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Abstract. This paper addresses the estimation of multistate models in discrete time,
which are widely used to describe complex event histories involving transitions between
multiple health states. Accurate estimation of transition intensities and probabilities is
essential for understanding disease progression and evaluating the impact of covariates.
However, conventional estimators such as the Nelson—Aalen estimator often produce
rough estimates, especially in sparse data settings. To improve estimation, we apply
kernel smoothing to Nelson—Aalen estimators of transition intensities. Transition
probabilities are then derived via product-integrals of the smoothed intensities. Covariate
effects on transition intensities are modeled using the Cox proportional hazards model.
Rather than modeling covariate effects on transition probabilities indirectly through their
influence on transition intensities, we model them directly using pseudo-values of state
occupation probabilities obtained through a jackknife procedure. These pseudo-values
are treated as outcome variables in a Generalized Estimating Equation (GEE) framework.
The proposed methodology is applied to patient visit data from a clinic in West Java,
Indonesia, where it successfully captures both the progression dynamics across health
states and the influence of key covariates.

Keywords: Multistate model; Transition intensities; Transition probabilities; State
occupation probabilities; Generalized Estimating Equation (GEE).

I. INTRODUCTION

In event history analysis, individuals are followed over time and the occurrence of events is
recorded, where events may be transient (such as disease onset or recovery) or terminal (such
as death). Multistate models provide a flexible and powerful framework for analyzing such
complex longitudinal processes by representing individual trajectories as transitions between a
finite number of discrete states [1,2]. These models have been widely applied in medical [3],
epidemiological [4], and actuarial studies [5] to describe disease progression, treatment
response, and health dynamics over time.

Multistate models are typically illustrated using state-transition diagrams, where states are
represented by boxes and transitions between states are indicated by arrows. These diagrams
provide an intuitive representation of the underlying stochastic process and help clarify the
structure and assumptions of the model. For example, Figure 1 presents a three-state illness—
death model consisting of the states: 1 (healthy), 2 (diseased), and 3 (dead). The complexity of
a multistate model depends on both the number of states and the set of allowable transitions
among them.
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healthy 2diseased

Figure 1. The illness-death model

Classical inference in multistate models is commonly based on continuous-time Markov
processes, where transition intensities are estimated nonparametrically using the Nelson—Aalen
estimator and transition probabilities are subsequently obtained via product-integrals [6].
Although this framework is theoretically well established, practical applications often
encounter challenges when event times are sparse, irregular, or observed only at discrete visit
times [1]. In such situations, the resulting step-function estimates of transition intensities can
be unstable and difficult to interpret, which may propagate uncertainty into the estimated
transition probabilities [7,8].

Recent developments in multistate modeling have focused on improving estimation
efficiency [9], relaxing model assumptions [10], and enhancing interpretability of covariate
effects [11]. Several studies published in the past few years have extended multistate models
to incorporate flexible hazard structures [12], time-dependent covariates [13], and complex
censoring mechanisms [14]. However, most of these approaches still rely on continuous-time
formulations and model covariate effects on transition probabilities indirectly through
transition intensities. This indirect relationship often leads to highly nonlinear and model-
dependent interpretations, particularly when interest lies in marginal state occupation
probabilities rather than instantaneous transition risks [15].

An alternative line of research has introduced pseudo-value regression methods for directly
modeling functionals of multistate processes, such as cumulative incidence functions or state
occupation probabilities. Pseudo-values, typically constructed via jackknife procedures [15],
allow these quantities to be treated as response variables within generalized estimating equation
(GEE) frameworks [16]. While this approach offers improved interpretability and flexibility,
its application has largely been restricted to continuous-time settings and has not been fully
explored in discrete-time multistate models, especially in combination with smoothed
estimators of transition intensities.

Despite the increasing availability of longitudinal data collected at discrete and irregular
observation times—such as clinical visit data—there remains a lack of integrated methodology
that simultaneously addresses instability in transition intensity estimation and enables direct
regression modeling of state occupation probabilities in discrete-time multistate models. This
gap is particularly relevant in applied health studies, where marginal probabilities of occupying
specific health states are often of primary interest to clinicians and policymakers.

To address these limitations, this study proposes a discrete-time multistate modeling
framework that combines kernel-smoothed Nelson—Aalen estimators for transition intensities
[17] with direct regression modeling of state occupation probabilities using pseudo-values and
GEE. Kernel smoothing is applied to stabilize and improve the interpretability of transition
intensity estimates derived from sparse discrete-time data. Covariate effects are incorporated
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using two complementary approaches: Cox proportional hazards models for transition
intensities [18] and a pseudo-value-based GEE framework for direct inference on state
occupation probabilities [15,16]. This dual strategy allows for both instantaneous and marginal
interpretations of covariate effects.

The proposed methodology is applied to patient morbidity data from a clinic in West Java,
Indonesia. The application demonstrates how the approach captures dynamic health state
progression while providing interpretable covariate effects on both transition risks and state
occupation probabilities. By integrating smoothing techniques and pseudo-value regression
within a discrete-time multistate framework, this study contributes a practical and interpretable
modeling strategy for analyzing complex longitudinal health data.

II. MODEL AND METHODS
2.1. Multistate Models

A multistate process is a stochastic process (X(t),t € T) with a finite state space S =
{1,...,N}. Here, T = [0, 7], where T < oo, represents a bounded time interval. As the process
evolves over time, it generates a history H;-, which consists of observations of the process over
the interval [0, t), including the states visited and the times of transitions [8]. The multi-state
process is fully characterized through transition probabilities between states h and j

Pyj(s,t) = pr(X(t) = j|X(s) = h, H,-) (1)

where h,j € S, s,t € T and s <t or through transition intensities,

Py;(t, t + At)
(t) = lim ——~ 2
@ (©) = Jim = “

which represent the instantaneous hazard of transitioning to state j given that the process is in
state h at time t. In most applications, a Markovian structure is assumed, meaning that P (s,t)
depends on the history only through the covariates and the state X(s) = h occupied at time s.

We are also interested in modeling and inference for the state occupation probabilities,
defined as Qp,(t) = pr[X(t) = h], where h € S. Given the initial state probabilities Q;(0), the
state occupation probabilities at time t can be expressed as,

0n(H) = ) Q)P (0,0). G)

jes
2.2 Estimation in Multistate Models with no Covariates

When a Markov assumption is made, the transition probabilities can be estimated as
product—integrals of the Nelson—Aalen estimators of the transition intensities [6]. Let Ny;(t)

denote the total number of transitions from state h to state j in the interval [0, t], and let Y}, (t)
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represent the number of individuals in state h at time t~. The estimated cumulative transition
intensity from state h to state j is given by:

A LIy, 0
Ap;(t) ZJ;) %dl\%(s); 4)

where I(+) is the indicator function. The cumulative transition intensities for all possible
transitions between states can be organized into a matrix A,

[An(t) Ap () - Auv(t)]

At) = A21(t) Azz © AZN(t) | (5)
|-AN1(t) ANZ(t) " Ayy (t)J
whose rows sum to 0, so that the diagonal entries are Ay, (t) = — Y. j=h Ay ;j(t). The transition
probability matrix is estimated as the product-integrals of Nelson-Aalen estimator,
P[s,t] = TL' [1 +dA(u)] (6)
Pi1(t) Pip(t) -+ Py (D)
Pls,t] = Py, (t) Pyp(t) P,y (1) (7)

Py1(t) Pyp(®) " Pyn(t)
where / is the N X N identity matrix and TU is the product—integral [10].

In discrete time approach, the time interval is divided into subintervals, s < t; < -+ <
troq < tp < -+ < t; <t. The Nelson-Aalen estimator in Equation (4) becomes,

0 ift <t
Api(0) = Z AN (&) ®)

if tk <t
trst Yn(ty)

where k = 1,2, ..., L and ANy;(t) is the number of transitions from state h to state j at time
ty. The transition probability matrix is then estimated as,
L

Pls,t] = 1_[[1 + AA(ED] )

k=1

The Nelson—Aalen estimator 4, ;(t) provides an efficient nonparametric estimate of the
cumulative transition intensity Ap;(t). In discrete time, the change in the estimator at each
time point t, is defined as AAhj(tk) = Ahj(tk) —Ahj(tk_l). In many applications, the
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parameter of interest is not Ap;(t), but rather its derivative a;(t), which represents the
transition intensity. The discrete increment AA, j(tr) can be viewed as a crude estimate of
ap;(t). However, when event times are sparse or unevenly distributed, this step function
estimate can be unstable and difficult to interpret. To overcome this limitation, we apply kernel
smoothing using Epanechnikov kernel, which assigns greater weight to time points closer to
t. The smoothed estimator of the transition intensity is defined as,

@ (t) = b*il{(%) AAy;(ty) (10)

k=1

forb <t < t;_,, where b is the bandwith, and K (*) is a kernel function. We use Epanechnikov
kernel,

K(x) = 0.75(1 — x2) (11)

for —1 < x < 1. When t < b, an asymmetric kernel is used to accommodate boundary effects
[19].

2.3 Covariates Effect on Multistate Model

A common statistical approach for analyzing the effect of independent variables
(covariates) on a dependent variable is regression analysis. In multistate modeling, covariate
effects on state occupation or transition probabilities are typically examined indirectly by
modeling the transition intensities. However, this approach often results in highly nonlinear
and complex relationships between covariates and the resulting transition or occupation
probabilities [15]. To address this, we analyze the effect of covariates on transition intensities
and transition probabilities separately. Transition intensities are modeled using the Cox
proportional hazards model, while transition probabilities are modeled directly through a
regression framework based on pseudo-values.

We use the Cox regression model for modeling transition intensities, stratified by the type
of transition,

anji(t1Z) = apjo(t)exp(BTZ;) (12)

where i = 1,2, ...,n, apjo(t) is the baseline transition intensity, which does not depend on
covariate, Z; is the covariate vector, and £ is the corresponding vector of regression
coefficients. The baseline transition intensity ap;o(t) is estimated nonparametrically using the
kernel-smoothed estimator @y;(t) in Equation (10) based on the discrete-time increments of
the Nelson—Aalen estimator.

To analyze the effect of covariates on state occupation probabilities, we use pseudo-values
as response variables in a Generalized Estimating Equation (GEE) framework. Let
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9 = (Qh(tl)J Qh(tZ)i e Qh(tL)) (13)

be a vector of state occupation probability in state h at discrete time points ty, ..., t;. For
individual i, let

éi = (éil' éiZ’ . éiL) (14)

be the vector of pseudo-values at time points ty, t,, ..., t;, where each 8;;, represents the pseudo-
value of being in particular state h at time t;. These pseudo-values are derived from a jackknife
statistic [2]

where 8 is the full-sample estimator and 8_; is the estimator based on the sample of size with
the i-th observation excluded. In the absence of censoring, the estimator 8 at time t;, simplifies
to the proportion of individuals in state h at t;. In such cases, the pseudo-value for subject i at
time t, is simply the indicator function that equals 1 if the subject is in state h at time t;, and
0 otherwise.

Although ; represents a pseudo-value derived from estimated probabilities, its value is
not restricted to the interval [0,1]. This is because the jackknife formula in Equation (15) can
yield values slightly below 0 or above 1, especially in small samples or when an individual
observation has a large influence on the overall estimate. This behavior is well-recognized and
does not pose a problem for statistical inference. The pseudo-values remain asymptotically
unbiased and are suitable as outcome variables in the GEE framework. If necessary, link
functions such as the logit or probit may be applied in the modeling step to ensure that fitted
values remain within the probability bounds [2].

To model the relationship between covariates and these pseudo-values, we specify a
marginal model

9Ou) = v Zy (16)
O = 97 (v Zix) (17)

where g(+) is a suitable link function, y is a vector of regression coefficients, and Z;; is the
covariate vector for individual i at time t,, which includes both time-specific indicators and
individual-level covariates. which includes both time-specific indicators and individual-level
covariates. This structure allows the model to capture both time-varying and subject-specific
effects on the state occupation probabilities. In matrix form, the model for all individuals and
time points becomes

g011) g(612) - g(611)
g(6) = 9(4?21) 9(9:22) g(H:ZL) (18)
g(gnl) g(enz) g(enL)

https://doi.org/10.14710/jfma.v0i0.28439 195 p-ISSN: 2621-6019 e-ISSN: 2621-6035



JOURNAL OF FUNDAMENTAL MATHEMATICS

z&l‘ J F M A .) AND APPLICATIONS (JFMA) VOL. 8 NO. 2 (2025)

Available online at www.jfma.math.fsm.undip.ac.id

VTZ11 VTZ12 VTZ1L
— YT221 VTZZZ VTZZL _
lVTan VTan VTZnLJ

The regression coefficients y are estimated by solving the unbiased estimating equations,

T
Z (;—Vg-l(yTZi)> vt (éi - g_l(yTZi)) = Z U,(y) =UQy) =0 (19)

i

where V; is a working covariance matrix, and g~ (yTZ;) represents the vector of fitted values
on the probability scale for individual i, obtained by applying the inverse link function to the
linear predictors at each time point.

III. DATA APPLICATION

3.1 Analysis of Patients Morbidity Data

This method is applied to estimate a multistate model for patients' morbidity at Cihideung
Clinic, located in Garut, West Java, Indonesia. A sample of 100 patients was randomly selected.
The data were collected from patient visits between January 1, 2002 and January 6, 2007. The
collected information includes patient ID, visit time, age (in years), systolic blood pressure
(mmHg), diastolic blood pressure (mmHg), Koch Pulmonum' (KP, where 1 = positive and 0 =
negative), sex (1 = male, 0 = female), and medical cost (in IDR).

State of patients are divided into four groups based on the cost, namely, Patient states are
classified into four categories based on medical cost:

o State 1: Healthy

o State 2: Diseased type 1 (cost <25,000 IDR)

o State 3: Diseased type 2 (25,000 < cost < 50,000 IDR)

o State 4: Diseased type 3 (cost > 50,000 IDR).
A higher medical cost is assumed to reflect greater disease severity, indicating that patients in
higher-numbered states experience more severe health conditions.

The multistate model used is based on the structure proposed by Effendie [20], as
illustrated in Figure 2.

'Koch Pulmonum also known as pulmonary tuberculosis (TB), is a bacterial infection of the lungs caused by Mycobacterium tuberculosis. 1t
primarily affects the respiratory system and is characterized by symptoms such as chronic cough, chest pain, and difficulty breathing.
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Figure 2. The multistate model for morbidity data

The time unit is measured in days. Data are only observed during clinic visits, so the exact
time of transition to the healthy state is interval-censored—i.e., known only to lie between two
clinic visits. It is assumed that if a patient does not visit the clinic within one week after their
last recorded visit, the patient is considered healthy. The process is assumed to follow the
Markov property, allowing direct transitions between healthy and diseased states. If a patient
revisits the clinic within one week, the associated costs are accumulated, and the new state is
determined based on the total cost. For modeling purposes, each patient’s first visit since
January 1, 2002, is treated as time t;.

3.2 Estimation with no Covariate

Based on the model structure in Figure 2, the Nelson—Aalen estimator matrix can be
written as

ﬁ“gti A, (8) Ays(t) Apa(d)
icp) = |42\ Ay(r) 0 0
A= 0 0 dn® 0

Agq) O 0 Au(b)

Before computing the Nelson—Aalen estimators, we determine the state evolution of patients
from time t, to T. Table 1 presents the state evolution for 5 sample patients. State O indicates
that the patient no longer visits the clinic. For this study, we observe patient trajectories up to
2 years (T = 730).

Table 1. State evolution of 5 patients

) Time
Patient
0 1 8 9 10 ... 1430 1525 1532 1598 1831

1 1 3 1 1 1 1 2 1 2 0
2 1 3 3 3 3 0 0 0 0 0
3 1 3 3 3 3 0 0 0 0 0
4 1 2 1 1 1 0 0 0 0 0
5 1 2 1 1 1 0 0 0 0 0
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Using these state trajectories, we compute Yy, (ty) and Np;(t), then estimate the Nelson—
Aalen increments AA(t;). Below are estimators at times 0, 1, and 8,

0000
- 0000
A =190 0 0

0000

'—1 0.55 0.29 0.16
A 0 0 0 0
MD=19 o 0o o

[0 0 0 O

0 0 0 0

~ev |1 =1 0 0
AA(8) = 0.517 0 —0.517 0

0.125 0 0 —0.125

To smooth the estimators, we use the Epanechnikov kernel with a bandwidth of 100. The
smoothed estimators are then used to compute cumulative transition probabilities. The focus
on transitions from State 1 arises because all patients begin in the healthy state at their first
recorded visit, making it the natural starting point for estimating transition dynamics. Figure 3
presents the cumulative transition probabilities from State 1 to other states, which can be
interpreted as occupation probabilities conditional on the initial state being 1. The figure shows
that the probability of remaining in the healthy state remains high throughout the observation
period. Transitions to more severe disease states (States 2, 3, and 4) are relatively rare and
occur with decreasing frequency as severity increases, indicating that most patients experience
mild or no deterioration in health over time.

S |
[ee)
@
© |
o
— p11(0Y)
— p12(0yt)
<« p13(0,t)
o 7| — p14(0yt)
N
o
o | ﬁii::ztfkﬁ\ik,,#~k-4"’
o

T T T
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time

Figure 3. Cumulative transition probabilites from kernel smoothing with bandwith 100
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3.3 Estimation Based on Covariates

Covariate effects on transition intensities are estimated using the coxph function from the
survival package in R. Table 2 presents the estimation results. The resulting regression model
for transition intensity is,

Apji(t1Z) = apjo(t)
(—0.0038 age; — 0.0106 systole; + 0.0131 diastolei> (20)
exp —0.1129 KP; + 0.1432 sex;

where ahj,o(t) is the baseline hazard for transitions h » j € {1 - 2,1 >3,1->42->13 -
1,4 — 1}. The baseline used for the transition intensities is the smoothed kernel-based estimate
with a bandwidth of 100. Figure 4 shows the cumulative transition intensities for the six
transitions. The curves indicate that transitions from State 1 (healthy) to State 2 (mild disease)
occur most frequently over time, as reflected by the steep rise in the yellow line. In contrast,
transitions from more severe disease states (e.g., State 4 to State 1) show slower accumulation,
suggesting less frequent recovery from severe conditions.

Table 2. Parameter estimation of regression model for transition intensities
Variable  Estimation SE P value

B (age) -0.003818 0.001707  0.025322
B, (systole)  -0.010645 0.002828  0.000167
Bs (diastole)  0.013102 0.004287  0.002242
B, (KP) -0.112900 0.088308  0.201081
Bs (sex) 0.143202 0.061984  0.020871

From Table 2, we observe that several covariates significantly affect the transition
intensities between states:

a. Age has a negative coefficient (—0.0038, p = 0.0253), indicating that older patients are
slightly less likely to transition between states, suggesting possibly lower clinic visit
frequency or disease progression at older ages.

b. Systolic blood pressure also shows a significant negative effect (—0.0106, p < 0.001),
meaning that higher systolic pressure is associated with lower transition intensity, which
may reflect more stable health conditions or reduced likelihood of transitioning to a more
severe disease state.

c. Diastolic blood pressure has a positive coefficient (0.0131, p = 0.0022), suggesting that
patients with higher diastolic values are more likely to experience transitions, possibly due
to underlying cardiovascular strain.

d. Sex has a positive and significant coefficient (0.1432, p = 0.0209), indicating that male
patients have a higher rate of state transition compared to female patients, controlling for
other covariates.

e. Although the KP variable is not statistically significant at the 5% level (-0.1129, p =
0.2011), it is retained in the model to account for clinical relevance and potential
confounding.
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time

Figure 4. Cumulative baseline transition intensities

Let Q,(li)(tk) denote the state occupation probability of patient i in state h at time t;. The

analysis focuses on the state occupation probability of state 1 (healthy), Qf) (ty), as this state
represents the clinically meaningful reference state and the initial state for all individuals in
the study. From a practical perspective, the probability of remaining in or returning to the
healthy state over time is of primary interest for assessing overall patient morbidity. In
addition, state 1 is the most frequently observed state in the data, leading to more stable
pseudo-value estimates compared with less frequently visited disease states.

Pseudo-values of Qf) (t,) and subsequently treated as the dependent variable in the GEE
analysis, assuming a binomial distribution with a logit link function. This specification allows
the marginal expectation of the state occupation probability to be linked directly to covariates.
The analysis is performed using the geese function from the geepack package in R. The
estimation results are presented in Table 3, and the corresponding estimated regression model
is given in Equation (21).

This approach differs fundamentally from conventional multi-state regression models, in
which covariates are incorporated through transition-specific hazard models and their effects
on state occupation probabilities are obtained only indirectly via nonlinear combinations of
transition intensities (3,9). In contrast, the pseudo-value-based GEE model in Equation (21)
provides marginal covariate effects on state occupation probabilities, leading to more
transparent interpretation, particularly when interest lies in prevalence-type quantities rather
than transition risks.
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Table 3. Parameter estimation of the regression model for the state occupation
probability of state 1

Variable Estimation SE P value
Intercept 1.9915100 0.4456713  0.0000079
B, (time) 0.0013783  0.0003680  0.0001800
B, (age) -0.0063219  0.0057964  0.2754225
B (systole) 0.0033701  0.0073332  0.6458322
B, (diastole) -0.0000506  0.0104719  0.9961474
Bs (KP) -0.8851953  0.2127827  0.0000318
B (sex) 0.2081326  0.1584150  0.1888988

Based on the parameter estimates reported in Table 3, the fitted regression model for the
state occupation probability of state 1 is given by:

Qii)(tk)
T = 1.9915 + 0.0014 ty — 0.0063 agei(tk)
1-0Q; (te) 1)
+ 0.0034 systole; (t;) — 0.00005 diastole;(t;)
— 0.8852 KP; + 0.2081 sex;.

log

As shown in Table 3, the estimated coefficients provide insight into covariate effects on the
log-odds of occupying state 1.

a. The intercept is positive and highly significant (1.992, p < 0.001), representing the
baseline log-odds of occupying state 1 when all covariates are set to zero.

b. Time has a positive and statistically significant coefficient (0.0014, p = 0.00018),
indicating that the log-odds, and hence the probability, of occupying state 1 increases over
time. This finding is consistent with the modeling assumption that patients are more likely
to return to a healthy state if no clinic visits are recorded within a one-week period.

c. KP has a strong negative and statistically significant effect (—0.8852, p < 0.001),
suggesting that patients diagnosed with KP have substantially lower odds of occupying the
healthy state compared to patients without KP.

d. Although age, systolic blood pressure, diastolic blood pressure, and sex are not statistically
significant at the 5% level, they are retained in the model to account for individual-level
characteristics that may still contribute to variability in state occupation probabilities and
to improve overall model adequacy.

IV. CONCLUSIONS AND OUTLOOKS

This study proposes a discrete-time multistate modeling framework that combines kernel-
smoothed Nelson—Aalen estimators for transition intensities with product-integrals for
estimating transition probabilities. Covariate effects are incorporated using two complementary
approaches: Cox regression for transition intensities and a pseudo-value-based GEE framework
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for direct modeling of state occupation probabilities. By jointly analyzing instantaneous
transition risks and marginal state occupation probabilities, the proposed approach provides
improved interpretability of covariate effects in multi-state settings.

The application to patient morbidity data from a clinic in West Java, Indonesia, illustrates
the practical relevance of the methodology for analyzing disease progression based on
discretely observed clinical visit data. In particular, direct regression modeling of state
occupation probabilities offers clinically meaningful insights that are not readily obtainable
from intensity-based models alone.

Future research may extend this framework to continuous-time settings, allowing for finer
temporal resolution in modeling transition dynamics. In addition, relaxing the Markov
assumption—such as through semi-Markov or history-dependent multi-state models—would
enable the incorporation of past disease trajectories into the modeling process, potentially
yielding a more realistic representation of clinical progression in complex health processes.
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