1,2]. These models have been widely applied in medical [3], 

epidemiological [4], and actuarial studies [5] to describe disease progression, treatment 

response, and health dynamics over time. 

Multistate models are typically illustrated using state-transition diagrams, where states are 

represented by boxes and transitions between states are indicated by arrows. These diagrams 

provide an intuitive representation of the underlying stochastic process and help clarify the 

structure and assumptions of the model. For example, Figure 1 presents a three-state illness–

death model consisting of the states: 1 (healthy), 2 (diseased), and 3 (dead). The complexity of 

a multistate model depends on both the number of states and the set of allowable transitions 

among them. 
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Figure 1. The illness-death model 

 

Classical inference in multistate models is commonly based on continuous-time Markov 

processes, where transition intensities are estimated nonparametrically using the Nelson–Aalen 

estimator and transition probabilities are subsequently obtained via product-integrals [6]. 

Although this framework is theoretically well established, practical applications often 

encounter challenges when event times are sparse, irregular, or observed only at discrete visit 

times [1]. In such situations, the resulting step-function estimates of transition intensities can 

be unstable and difficult to interpret, which may propagate uncertainty into the estimated 

transition probabilities [7,8]. 

Recent developments in multistate modeling have focused on improving estimation 

efficiency [9], relaxing model assumptions [10], and enhancing interpretability of covariate 

effects [11]. Several studies published in the past few years have extended multistate models 

to incorporate flexible hazard structures [12], time-dependent covariates [13], and complex 

censoring mechanisms [14]. However, most of these approaches still rely on continuous-time 

formulations and model covariate effects on transition probabilities indirectly through 

transition intensities. This indirect relationship often leads to highly nonlinear and model-

dependent interpretations, particularly when interest lies in marginal state occupation 

probabilities rather than instantaneous transition risks [15]. 

An alternative line of research has introduced pseudo-value regression methods for directly 

modeling functionals of multistate processes, such as cumulative incidence functions or state 

occupation probabilities. Pseudo-values, typically constructed via jackknife procedures [15], 

allow these quantities to be treated as response variables within generalized estimating equation 

(GEE) frameworks [16]. While this approach offers improved interpretability and flexibility, 

its application has largely been restricted to continuous-time settings and has not been fully 

explored in discrete-time multistate models, especially in combination with smoothed 

estimators of transition intensities. 

Despite the increasing availability of longitudinal data collected at discrete and irregular 

observation times—such as clinical visit data—there remains a lack of integrated methodology 

that simultaneously addresses instability in transition intensity estimation and enables direct 

regression modeling of state occupation probabilities in discrete-time multistate models. This 

gap is particularly relevant in applied health studies, where marginal probabilities of occupying 

specific health states are often of primary interest to clinicians and policymakers. 

To address these limitations, this study proposes a discrete-time multistate modeling 

framework that combines kernel-smoothed Nelson–Aalen estimators for transition intensities 

[17] with direct regression modeling of state occupation probabilities using pseudo-values and 

GEE. Kernel smoothing is applied to stabilize and improve the interpretability of transition 

intensity estimates derived from sparse discrete-time data. Covariate effects are incorporated 

1 healthy 2diseased 

3 dead 
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using two complementary approaches: Cox proportional hazards models for transition 

intensities [18] and a pseudo-value-based GEE framework for direct inference on state 

occupation probabilities [15,16]. This dual strategy allows for both instantaneous and marginal 

interpretations of covariate effects. 

The proposed methodology is applied to patient morbidity data from a clinic in West Java, 

Indonesia. The application demonstrates how the approach captures dynamic health state 

progression while providing interpretable covariate effects on both transition risks and state 

occupation probabilities. By integrating smoothing techniques and pseudo-value regression 

within a discrete-time multistate framework, this study contributes a practical and interpretable 

modeling strategy for analyzing complex longitudinal health data. 

 

II. MODEL AND METHODS 

2.1. Multistate Models 

A multistate process is a stochastic process (𝑋(𝑡), 𝑡 ∈ 𝑇) with a finite state space 𝑆 =
{1,… ,𝑁}. Here, 𝑇 = [0, 𝜏], where 𝜏 < ∞, represents a bounded time interval. As the process 

evolves over time, it generates a history 𝐻𝑡− , which consists of observations of the process over 

the interval [0, 𝑡), including the states visited and the times of transitions [8]. The multi-state 

process is fully characterized through transition probabilities between states ℎ and 𝑗 

𝑃ℎ𝑗(𝑠, 𝑡) = pr(𝑋(𝑡) = 𝑗|𝑋(𝑠) = ℎ,𝐻𝑠−) (1) 

 

where ℎ, 𝑗 ∈ 𝑆, 𝑠, 𝑡 ∈ 𝑇 and 𝑠 ≤ 𝑡  or through transition intensities, 

 

𝛼ℎ𝑗(𝑡) = lim
∆𝑡→0

𝑃ℎ𝑗(𝑡, 𝑡 + ∆𝑡)

∆𝑡
  (2) 

 

which represent the instantaneous hazard of transitioning to state 𝑗 given that the process is in 

state ℎ at time 𝑡. In most applications, a Markovian structure is assumed, meaning that 𝑃ℎ𝑗(𝑠, 𝑡) 

depends on the history only through the covariates and the state 𝑋(𝑠) = ℎ occupied at time 𝑠. 

We are also interested in modeling and inference for the state occupation probabilities, 

defined as 𝑄ℎ(𝑡) = pr[𝑋(𝑡) = ℎ], where ℎ ∈ 𝑆. Given the initial state probabilities 𝑄𝑗(0), the 

state occupation probabilities at time 𝑡 can be expressed as, 

 

𝑄ℎ(𝑡) = ∑𝑄𝑗(0)𝑃𝑗ℎ(0, 𝑡)

𝑗∈𝑆

. (3) 

 

2.2 Estimation in Multistate Models with no Covariates 

 

When a Markov assumption is made, the transition probabilities can be estimated as 

product–integrals of the Nelson–Aalen estimators of the transition intensities [6]. Let 𝑁ℎ𝑗(𝑡) 

denote the total number of transitions from state ℎ to state 𝑗 in the interval [0, 𝑡], and let 𝑌ℎ(𝑡) 
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represent the number of individuals in state ℎ at time 𝑡−. The estimated cumulative transition 

intensity from state ℎ to state 𝑗 is given by: 

 

𝐴̂ℎ𝑗(𝑡) = ∫
𝐼[𝑌ℎ(𝑠) ≠ 0]

𝑌ℎ(𝑠)
d𝑁ℎ𝑗(𝑠)

𝑡

0

, (4) 

 

where 𝐼(∙) is the indicator function. The cumulative transition intensities for all possible 

transitions between states can be organized into a matrix 𝐴̂(𝑡), 

 

𝐴̂(𝑡) =

[
 
 
 
𝐴̂11(𝑡)

𝐴̂21(𝑡)
⋮

𝐴̂𝑁1(𝑡)

  

𝐴̂12(𝑡)

𝐴̂22(𝑡)
⋮

𝐴̂𝑁2(𝑡)

  

⋯
⋯
⋱
⋯

  

𝐴̂1𝑁(𝑡)

𝐴̂2𝑁(𝑡)
⋮

𝐴̂𝑁𝑁(𝑡)]
 
 
 

 (5) 

 

whose rows sum to 0, so that the diagonal entries are 𝐴̂ℎℎ(𝑡) = −∑ 𝐴̂ℎ𝑗(𝑡)𝑗≠ℎ . The transition 

probability matrix is estimated as the product-integrals of Nelson-Aalen estimator, 

 

𝑃̂[𝑠, 𝑡] = 𝜋
(𝑠,𝑡]

[𝐼 + d𝐴̂(u)] (6) 

 

𝑃̂[𝑠, 𝑡] =

[
 
 
 
𝑃̂11(𝑡)

𝑃̂21(𝑡)
⋮

𝑃̂𝑁1(𝑡)

  

𝑃̂12(𝑡)

𝑃̂22(𝑡)
⋮

𝑃̂𝑁2(𝑡)

  

⋯
⋯
⋱
⋯

  

𝑃̂1𝑁(𝑡)

𝑃̂2𝑁(𝑡)
⋮

𝑃̂𝑁𝑁(𝑡)]
 
 
 

 (7) 

where I is the 𝑁 × 𝑁 identity matrix and 𝜋 is the product–integral [10]. 

In discrete time approach, the time interval is divided into subintervals, 𝑠 < 𝑡1 < ⋯ <
𝑡𝑘−1 < 𝑡𝑘 < ⋯ < 𝑡𝐿 ≤ 𝑡. The Nelson-Aalen estimator in Equation (4) becomes, 

 

𝐴̂ℎ𝑗(𝑡) = {

0 if 𝑡 < 𝑡1

∑
∆𝑁ℎ𝑗(𝑡𝑘)

𝑌ℎ(𝑡𝑘)𝑡𝑘≤𝑡
if 𝑡𝑘 ≤ 𝑡

 (8) 

 

where 𝑘 = 1,2, … , 𝐿 and ∆𝑁ℎ𝑗(𝑡𝑘) is the number of transitions from state ℎ to state 𝑗 at time 

𝑡𝑘. The transition probability matrix is then estimated as, 

𝑃̂[𝑠, 𝑡] = ∏[𝐼 + ∆𝐴̂(𝑡𝑘)]

𝐿

𝑘=1

. (9) 

 

The Nelson–Aalen estimator 𝐴̂ℎ𝑗(𝑡) provides an efficient nonparametric estimate of the 

cumulative transition intensity 𝐴ℎ𝑗(𝑡). In discrete time, the change in the estimator at each 

time point 𝑡𝑘 is defined as ∆𝐴̂ℎ𝑗(𝑡𝑘) = 𝐴̂ℎ𝑗(𝑡𝑘) − 𝐴̂ℎ𝑗(𝑡𝑘−1). In many applications, the 
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parameter of interest is not 𝐴ℎ𝑗(𝑡), but rather its derivative 𝑎ℎ𝑗(𝑡), which represents the 

transition intensity. The discrete increment ∆𝐴̂ℎ𝑗(𝑡𝑘) can be viewed as a crude estimate of 

𝑎ℎ𝑗(𝑡). However, when event times are sparse or unevenly distributed, this step function 

estimate can be unstable and difficult to interpret. To overcome this limitation, we apply kernel 

smoothing using Epanechnikov kernel, which assigns greater weight to time points closer to 

𝑡. The smoothed estimator of the transition intensity is defined as, 

 

𝛼̂ℎ𝑗(𝑡) = 𝑏−1 ∑ 𝐾 (
𝑡 − 𝑡𝑘

𝑏
)∆𝐴̂ℎ𝑗(𝑡𝑘)

𝐿

𝑘=1

 (10) 

 

for 𝑏 ≤ 𝑡 ≤ 𝑡𝐿−𝑏, where 𝑏 is the bandwith, and 𝐾(∙) is a kernel function. We use Epanechnikov 

kernel, 

𝐾(𝑥) = 0.75(1 − 𝑥2) (11) 

 

for −1 ≤ 𝑥 ≤ 1. When 𝑡 < 𝑏, an asymmetric kernel is used to accommodate boundary effects 

[19]. 

 

2.3 Covariates Effect on Multistate Model 

A common statistical approach for analyzing the effect of independent variables 

(covariates) on a dependent variable is regression analysis. In multistate modeling, covariate 

effects on state occupation or transition probabilities are typically examined indirectly by 

modeling the transition intensities. However, this approach often results in highly nonlinear 

and complex relationships between covariates and the resulting transition or occupation 

probabilities [15]. To address this, we analyze the effect of covariates on transition intensities 

and transition probabilities separately. Transition intensities are modeled using the Cox 

proportional hazards model, while transition probabilities are modeled directly through a 

regression framework based on pseudo-values. 

We use the Cox regression model for modeling transition intensities, stratified by the type 

of transition, 

 

𝑎ℎ𝑗𝑖(𝑡|𝑍) = 𝑎ℎ𝑗,0(𝑡)exp(𝛽T𝑍𝑖) (12) 

 

where 𝑖 = 1,2, … , 𝑛, 𝑎ℎ𝑗0(𝑡) is the baseline transition intensity, which does not depend on 

covariate, 𝑍𝑖 is the covariate vector, and 𝛽 is the corresponding vector of regression 

coefficients. The baseline transition intensity 𝑎ℎ𝑗,0(𝑡) is estimated nonparametrically using the 

kernel-smoothed estimator 𝛼̂ℎ𝑗(𝑡) in Equation (10) based on the discrete-time increments of 

the Nelson–Aalen estimator. 

To analyze the effect of covariates on state occupation probabilities, we use pseudo-values 

as response variables in a Generalized Estimating Equation (GEE) framework. Let 
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𝜃 = (𝑄ℎ(𝑡1), 𝑄ℎ(𝑡2), … , 𝑄ℎ(𝑡𝐿)) 
(13) 

be a vector of state occupation probability in state ℎ at discrete time points 𝑡1, … , 𝑡𝐿. For 

individual 𝑖, let 

𝜃𝑖 = (𝜃𝑖1, 𝜃𝑖2, … , 𝜃𝑖𝐿) (14) 

be the vector of pseudo-values at time points 𝑡𝑘, 𝑡2, … , 𝑡𝐿, where each 𝜃𝑖𝑘 represents the pseudo-

value of being in particular state ℎ at time 𝑡𝑘. These pseudo-values are derived from a jackknife 

statistic [2] 

 

𝜃𝑖 = 𝑛𝜃 − (𝑛 − 1)𝜃−𝑖 (15) 

 

where 𝜃 is the full-sample estimator and 𝜃−𝑖 is the estimator based on the sample of size with 

the 𝑖-th observation excluded. In the absence of censoring, the estimator 𝜃 at time 𝑡𝑘 simplifies 

to the proportion of individuals in state ℎ at 𝑡𝑘. In such cases, the pseudo-value for subject 𝑖 at 

time 𝑡𝑘 is simply the indicator function that equals 1 if the subject is in state ℎ at time 𝑡𝑘, and 

0 otherwise. 

Although 𝜃𝑖 represents a pseudo-value derived from estimated probabilities, its value is 

not restricted to the interval [0,1]. This is because the jackknife formula in Equation (15) can 

yield values slightly below 0 or above 1, especially in small samples or when an individual 

observation has a large influence on the overall estimate. This behavior is well-recognized and 

does not pose a problem for statistical inference. The pseudo-values remain asymptotically 

unbiased and are suitable as outcome variables in the GEE framework. If necessary, link 

functions such as the logit or probit may be applied in the modeling step to ensure that fitted 

values remain within the probability bounds [2]. 

To model the relationship between covariates and these pseudo-values, we specify a 

marginal model 

𝑔(𝜃𝑖𝑘) = 𝛾T𝑍𝑖𝑘 (16) 

𝜃𝑖𝑘 = 𝑔−1(𝛾T𝑍𝑖𝑘) (17) 

 

where 𝑔(∙) is a suitable link function, 𝛾 is a vector of regression coefficients, and 𝑍𝑖𝑘 is the 

covariate vector for individual 𝑖 at time 𝑡𝑘, which includes both time-specific indicators and 

individual-level covariates. which includes both time-specific indicators and individual-level 

covariates. This structure allows the model to capture both time-varying and subject-specific 

effects on the state occupation probabilities. In matrix form, the model for all individuals and 

time points becomes 

 

             𝑔(𝜃) = [

𝑔(𝜃11) 𝑔(𝜃12)

𝑔(𝜃21) 𝑔(𝜃22)
⋮ ⋮

𝑔(𝜃𝑛1) 𝑔(𝜃𝑛2)

    

⋯ 𝑔(𝜃1𝐿)

⋯ 𝑔(𝜃2𝐿)
⋱ ⋮
⋯ 𝑔(𝜃𝑛𝐿)

] (18) 
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=

[
 
 
 
𝛾T𝑍11 𝛾T𝑍12

𝛾T𝑍21 𝛾T𝑍22

⋮ ⋮
𝛾T𝑍𝑛1 𝛾T𝑍𝑛1

    

⋯ 𝛾T𝑍1𝐿

⋯ 𝛾T𝑍2𝐿

⋱ ⋮
⋯ 𝛾T𝑍𝑛𝐿]

 
 
 
. 

 

The regression coefficients 𝛾 are estimated by solving the unbiased estimating equations, 

 

∑(
𝜕

𝜕𝛾
𝑔−1(𝛾T𝑍𝑖))

T

𝑉𝑖
−1 (𝜃𝑖 − 𝑔−1(𝛾T𝑍𝑖))

𝑖

= ∑𝑈𝑖(𝛾)

𝑖

= 𝑈(𝛾) = 0 (19) 

 

where 𝑉𝑖 is a working covariance matrix, and 𝑔−1(𝛾T𝑍𝑖) represents the vector of fitted values 

on the probability scale for individual 𝑖, obtained by applying the inverse link function to the 

linear predictors at each time point. 

 

III. DATA APPLICATION 

 

3.1 Analysis of Patients Morbidity Data 

This method is applied to estimate a multistate model for patients' morbidity at Cihideung 

Clinic, located in Garut, West Java, Indonesia. A sample of 100 patients was randomly selected. 

The data were collected from patient visits between January 1, 2002 and January 6, 2007. The 

collected information includes patient ID, visit time, age (in years), systolic blood pressure 

(mmHg), diastolic blood pressure (mmHg), Koch Pulmonum1 (KP, where 1 = positive and 0 = 

negative), sex (1 = male, 0 = female), and medical cost (in IDR). 

State of patients are divided into four groups based on the cost, namely, Patient states are 

classified into four categories based on medical cost: 

• State 1: Healthy 

• State 2: Diseased type 1 (cost ≤ 25,000 IDR) 

• State 3: Diseased type 2 (25,000 < cost ≤ 50,000 IDR) 

• State 4: Diseased type 3 (cost > 50,000 IDR). 

A higher medical cost is assumed to reflect greater disease severity, indicating that patients in 

higher-numbered states experience more severe health conditions. 

The multistate model used is based on the structure proposed by Effendie [20], as 

illustrated in Figure 2. 

 
1Koch Pulmonum also known as pulmonary tuberculosis (TB), is a bacterial infection of the lungs caused by Mycobacterium tuberculosis. It 
primarily affects the respiratory system and is characterized by symptoms such as chronic cough, chest pain, and difficulty breathing. 
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Figure 2. The multistate model for morbidity data 

 

The time unit is measured in days. Data are only observed during clinic visits, so the exact 

time of transition to the healthy state is interval-censored—i.e., known only to lie between two 

clinic visits. It is assumed that if a patient does not visit the clinic within one week after their 

last recorded visit, the patient is considered healthy. The process is assumed to follow the 

Markov property, allowing direct transitions between healthy and diseased states. If a patient 

revisits the clinic within one week, the associated costs are accumulated, and the new state is 

determined based on the total cost. For modeling purposes, each patient’s first visit since 

January 1, 2002, is treated as time 𝑡1. 

 

3.2  Estimation with no Covariate 

 

Based on the model structure in Figure 2, the Nelson–Aalen estimator matrix can be 

written as 

𝐴̂(𝑡) =

[
 
 
 
 
𝐴̂11(𝑡)

𝐴̂21(𝑡)

𝐴̂31(𝑡)

𝐴̂41(𝑡)

  

𝐴̂12(𝑡)

𝐴̂22(𝑡)
0
0

  

𝐴̂13(𝑡)
0

𝐴̂33(𝑡)
0

  

𝐴̂14(𝑡)
0
0

𝐴̂44(𝑡)]
 
 
 
 

.

 

 

 

Before computing the Nelson–Aalen estimators, we determine the state evolution of patients 

from time 𝑡0 to 𝑇. Table 1 presents the state evolution for 5 sample patients. State 0 indicates 

that the patient no longer visits the clinic. For this study, we observe patient trajectories up to 

2 years (𝑇 = 730). 

 

Table 1. State evolution of 5 patients 

Patient 
Time 

0 1 8 9 10 … 1430 1525 1532 1598 1831 

1 1 3 1 1 1 … 1 2 1 2 0 

2 1 3 3 3 3 … 0 0 0 0 0 

3 1 3 3 3 3 … 0 0 0 0 0 

4 1 2 1 1 1 … 0 0 0 0 0 

5 1 2 1 1 1 … 0 0 0 0 0 
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Using these state trajectories, we compute 𝑌ℎ(𝑡𝑘) and 𝑁ℎ𝑗(𝑡𝑘), then estimate the Nelson–

Aalen increments ∆𝐴̂(𝑡𝑘). Below are estimators at times 0, 1, and 8, 

∆𝐴̂(0) = [

0
0
0
0

  

0
0
0
0

  

0
0
0
0

  

0
0
0
0

] 

 

∆𝐴̂(1) = [

−1
0
0
0

  

0.55
0
0
0

  

0.29
0
0
0

  

0.16
0
0
0

] 

 

∆𝐴̂(8) = [

0
1

0.517
0.125

  

0
−1
0
0

  

0
0

−0.517
0

  

0
0
0

−0.125

]. 

 

To smooth the estimators, we use the Epanechnikov kernel with a bandwidth of 100. The 

smoothed estimators are then used to compute cumulative transition probabilities. The focus 

on transitions from State 1 arises because all patients begin in the healthy state at their first 

recorded visit, making it the natural starting point for estimating transition dynamics. Figure 3 

presents the cumulative transition probabilities from State 1 to other states, which can be 

interpreted as occupation probabilities conditional on the initial state being 1. The figure shows 

that the probability of remaining in the healthy state remains high throughout the observation 

period. Transitions to more severe disease states (States 2, 3, and 4) are relatively rare and 

occur with decreasing frequency as severity increases, indicating that most patients experience 

mild or no deterioration in health over time. 

 

 
Figure 3. Cumulative transition probabilites from kernel smoothing with bandwith 100 
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3.3 Estimation Based on Covariates 

Covariate effects on transition intensities are estimated using the coxph function from the 

survival package in R. Table 2 presents the estimation results. The resulting regression model 

for transition intensity is, 

𝛼̂ℎ𝑗𝑖(𝑡|𝑍) = 𝑎̂ℎ𝑗,0(𝑡) 

exp (
−0.0038 age𝑖 − 0.0106 systole𝑖 + 0.0131 diastole𝑖

−0.1129 KP𝑖 + 0.1432 sex𝑖
) 

(20) 

 

where 𝑎̂ℎ𝑗,0(𝑡) is the baseline hazard for transitions ℎ → 𝑗 ∈ {1 → 2,1 → 3,1 → 4,2 → 1,3 →

1,4 → 1}. The baseline used for the transition intensities is the smoothed kernel-based estimate 

with a bandwidth of 100. Figure 4 shows the cumulative transition intensities for the six 

transitions. The curves indicate that transitions from State 1 (healthy) to State 2 (mild disease) 

occur most frequently over time, as reflected by the steep rise in the yellow line. In contrast, 

transitions from more severe disease states (e.g., State 4 to State 1) show slower accumulation, 

suggesting less frequent recovery from severe conditions. 

 

Table 2. Parameter estimation of regression model for transition intensities 

Variable Estimation SE P_value 

𝛽̂1 (age) -0.003818 0.001707 0.025322 

𝛽̂2 (systole) -0.010645 0.002828 0.000167 

𝛽̂3 (diastole) 0.013102 0.004287 0.002242 

𝛽̂4 (KP) -0.112900 0.088308 0.201081 

𝛽̂5 (sex) 0.143202 0.061984 0.020871 

 

From Table 2, we observe that several covariates significantly affect the transition 

intensities between states: 

a. Age has a negative coefficient (–0.0038, 𝑝 = 0.0253), indicating that older patients are 

slightly less likely to transition between states, suggesting possibly lower clinic visit 

frequency or disease progression at older ages. 

b. Systolic blood pressure also shows a significant negative effect (–0.0106, 𝑝 < 0.001), 

meaning that higher systolic pressure is associated with lower transition intensity, which 

may reflect more stable health conditions or reduced likelihood of transitioning to a more 

severe disease state. 

c. Diastolic blood pressure has a positive coefficient (0.0131, 𝑝 = 0.0022), suggesting that 

patients with higher diastolic values are more likely to experience transitions, possibly due 

to underlying cardiovascular strain. 

d. Sex has a positive and significant coefficient (0.1432, 𝑝 = 0.0209), indicating that male 

patients have a higher rate of state transition compared to female patients, controlling for 

other covariates. 

e. Although the KP variable is not statistically significant at the 5% level (-0.1129, 𝑝 = 

0.2011), it is retained in the model to account for clinical relevance and potential 

confounding. 
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Figure 4. Cumulative baseline transition intensities 

 

Let 𝑄ℎ
(𝑖)(𝑡𝑘) denote the state occupation probability of patient 𝑖 in state ℎ at time 𝑡𝑘. The 

analysis focuses on the state occupation probability of state 1 (healthy), 𝑄1
(𝑖)(𝑡𝑘), as this state 

represents the clinically meaningful reference state and the initial state for all individuals in 

the study. From a practical perspective, the probability of remaining in or returning to the 

healthy state over time is of primary interest for assessing overall patient morbidity. In 

addition, state 1 is the most frequently observed state in the data, leading to more stable 

pseudo-value estimates compared with less frequently visited disease states. 

Pseudo-values of 𝑄1
(𝑖)(𝑡𝑘) and subsequently treated as the dependent variable in the GEE 

analysis, assuming a binomial distribution with a logit link function. This specification allows 

the marginal expectation of the state occupation probability to be linked directly to covariates. 

The analysis is performed using the geese function from the geepack package in R. The 

estimation results are presented in Table 3, and the corresponding estimated regression model 

is given in Equation (21). 

This approach differs fundamentally from conventional multi-state regression models, in 

which covariates are incorporated through transition-specific hazard models and their effects 

on state occupation probabilities are obtained only indirectly via nonlinear combinations of 

transition intensities (3,9). In contrast, the pseudo-value-based GEE model in Equation (21) 

provides marginal covariate effects on state occupation probabilities, leading to more 

transparent interpretation, particularly when interest lies in prevalence-type quantities rather 

than transition risks. 
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Table 3. Parameter estimation of the regression model for the state occupation 

probability of state 1 

Variable Estimation SE P_value 

Intercept 1.9915100 0.4456713 0.0000079 

𝛽̂1 (time) 0.0013783 0.0003680 0.0001800 

𝛽̂2 (age) -0.0063219 0.0057964 0.2754225 

𝛽̂3 (systole) 0.0033701 0.0073332 0.6458322 

𝛽̂4 (diastole) -0.0000506 0.0104719 0.9961474 

𝛽̂5 (KP) -0.8851953 0.2127827 0.0000318 

𝛽̂6 (sex) 0.2081326 0.1584150 0.1888988 

 

Based on the parameter estimates reported in Table 3, the fitted regression model for the 

state occupation probability of state 1 is given by: 

 

log
𝑄̂1

(𝑖)(𝑡𝑘)

1 − 𝑄̂1
(𝑖)(𝑡𝑘)

= 1.9915 + 0.0014 𝑡𝑘 − 0.0063 age𝑖(𝑡𝑘) 

+ 0.0034 systole𝑖(𝑡𝑘) − 0.00005 diastole𝑖(𝑡𝑘) 

− 0.8852 KP𝑖 + 0.2081 sex𝑖. 

(21) 

 

As shown in Table 3, the estimated coefficients provide insight into covariate effects on the 

log-odds of occupying state 1. 

a. The intercept is positive and highly significant (1.992, 𝑝 < 0.001), representing the 

baseline log-odds of occupying state 1 when all covariates are set to zero. 

b. Time has a positive and statistically significant coefficient (0.0014, 𝑝 = 0.00018), 

indicating that the log-odds, and hence the probability, of occupying state 1 increases over 

time. This finding is consistent with the modeling assumption that patients are more likely 

to return to a healthy state if no clinic visits are recorded within a one-week period. 

c. KP has a strong negative and statistically significant effect (–0.8852, 𝑝 < 0.001), 

suggesting that patients diagnosed with KP have substantially lower odds of occupying the 

healthy state compared to patients without KP. 

d. Although age, systolic blood pressure, diastolic blood pressure, and sex are not statistically 

significant at the 5% level, they are retained in the model to account for individual-level 

characteristics that may still contribute to variability in state occupation probabilities and 

to improve overall model adequacy. 

 

IV. CONCLUSIONS AND OUTLOOKS 

This study proposes a discrete-time multistate modeling framework that combines kernel-

smoothed Nelson–Aalen estimators for transition intensities with product-integrals for 

estimating transition probabilities. Covariate effects are incorporated using two complementary 

approaches: Cox regression for transition intensities and a pseudo-value-based GEE framework 
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for direct modeling of state occupation probabilities. By jointly analyzing instantaneous 

transition risks and marginal state occupation probabilities, the proposed approach provides 

improved interpretability of covariate effects in multi-state settings. 

The application to patient morbidity data from a clinic in West Java, Indonesia, illustrates 

the practical relevance of the methodology for analyzing disease progression based on 

discretely observed clinical visit data. In particular, direct regression modeling of state 

occupation probabilities offers clinically meaningful insights that are not readily obtainable 

from intensity-based models alone. 

Future research may extend this framework to continuous-time settings, allowing for finer 

temporal resolution in modeling transition dynamics. In addition, relaxing the Markov 

assumption—such as through semi-Markov or history-dependent multi-state models—would 

enable the incorporation of past disease trajectories into the modeling process, potentially 

yielding a more realistic representation of clinical progression in complex health processes. 
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