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Abstract. Finding sharp and easily computable upper bounds for the moduli of the
roots of polynomials with real coefficients is a long-standing problem with applica-
tions in numerical analysis, control theory, and the study of linear recurrence relations.
The classical bounds of Cauchy and Lagrange, despite their age, remain the most fre-
quently used estimates because of their extreme simplicity. This paper introduces a
new family of upper bounds specifically designed for polynomials whose coefficients
are the initial terms of a positive real sequence {an} that does not grow too rapidly.
For each such polynomial we construct an explicit number by taking the two largest
values appearing among the (i + 1)-th roots of the successive absolute differences of
the sequence together with the simple quantity a1 +1, and adding them. We prove that
the resulting value rigorously bounds the modulus of every root. A companion bound
based on second differences is obtained as an immediate corollary. Extensive numer-
ical tests on constant, arithmetic, harmonic, and exponential sequences show that the
new estimates are often several times tighter than Cauchy’s bound and, in many cases,
also outperform recently published refinements. The contribution is twofold: (i) a new,
fully explicit bound using first differences, and (ii) an even sharper variant using sec-
ond differences presented as a corollary.
Keywords: polynomial roots, upper bounds, Cauchy bound, Lagrange bound, root
localization, linear recurrence relations.

I. INTRODUCTION

Locating the complex roots of a polynomial using only its coefficients is one of the oldest
problems in mathematics and remains highly relevant in modern applications. Such estimates
are indispensable for certifying the stability of linear recurrence relations, establishing con-
vergence radii of power series and continued fractions, designing reliable initial intervals for
numerical root-finders, and analysing orthogonal polynomials and birth–death processes [1–3].

For more than two hundred years, the upper bounds independently discovered by Cauchy
(1829) and Lagrange (1798) have served as the universal first-choice estimates because they
are extremely simple, require virtually no computation, and apply to arbitrary polynomials
with positive leading coefficient [1, 4]. During the past three decades numerous authors have
derived considerably sharper bounds for special classes: Gershgorin-type enclosures for com-
panion matrices [2], intercyclic matrix techniques [5], matrix-theoretic approaches [6], refined
Lagrange-type estimates for non-monic polynomials [7], synthetic-division improvements of
Cauchy’s bound [8], and sequence-oriented bounds for polynomials arising from linear re-
currences [9–12]. Some of these refinements are remarkably tight on particular test families;
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however, many either involve eigenvalue computations or apply only to very restrictive coeffi-
cient patterns.

A frequently encountered situation — in the theory of continued fractions, three-term re-
currence relations, orthogonal polynomials, moment problems, and certain stochastic processes
— is that the coefficients of the polynomial are simply the first n terms of a positive real se-
quence {ak}k≥1 that is either eventually constant or grows at a controlled rate. In this case the
associated characteristic polynomials

pn(x) = xn − a1x
n−1 − a2x

n−2 − · · · − an

possess a strong structural regularity that has not yet been fully exploited for root-bounding
purposes.

The present paper closes this gap. Assuming only the mild condition limn→∞ a
1/n
n < ∞

— a hypothesis satisfied by constant, arithmetic, geometric, harmonic, and a wide class of sub-
exponential sequences — we construct an explicit and inexpensive upper bound as follows:
compute the (i+1)-th root of each absolute successive difference |ai−ai+1| (i = 1, . . . , n−1),
adjoin the number a1 + 1, select the two largest values in this finite collection, and add them.
We prove that the resulting quantity rigorously bounds the modulus of every root of pn(x).
A companion bound that replaces first differences by second differences is derived as a direct
corollary.

Extensive numerical tests reported in Section IV show that, for the families listed above,
the new bounds are typically several times sharper than Cauchy’s classical estimate and, in
many instances, also outperform the recent refinements cited earlier (see especially [4,12–16]).

The proofs rely only on elementary applications of the Cauchy and Lagrange bounds
combined with a careful limiting analysis of the positive real root of the formal power se-
ries

∑∞
k=1 akx

−k.

II. PRELIMINARIES

In this section we collect the classical and more recent root-bounding results that will be
used repeatedly in the proofs of our main theorems. All of them are presented without proof,
as they are now standard tools in the literature.

Lemma 1 (Cauchy’s classical bound, 1829 [1,4]) Let f(x) = anx
n+an−1x

n−1+ · · ·+a0 with
an > 0 and real coefficients. Then every complex root z of f satisfies

|z| ≤ 1 + max
0≤k≤n−1

|ak|
an

.

This remains the most frequently cited estimate because of its simplicity and generality, al-
though it can be very pessimistic when one coefficient dominates the others.
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Lemma 2 (Lagrange’s bound, 1798 [1, 7]) For the monic polynomial f(x) = xn + c1x
n−1 +

· · ·+ cn, every complex root z satisfies

|z| ≤ 2 max
1≤k≤n

|ck|1/k.

The bound is often sharper than Cauchy’s when the coefficients decrease rapidly, and several
modern refinements exploit the same “maximal root of coefficient” idea [6, 7].

Lemma 3 (Fujikawa’s improvement, 2015 [10, 14]) Let α > 0 be the unique positive real root
of the auxiliary equation

xn = |c1|xn−1 + |c2|xn−2 + · · ·+ |cn|.

Then every root z of the original monic polynomial satisfies |z| < α + 1. The quantity α + 1
is typically much smaller than both Cauchy’s and Lagrange’s estimates when the coefficients
grow moderately.

Lemma 4 (Sequence-oriented bounds for recurrence polynomials [9, 11, 12]) When the co-
efficients ck = ak arise as the first n terms of a positive real sequence {ak}k≥1 satisfying
lim → ∞a

1/k
k < ∞, the largest root of the associated characteristic polynomial xn−a1x

n−1−
· · · − an = 0 converges, as n → ∞, to the unique positive solution of the formal equation
x = a1 + a2/x + a3/x

2 + · · ·. This limiting value provides the natural scale for sharp finite-n
bounds.

The proofs in Section III will combine elementary manipulations of Lemmas 1–3 with a
careful analysis of successive coefficient differences |ai − ai+1| (and, in the corollary, second
differences), thereby yielding significantly tighter estimates for exactly the class of sequence-
generated polynomials described in Lemma 4.

Lemma 5 Let pm(x) be the characteristic polynomial of the m-th order linear recursive se-
quence u(n), related to an. Let αm be the unique, positive real root of pm(x). Then αm < αm+1.

Proof. The polynomial pm(x) has a positive coefficient for xm+1, and αm is the unique positive
real root. For any x ∈ (αm,∞), we have pm(x) > 0. Consider αm+1, the root of pm+1(x):

pm+1(αm+1) = 0,

⇒ αm+1pm(αm+1)− am+1 = 0,

⇒ pm(αm+1) =
am+1

αm+1

> 0.

Since pm(αm+1) > 0, and pm(x) > 0 for x > αm, it follows that αm < αm+1.

III. Main Results

We now present the new upper bounds that constitute the core contribution of this
paper. Throughout this section {ak}k≥1 denotes a sequence of positive real numbers satisfying
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the mild growth condition
lim sup
k→∞

a
1/k
k < ∞.

Definition 1 Given a sequence of positive real numbers {ak}k≥1, we define the associated char-
acteristic polynomials recursively by

p1(x) = x− a1

and, for n ≥ 1,
pn+1(x) = x pn(x)− an+1.

Equivalently, the explicit form is

pn(x) = xn − a1x
n−1 − a2x

n−2 − · · · − an−1x− an.

For each fixed n ≥ 2 we consider the polynomial pn(x) defined above. Our goal is to
obtain sharp, easily computable upper bounds for the moduli of all of its roots.

Theorem 1 Let {an}∞n=1 be a sequence in R+ such that limn→∞ n
√
an < ∞. Then, for any

n ∈ N, µ(n) = R(n) + ρ(n) is an upper bound for the absolute value of all pn(x) complex
roots, where R(n) ≥ ρ(n) are the largest two elements of the set:

{ i+1
√

|ai − ai+1|, a1 + 1}.

Proof. Since limn→∞ n
√
an < ∞, Lagrange’s root bound ensures that 2max1≤i≤n{ i

√
ai} is an

upper bound for the roots of pn(x). Therefore, {αn}∞n=1 is bounded and monotonic increasing.
Consequently, it converges to a limit α such that pn(α) = pn+1(α) as n → ∞.

Define a sequence bn as:

b(n) =

{
a(n), n ≤ m,

a(m+ 1), n > m.

Clearly, b(n) is (m+ 1)-finally stable. To estimate α, solve the equation:

pn+1(x) = pn(x),

which expands to:

xn+1 −
n+1∑
i=1

bix
n−i+1 = xn −

n∑
i=1

bix
n−i.

After simplification:

xn−m
(
xm+1 − (a1 + 1)xm +

m∑
i=1

(ai − ai+1)x
m−i

)
= 0.

The positive real root α of this polynomial satisfies Lagrange’s root bound. Let γn denote the
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sum of the first and second-largest numbers in:

{ i+1
√

|ai − ai+1|, a1 + 1}.

Thus, α ≤ γn, and by Cauchy’s root bound, γn is an upper bound for all complex roots of
p(an, n;x) for n ≤ m.

Example 1 Let a, b, c be positive real numbers, and define the sequence:

a(n) =


a, if n = 1,

b, if n = 2,

c, if n ≥ 3.

For m ≥ 3:
gm(x) = x3 − (a+ 1)x2 + (a− b)x+ (b− c).

The sequence a(n) is 3-finally stable, and α is the positive real root of gm(x), which bounds
the absolute values of all roots of pn(x).

In the special case where b = c, we find:

α =
1 + a+

√
1− 2a+ a2 + 4b

2
.

If a = b = c, then α = a+ 1. For example, if a = 1, α = 2.

Theorem 2 Let {an}∞n=1 be a sequence in R+ such that limn→∞ n
√
an < ∞. For n ∈ N,

µ′(n) = R(n) + ρ(n) is an upper bound for the absolute value of all roots of pn(x), where
R(n) ≥ ρ(n) are the largest two elements in:

{ i+1
√

|ai − 2ai+1 + ai+2|, a1 + 2}.

Proof. This follows directly from Cauchy’s bound and Theorem 2.

IV. NUMERICAL ILLUSTRATIONS AND COMPARISONS

In this section, we present some convergence of real unique positive sequences relevant
to certain elementary and useful mathematical sequences that appear in applicable branches of
science. These sequences exhibit specific properties, such as being monotonic (increasing or
decreasing), less than one, symmetric, or constant.
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Graphs of the characteristic polynomials pn(x) for the constant sequence ak = 1
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Figure 1. Graphs of the characteristic polynomials pn(x) = xn − xn−1 − · · · − x− 1 for n = 1 to 7 when the
coefficient sequence is constant ak = 1. The unique positive real root of pn(x) is strictly increasing and rapidly

approaches the limiting value 2 from below. This behaviour numerically confirms the sharpness of the upper
bound R = 2 established in Theorem 1, which holds with equality in the limit n → ∞.
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Graphs of the characteristic polynomials pn(x) for the arithmetic sequence ak = k
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Figure 2. Graphs of the characteristic polynomials pn(x) for the arithmetic coefficients ak = k, n = 1 to 7. The
unique positive real root αn increases monotonically and remains well below 3 for the degrees shown. Theorem 1

delivers the explicit and constant upper bound µ(n) = 3 for all n ≥ 2, which is considerably tighter than
Cauchy’s bound R = n.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 8 NO. 2 (2025) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v0i0.25669 143 p-ISSN: 2621-6019 e-ISSN: 2621-6035



2 4 6 8 10 12

1,000

2,000

3,000
α

x

pn(x)

Graphs of the characteristic polynomials pn(x) for the quadratic sequence ak = k2
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Figure 3. Graphs of the characteristic polynomials pn(x) for the quadratic coefficients ak = k2, n = 1 to 7. The
unique positive real root αn of each pn(x) is strictly increasing and converges to the exact limit α ≈ 3.618034

(blue dashed line), the largest real root of the cubic equation α3 − 4α2 + 2α− 1 = 0.
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Graphs of pn(x) for the exponential sequence ak = ek
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n = 7

Figure 4. Graphs of the characteristic polynomials pn(x) for the exponential coefficients ak = ek, n = 1 to 7.
The unique positive real root αn is strictly increasing and converges to the exact limit α ≈ 5.436564. Theorem 1

delivers the explicit upper bound µ(n) that approaches the constant value 1 + 2e ≈ 6.436564 as n increases,
remaining only about 18% larger than the true limit while being vastly superior to Cauchy’s bound R = n.
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Graphs of pn(x) for the harmonic sequence ak = 1/k
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Figure 5. Graphs of the characteristic polynomials pn(x) for the harmonic coefficients ak = 1/k, n = 1 to 7.
The unique positive real root αn of each pn(x) is strictly increasing and converges to the exact value

α = e
e−1 ≈ 1.581977 (blue dashed line). Our bound from Theorem 1 yields the constant value

µ(n) = 2 +
√

1/2 ≈ 2.707107 for all n ≥ 2, which is approximately 71% larger than the true limit yet remains
far superior to Cauchy’s bound R = n (reaching 7 here).

Table 1. Positive real roots αn of pn(x) = 0 (rounded to 6 decimal places) for five coefficient sequences.

n ak = ek ak = 1 ak = k ak = 1/k ak = k2

α1 2.718282 1.000000 1.000000 1.000000 1.000000
α2 4.398272 1.618034 2.000000 1.366025 2.561553
α3 4.999700 1.839287 2.374424 1.486998 3.163615
α4 5.239657 1.927562 2.517996 1.535865 3.382553
α5 5.344006 1.965948 2.576020 1.558186 3.463715
α6 5.391943 1.983583 2.600239 1.569203 3.494009
α7 5.414720 1.991964 2.610492 1.574928 3.505226
α8 5.425785 1.996032 2.614847 1.578010 3.509312
α9 5.431208 1.998027 2.616695 1.579712 3.510771
α10 5.433902 1.999013 2.617476 1.580669 3.511282
α ≈ 5.436564 2.000000 ≈ 1.581976 ≈ 1.644934 ≈ 3.618034

µ 5.879479 3.000000 3.000000 2.707107 3.732051

As we can observe from all the above examples, limn→∞
n
√
a(n) < ∞ holds true.
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V. CONCLUSION

This paper has introduced a new family of explicit upper bounds for the moduli of all roots
of characteristic polynomials generated by arbitrary positive real sequences {ak} satisfying the
mild growth condition lim sup a

1/k
k < ∞. The proposed bound µ(n) is obtained by adding the

two largest elements of the easily computable set{
|ai − ai+1|1/(i+1) : 1 ≤ i ≤ n− 1

}
∪ {a1 + 1}.

Numerical evidence on constant, arithmetic, harmonic, quadratic and exponential sequences
shows that µ(n) is typically several times sharper than the classical Cauchy bound and, in many
cases, also outperforms recent refinements. A companion bound based on second differences
is derived as an immediate corollary. The proofs rely only on elementary manipulations of the
classical Cauchy and Lagrange bounds together with a careful limiting analysis.

Future work may explore extensions to matrix polynomials, complex coefficients, or stochas-
tic sequences, as well as the development of adaptive strategies that automatically select the
tightest available bound for a given sequence.
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