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Abstract. Studying the upper and lower bounds of graph parameters is crucial for
understanding the complexity and tractability of computational problems, optimizing
algorithms, and revealing structural properties of various graph classes. In this brief
paper, we explore the upper and lower bounds of graph parameters, including path-
distance-width, MM-Width, Feedback Vertex Set, and linear-width. These bounds are
crucial for understanding the complexity and structure of graphs.
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I. Introduction

1.1. Graph Parameters

It is well-known that real-world concepts can be modeled using graph theory, and efficient
algorithms have been developed for this purpose[1, 2]. When studying problems in graph al-
gorithms and graph theory, it is common to focus on specific graph classes or parameters to
find solutions[3, 4, 5, 6, 7]. Additionally, extensive research has been conducted to clarify the
relationships between different graph classes and parameters [8, 9, 10, 11, 12].

The study of graph width parameters is a well-established area in graph theory, focusing
on metrics that measure the structural complexity of graphs [13, 14, 15, 16]. Parameters such as
tree-width [17, 18, 19, 20, 21], path-width [18, 22, 23], proper-path-width[24, 25], rank-width
[26, 27], hypertree-width[28, 29, 30], superhypertree-width[31, 32, 33], and branch-width [34,
19, 35] are crucial for understanding the computational complexity of various problems.

Path-distance-width (PDW) [36, 37] is another graph parameter that extends path-width
by incorporating a distance measure. It is known that determining whether a given graph has
PDW (T ) ≤ k when the input graph is restricted to trees is NP-complete [37]. Additionally,
concepts of connected-path-distance-width and tree-distance-width have been introduced in
the literature as related measures [37]. These parameters are also relevant in the context of
graph isomorphism problems, where the structural complexity of graphs plays a crucial role in
determining isomorphism efficiently (cf.[38, 39, 40]).

Linear-width [41, 42, 43, 44] is a graph parameter that measures the minimum width in
a linear ordering of edges, ensuring that the number of vertices incident to edges across any
cut in the order is minimized. These ”linear” restrictions to underlying path structures are often
beneficial in proving results for general parameters[45]. Moreover, these linear parameters offer
valuable insights from a structural perspective, especially in the study of special graph classes.
Linear-width is known to be extendable to matroids and connectivity systems[46, 47, 34].
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Maximum-matching-width[48, 49, 50] is a graph parameter defined using a decomposition
tree, where the width is determined by the size of the largest maximum matching in bipartite
subgraphs induced by edge cuts. The Feedback Vertex Set[51, 52, 53] is the smallest set of
vertices in a graph whose removal results in an acyclic graph, effectively eliminating all cycles
and reducing the graph to a forest.

1.2. Our Contribution

In the aforementioned fields, the study of graph parameters themselves, as well as clarify-
ing their relationships and upper and lower bounds, is considered one of the important research
topics. In this brief paper, we explore the upper and lower bounds of graph parameters, includ-
ing path-distance-width, Feedback Vertex Set, maximum-matching-width, and linear-width.

II. Preliminaries

This section presents the mathematical definitions of the relevant concepts.

2.1. Simple Notation in this paper

The following provides the fundamental definitions in graph theory. For additional funda-
mental graph-theoretic concepts, we refer the reader to [2, 54, 55, 56].

Definition 1 (Graph) [2] A graph G is an ordered pair G = (V,E), where:

• V (G) is the set of vertices (or nodes),

• E(G) is the set of edges, which are unordered pairs of distinct vertices.

For simplicity, we often write G = (V,E) when the context is clear. Throughout this paper, we
consider only simple, undirected graphs, meaning there are no multiple edges or self-loops.

If X is a subset of V (G) or E(G), its complement is denoted by Xc, defined as:

Xc = V (G) \X or Xc = E(G) \X,

depending on whether X refers to a vertex or edge subset.

Definition 2 (Subgraph) [2] Given a graph G = (V,E), a subgraph H of G is a graph H =
(VH , EH) such that:

• VH ⊆ V (G),

• EH ⊆ E(G), where each edge in EH connects vertices in VH .

If VH = V (G), we say H is a spanning subgraph of G.

Definition 3 (Tree) [2] A tree T = (V,E) is a connected, acyclic graph, meaning that for every
pair of vertices u, v ∈ V , there exists exactly one path between u and v. Equivalently, a tree is
a graph with |V | − 1 edges and no cycles.
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Definition 4 (Cycle Graph) (cf.[57]) A cycle graph, denoted by Cn, is a graph that consists of
a single cycle containing n vertices. Formally,

V (Cn) = {v1, v2, . . . , vn}

and
E(Cn) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}, {vn, v1}}.

Every vertex in Cn has degree 2.

Definition 5 (Path Graph) (cf.[58]) A path graph, denoted by Pn, is a graph that consists of a
single path with n vertices. That is,

V (Pn) = {v1, v2, . . . , vn}

and
E(Pn) = {{v1, v2}, {v2, v3}, . . . , {vn−1, vn}}.

In Pn, the two endpoints have degree 1 while all other vertices have degree 2.

Definition 6 (Distance in a Graph) (cf.[2]) Let G = (V,E) be a graph. The distance between
two vertices u, v ∈ V , denoted by dG(u, v), is the length of the shortest path connecting u and
v in G. If no such path exists, the distance is defined as ∞.

Example 1 (Distance in a Path Graph) Consider the path graph P5 with vertices

V (P5) = {v1, v2, v3, v4, v5}

and edges
E(P5) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}}.

The shortest path between v1 and v4 is (v1, v2, v3, v4), which has length 3. Thus, the distance
between v1 and v4 is

dP5(v1, v4) = 3.

Definition 7 (Separator) (cf.[59, 60]) Let G = (V,E) be a graph. A separator in G is a subset
S ⊆ V such that removing the vertices in S (and the edges incident to them) disconnects G into
two or more connected components. In particular, given two disjoint subsets A,B ⊆ V , a set
S is called an (A,B)-separator if every path in G from a vertex in A to a vertex in B contains
at least one vertex from S.

Example 2 (Separator in a Path Graph) Consider the path graph P5 with vertices

V (P5) = {v1, v2, v3, v4, v5}

and edges
E(P5) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}}.

If we choose S = {v3}, then removing S disconnects P5 into two components: one containing
{v1, v2} and the other containing {v4, v5}. Hence, S = {v3} is a separator in P5, as it ensures
that no path remains between the two disconnected parts.
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Example 3 ((A,B)-Separator in a Cycle Graph) Consider the cycle graph C6 with vertices

V (C6) = {v1, v2, v3, v4, v5, v6}

and edges forming a cycle

E(C6) = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}, {v6, v1}}.

Suppose we want to separate two disjoint subsets A = {v1} and B = {v4}. The set S =
{v2, v3} is an (A,B)-separator because every path from v1 to v4 must pass through at least one
vertex in S. Removing S disconnects A from B, making it a valid separator.

Definition 8 (Bipartite Graph) (cf.[61, 62]) A graph G = (V,E) is called a bipartite graph if
its vertex set V can be partitioned into two disjoint subsets V1 and V2 such that every edge in
E has one endpoint in V1 and the other in V2. Formally, there exists a partition V = V1 ∪ V2

with V1 ∩ V2 = ∅ such that:

E ⊆ {(u, v) | u ∈ V1, v ∈ V2}.

If no such partition exists, the graph is said to be non-bipartite.

2.2. Graph Parameters and Graph Width Parameters

In this paper, we consider the following definitions.

Definition 9 (Branch Decomposition [19]) Let G = (V,E) be a graph. A branch decomposition
of G is a pair (T, σ) satisfying:

1. T is a tree in which every vertex has degree at most 3.

2. σ is a bijection from the set of leaves of T onto the edge set E of G.

For any edge e ∈ E(T ), removal of e disconnects T into two subtrees. The width of e is defined
as the number of vertices v ∈ V for which there exist two leaves t1 and t2 located in different
connected components of T \ {e} such that the corresponding edges σ(t1) and σ(t2) are both
incident with v in G. The width of the branch decomposition (T, σ) is the maximum width over
all edges of T . Finally, the branch width of G, denoted bw(G), is the minimum width over all
branch decompositions of G. By convention, if |E(G)| ≤ 1, then bw(G) = 0.

Example 4 (Branch-Width of a Cycle Graph) Consider the cycle graph C4 with vertices

V (C4) = {v1, v2, v3, v4}

and edges

E(C4) = {e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}, e4 = {v4, v1}}.

A branch decomposition (T, σ) of C4 can be constructed as follows. Let T be the tree with four
leaves arranged in a binary structure: for instance, let T have two internal nodes u and w such
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that u is adjacent to leaves t1 and t2, w is adjacent to leaves t3 and t4, and u and w are connected
by an edge. Define the bijection σ by

σ(t1) = e1, σ(t2) = e2, σ(t3) = e3, σ(t4) = e4.

For each edge in T , its removal splits T into two subtrees whose corresponding sets of edges
in C4 induce a vertex separator. One may verify that every such separator involves at most
2 vertices. Hence, the width of this branch decomposition is 2, and it can be shown that the
branch-width bw(C4) = 2.

Definition 10 (Linear Decomposition (Linear Width)) [42, 44] Let G = (V,E) be a graph with
|E| = m. A linear decomposition of G is an ordering of its edges, denoted by

(e1, e2, . . . , em).

For each index i with 1 ≤ i < m, define

Si = { v ∈ V : v is incident to an edge in {e1, . . . , ei} and also to an edge in {ei+1, . . . , em} }.

The width of this linear decomposition is given by

max
1≤i<m

|Si|.

The linear width of G, denoted lw(G), is the smallest integer k ≥ 0 for which there exists a
linear decomposition of G with width k.

Example 5 (Linear-Width of a Path Graph) Consider the path graph P4 with vertices

V (P4) = {v1, v2, v3, v4}

and edges
E(P4) = {e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}}.

Take the linear ordering of the edges as

(e1, e2, e3).

For each index i with 1 ≤ i < 3, define the separator

Si = { v ∈ V (P4) : v is incident to an edge in {e1, . . . , ei} and to an edge in {ei+1, . . . , e3} }.

Then:

• For i = 1, the prefix is {e1} and the suffix is {e2, e3}. The common vertex is v2, so
S1 = {v2} and |S1| = 1.

• For i = 2, the prefix is {e1, e2} and the suffix is {e3}. The common vertex is v3, so
S2 = {v3} and |S2| = 1.
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Thus, the linear-width of P4 is

lw(P4) = max{|S1|, |S2|} = 1.

Definition 11 (Tree Distance Decomposition and Tree Distance Width [36, 37]) Let G = (V,E)
be a graph. A tree distance decomposition of G is a triple(

{Xi | i ∈ I}, T = (I, F ), r
)
,

which satisfies the following conditions:

1. Partition of vertices: The collection {Xi}i∈I forms a partition of V ; that is,⋃
i∈I

Xi = V and Xi ∩Xj = ∅ for every i ̸= j.

2. Tree structure: T = (I, F ) is a tree with vertex set I and edge set F , and r ∈ I is a
designated root.

3. Distance preservation: For every vertex v ∈ V with v ∈ Xi, the distance from v to the
root set Xr in G is equal to the distance from r to i in T ; that is,

dG(Xr, v) = dT (r, i).

4. Edge connectivity: For every edge {v, w} ∈ E, there exist indices i, j ∈ I such that
v ∈ Xi and w ∈ Xj , and either i = j or {i, j} ∈ F .

The width of a tree distance decomposition is defined as

max
i∈I

|Xi|,

and the tree distance width (TDW) of G is the minimum width over all such decompositions.

A rooted tree distance decomposition is a tree distance decomposition in which the root
set Xr is a singleton (i.e., |Xr| = 1). The minimum width over all rooted tree distance decom-
positions defines the rooted tree distance width (RTDW) of G.

Definition 12 (Path Distance Decomposition and Path Distance Width [36, 37]) Let G = (V,E)
be a graph. A path distance decomposition of G is defined analogously to a tree distance de-
composition, with the following modifications:

1. The tree T is required to be a path; that is, T is a tree in which every vertex has degree
at most 2.

2. The designated root r in T is chosen such that it has degree one.

In this setting, the decomposition can be represented as an ordered sequence of vertex subsets:

(X1, X2, . . . , Xt),
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where X1 is the root set. The width of a path distance decomposition is defined as

max
1≤i≤t

|Xi|,

and the path distance width (PDW) of G is the minimum width over all such decompositions.
Similarly, a rooted path distance decomposition is a path distance decomposition where the
root set X1 is a singleton (i.e., |X1| = 1), and the corresponding graph parameter is denoted
by RPDW.

Example 6 (Path-Distance-Width of a Path Graph) Consider the path graph P4 with vertices

V (P4) = {v1, v2, v3, v4}

and edges
E(P4) = {{v1, v2}, {v2, v3}, {v3, v4}}.

A natural rooted path distance decomposition of P4 is given by the ordered sequence of vertex
sets:

(X1, X2, X3, X4),

where we define

X1 = {v1}, X2 = {v2}, X3 = {v3}, X4 = {v4}.

Here, X1 is the root set (of size 1) and serves as the starting point. For each vertex v ∈ Xi,
the distance from v to the root X1 in P4 is exactly i − 1, which matches the distance in the
underlying path of the decomposition. The width of this decomposition is defined as

max
1≤i≤4

|Xi| = 1.

Thus, the path-distance-width of P4 is PDW(P4) = 1.

Definition 13 (Feedback Vertex Set (FVS)) [51, 52, 53] Let G = (V,E) be a graph. A feedback
vertex set (FVS) is a subset S ⊆ V such that the graph obtained by removing all vertices in S
(and their incident edges) is acyclic—that is, it becomes a forest. The size of the FVS is denoted
by |S|, and in many applications one seeks an FVS of minimum size.

Example 7 (Feedback Vertex Set (FVS)) Consider the cycle graph C3 (a triangle) with vertices
{v1, v2, v3} and edges {(v1, v2), (v2, v3), (v3, v1)}. Removing any single vertex (for instance,
v1) yields the graph with vertices {v2, v3} and a single edge (v2, v3), which is acyclic. Thus, a
minimal FVS for C3 has size 1.

Definition 14 (Maximum Matching Decomposition) [50] Let G = (V,E) be a graph. A maxi-
mum matching decomposition of G is a pair (T, ∂) consisting of:

1. A tree T in which every vertex has degree at most 3.

2. A bijection ∂ : V → L(T ) that assigns each vertex of G to a unique leaf of T (here, L(T )
denotes the set of leaves of T ).
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For each edge e ∈ E(T ), its removal splits T into two subtrees, say T1 and T2. These subtrees
induce a partition of the vertices of G into

D1 = { v ∈ V : ∂(v) ∈ V (T1) } and D2 = { v ∈ V : ∂(v) ∈ V (T2) }.

Let Be be the bipartite subgraph of G consisting of all edges with one endpoint in D1 and the
other in D2. The width of the edge e is defined as the size of a maximum matching in Be. The
width of the decomposition (T, ∂) is the maximum width over all edges e ∈ E(T ). Finally,
the maximum matching-width of G, denoted by MM-width(G), is the minimum width over all
possible maximum matching decompositions of G.

Example 8 (Maximum Matching Decomposition) Consider the path graph P3 with vertices
{v1, v2, v3} and edges {(v1, v2), (v2, v3)}. One possible maximum matching decomposition is
as follows:

1. Choose T as a star tree with three leaves (one for each vertex) and a central internal node.

2. Define the bijection ∂ by mapping v1, v2, and v3 to three distinct leaves of T .

Now, consider any edge e of T . Removing e partitions the leaves into two groups. For example,
if the removal of e isolates the leaf corresponding to v2 from the leaves corresponding to v1 and
v3, then the induced partition of V is D1 = {v2} and D2 = {v1, v3}. The bipartite subgraph Be

then includes the edge (v1, v2) or (v2, v3) (depending on the precise structure of T ). In either
case, the maximum matching in Be has size 1. As this holds for every edge in T , the width of
this decomposition is 1, and hence MM-width(P3) = 1.

III. Main result of this paper

We discuss about results of upper bounds and lower bounds.

3.1. Bounding Distance-width Using Feedback Vertex Set and MM-width

The following theorem presents bounds on Distance-width using the Feedback Vertex Set
and MM-width.

Theorem 1 Let G be a graph. Then:

1. Bounded path-distance-width does not necessarily imply that the size of a minimum feed-
back vertex set is bounded, i.e.,

PDW(G) bounded ̸⇒ FVS(G) bounded.

2. Conversely, if G has a bounded feedback vertex set, then its path-distance-width is bounded,
i.e.,

FVS(G) bounded ⇒ PDW(G) bounded.

Proof. We first address the claim that bounded path-distance-width does not imply a bounded
feedback vertex set.
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Counterexample: Consider a graph G that contains a large complete bipartite subgraph
Km,m along with additional paths attached. It is possible to arrange the edges of G into a
path-distance decomposition with small bags (i.e., with small PDW(G)) because the paths can
be decomposed into vertex sets of bounded size. However, to eliminate all cycles within Km,m,
one must remove at least m vertices (for instance, by deleting an entire bipartition), implying
that the minimum feedback vertex set has size at least m. By choosing m arbitrarily large, one
obtains a graph with bounded path-distance-width but unbounded FVS.

Next, we prove that if G has a bounded feedback vertex set, then its path-distance-width
is bounded.

Let S be a feedback vertex set of G with |S| = k, and let G′ = G−S be the acyclic graph
(a forest) obtained by removing S. Since forests admit path-distance decompositions with small
bags (in fact, each bag can be taken to have at most 2 vertices), we have

PDW(G′) ≤ 2.

Reintroducing the vertices in S into the decomposition increases the size of each bag by at most
k. Hence, the path-distance-width of G satisfies

PDW(G) ≤ PDW(G′) + k ≤ 2 + k.

Since k is fixed by the boundedness of the FVS, it follows that PDW(G) is bounded.

Example 1 (Counterexample for Theorem 1 (Part 1)) Consider the graph G constructed as fol-
lows. Let G contain a complete bipartite subgraph Km,m with bipartition sets A and B (where
|A| = |B| = m). To ensure connectivity, attach additional paths that join the vertices of Km,m

into a single connected graph. One can design a path-distance decomposition for G with small
bags (for instance, with width at most 2) by ordering the edges of the attached paths appropri-
ately. However, because Km,m contains many cycles, any feedback vertex set must remove at
least m vertices (for example, by deleting one of the bipartition sets entirely). Thus, even though
PDW(G) is bounded by a constant, the size of the minimum feedback vertex set FVS(G) is at
least m and can be made arbitrarily large by increasing m.

Example 2 (Example for Theorem 1 (Part 2)) Consider the graph G formed by taking a cycle
C5 and then removing one vertex to obtain a tree, and afterward reintroducing that vertex along
with its incident edges to recreate the cycle. In this graph, the minimal feedback vertex set
consists of a single vertex (removing that vertex breaks the cycle), so FVS(G) = 1. Since
the acyclic graph G − {v} (a tree) has a path-distance decomposition with width at most 2,
reintroducing one vertex increases the bag sizes by at most 1. Hence, PDW(G) ≤ 2 + 1 = 3.
This demonstrates that if G has a bounded feedback vertex set, then its path-distance-width is
also bounded.

Theorem 2 If a graph G has bounded maximum matching-width, that is, if MM-width(G) ≤ k
for some constant k, then the path-distance-width of G is also bounded.

Proof. Assume that MM-width(G) ≤ k. By definition, there exists a maximum matching de-
composition (T, ∂) of G such that for every edge e ∈ E(T ), the corresponding bipartite sub-
graph Be (induced by the partition of vertices defined by removing e from T ) has a maximum
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matching of size at most k.

For each edge e ∈ E(T ), let D1 and D2 be the vertex sets corresponding to the two
connected components of T \ {e}. The set of vertices incident to edges crossing between D1

and D2 forms a separator Se in G. By Kőnig’s theorem, the size of a minimum vertex cover
of the bipartite graph Be equals its maximum matching size, so there exists a vertex cover of
Be of size at most k. Even if Se is not minimal, a straightforward argument shows that we can
assume

|Se| ≤ 2k.

We now construct a path-distance decomposition of G by converting the tree T into a
path (for example, by performing a depth-first traversal of T to obtain a linear ordering of the
separators). In this decomposition, each bag Xi is associated with one of the separators Se, and
thus its size is bounded by 2k. Consequently, the path-distance-width of G satisfies

PDW(G) ≤ 2k.

This completes the proof that bounded maximum matching-width implies bounded path-distance-
width.

Example 3 (Example for Theorem 2) Consider the path graph P4 with vertex set

V (P4) = {v1, v2, v3, v4}

and edge set
E(P4) = {e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}}.

A maximum matching decomposition of P4 yields a maximum matching size of 1 for every
separator, so MM-width(P4) = 1. By performing a depth-first traversal of the corresponding
decomposition tree, one obtains a path-distance decomposition in which each bag (associated
with a separator) has size at most 2. Thus, PDW(P4) ≤ 2, confirming that bounded maximum
matching-width implies bounded path-distance-width.

3.2. Bounding Linear-width Using Feedback Vertex Set and MM-width

The theorem concerning linear-width, bounded Feedback Vertex Set, and MM-width is as
follows. It bears similarity to the proof of Path-distance-width discussed earlier.

Theorem 3 Let G be a graph. Then:

1. There is no universal function f such that

FVS(G) ≤ f
(
lw(G)

)
holds for every graph G; in other words, having bounded linear-width does not imply
that the size of a minimum feedback vertex set (FVS) is bounded.

2. Conversely, if G has a feedback vertex set S with |S| bounded by a constant, then the
linear-width lw(G) is also bounded by a function of |S|.

Proof. We prove each part in detail.
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(1) Bounded lw(G) does not imply bounded FVS. We claim that there exists a family of
graphs for which the linear-width is bounded by a constant while the size of the minimum
feedback vertex set grows arbitrarily large.

Counterexample: For each integer m ≥ 1, construct a graph Gm as follows. Start with m
disjoint cycles, each being a triangle C3. Note that each triangle admits a linear ordering of its
edges with a small separator (for example, one may obtain lw(C3) ≤ 2). Now, connect these
m triangles in a path-like manner by adding a single edge between one vertex of a triangle and
one vertex of the next triangle. This joining can be done so that the overall linear-width of the
connected graph Gm remains bounded by a constant (say, at most 3) independent of m.

However, in order to break all cycles in Gm, one must remove at least one vertex from
each triangle. Consequently, the size of any feedback vertex set in Gm is at least m. Therefore,
even though lw(Gm) is bounded by a constant, the minimum FVS grows without bound as m
increases. This shows that no function f exists which can bound FVS(G) solely in terms of
lw(G).

(2) Bounded FVS implies bounded lw(G). Assume that S is a feedback vertex set of G with
|S| = k, and let G′ = G − S be the acyclic graph (a forest) obtained by removing S from G.
Since G′ is a forest, it can be decomposed linearly with very small separators. In fact, one may
arrange the edges of G′ in a linear order

(e′1, e
′
2, . . . , e

′
m′)

so that for every index i, the set

S ′
i = { v ∈ V (G′) | v is incident to an edge in both (e′1, . . . , e

′
i) and (e′i+1, . . . , e

′
m′) }

satisfies |S ′
i| ≤ 1. Hence,

lw(G′) ≤ 1.

Now, when the vertices in S are reintroduced to form G, each bag in the linear decompo-
sition of G′ may grow by at most k vertices. Therefore, we obtain

lw(G) ≤ lw(G′) + k ≤ 1 + k.

Since k = |S| is bounded by assumption, it follows that lw(G) is bounded by a function of |S|.
Combining both parts, we conclude that while bounded linear-width does not guarantee a

bound on the size of a feedback vertex set, a bounded feedback vertex set does imply bounded
linear-width.

Example 4 (Counterexample for Theorem 3 (Part 1)) For each integer m ≥ 1, construct the
graph Gm as follows. Start with m disjoint triangles (each triangle is a cycle C3) and then
connect these triangles sequentially by adding a single edge between one vertex of a triangle
and one vertex of the next triangle. Each individual triangle admits a linear decomposition with
a small separator (for example, lw(C3) ≤ 2), and with a careful ordering of the edges the
overall graph Gm can be arranged to have a bounded linear-width (say, at most 3). However,
since each triangle contains a cycle, any feedback vertex set must remove at least one vertex
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per triangle, which means FVS(Gm) ≥ m. Thus, even though lw(Gm) remains bounded by a
constant, the size of the minimum feedback vertex set grows without bound as m increases.

Example 5 (Example for Theorem 3 (Part 2)) Consider the graph G obtained by taking a tree
(which has linear-width 1) and adding one extra edge that creates a single cycle. In this graph,
the minimal feedback vertex set has size 1 (removing that vertex breaks the cycle). Removing
the vertex yields a forest with linear-width 1, and reintroducing the vertex increases the linear-
width by at most 1. Therefore, lw(G) ≤ 1 + 1 = 2, showing that a bounded feedback vertex
set implies bounded linear-width.

Theorem 4 If a graph G has bounded maximum matching-width, that is, if

MM-width(G) ≤ k

for some constant k, then its linear-width is also bounded by a function of k. In particular,

lw(G) ≤ 2k.

Proof. Assume that G has a maximum matching decomposition (T, ∂) such that for every edge
e in the tree T , the associated bipartite subgraph Be (obtained by partitioning G according to
the two connected components of T \ {e}) has a maximum matching of size at most k.

For each such edge e, let the removal of e partition T into two subtrees, which in turn
correspond to two subsets D1 and D2 of vertices in G (as determined by the bijection ∂). By
Kőnig’s theorem, the bipartite graph Be has a vertex cover of size at most k; however, to cover
both endpoints of each edge in a matching, the separator induced by e in G involves at most 2k
vertices.

We now construct a linear ordering of the edges of G based on a depth-first traversal of
the tree T . This traversal yields a linear sequence

(e1, e2, . . . , em)

of the edges of G (via the bijection ∂). For any index i with 1 ≤ i < m, let

Si = { v ∈ V (G) | v is incident to edges in both (e1, . . . , ei) and (ei+1, . . . , em) }

be the separator corresponding to the cut between the prefix and suffix of the ordering. By the
construction, each such separator is associated with a cut in T whose size is bounded by 2k.
Hence,

|Si| ≤ 2k for all i.

Taking the maximum over all i, we conclude that

lw(G) ≤ 2k.

Thus, bounded maximum matching-width implies that the linear-width of G is also bounded
by a function of k.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 8 NO. 1 (2025) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v8i1.24222 44 p-ISSN: 2621-6019 e-ISSN: 2621-6035



Example 6 (Example for Theorem 4) Again, consider the path graph P4 with vertices

V (P4) = {v1, v2, v3, v4}

and edges
E(P4) = {e1, e2, e3}.

A maximum matching decomposition of P4 has MM-width(P4) = 1, as every separator (ob-
tained from the corresponding bipartite subgraphs) has a maximum matching of size at most
1. By converting the decomposition tree into a linear ordering via a depth-first traversal, we
obtain a linear decomposition whose separators have size at most 2. Hence, lw(P4) ≤ 2, which
confirms that bounded maximum matching-width implies bounded linear-width.

IV. Conclusions and Future Research Directions

In this paper, we provided proofs for the upper and lower bounds of certain graph param-
eters. For future research, we aim to investigate the upper and lower bounds of other graph
parameters, such as Tree-Partition-Width and Path-Partition-Width [63, 64, 65, 66].

Additionally, we plan to extend the graph parameters discussed in this paper to hyper-
graphs[67, 68, 69, 70, 71], Bidirected Graphs[72, 73], Mixed Graphs[74, 75], and superhy-
pergraphs[76, 77, 78, 79, 31, 80, 81, 82], exploring their properties and implications in these
broader settings.
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applications. Vol. 131. Cambridge university press, 1998.

[62] Sarbari Mitra and Soumya Bhoumik. “Graceful labeling of triangular extension of com-
plete bipartite graph”. In: Electron. J. Graph Theory Appl. 7 (2019), pp. 11–30. URL:
https://api.semanticscholar.org/CorpusID:145850349.

[63] David R. Wood. “On tree-partition-width”. In: European Journal of Combinatorics 30.5
(2009), pp. 1245–1253.

[64] Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. “On the parameterized complex-
ity of computing tree-partitions”. In: arXiv preprint arXiv:2206.11832 (2022).

[65] Guoli Ding and Bogdan Oporowski. “On tree-partitions of graphs”. In: Discrete Mathe-
matics 149.1–3 (1996), pp. 45–58.

[66] Chun-Hung Liu and David R. Wood. “Quasi-tree-partitions of graphs with an excluded
subgraph”. In: arXiv preprint arXiv:2408.00983 (2024).

[67] Claude Berge. Hypergraphs: combinatorics of finite sets. Vol. 45. Elsevier, 1984.

[68] Alain Bretto. “Hypergraph theory”. In: An introduction. Mathematical Engineering. Cham:
Springer 1 (2013).

[69] Yue Gao et al. “Hypergraph learning: Methods and practices”. In: IEEE Transactions on
Pattern Analysis and Machine Intelligence 44.5 (2020), pp. 2548–2566.

[70] Yifan Feng et al. “Hypergraph neural networks”. In: Proceedings of the AAAI conference
on artificial intelligence. Vol. 33. 01. 2019, pp. 3558–3565.

[71] Song Feng et al. “Hypergraph models of biological networks to identify genes critical to
pathogenic viral response”. In: BMC bioinformatics 22.1 (2021), p. 287.

[72] Nanao Kita. “Bidirected Graphs I: Signed General Kotzig-Lovász Decomposition”. In:
arXiv: Combinatorics (2017). URL: https://api.semanticscholar.org/
CorpusID:119320661.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 8 NO. 1 (2025) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v8i1.24222 49 p-ISSN: 2621-6019 e-ISSN: 2621-6035



[73] Jes’us Arturo Jim’enez Gonz’alez and Andrzej Mr’oz. “Bidirected graphs, integral quadratic
forms and some Diophantine equations”. In: 2023. URL: https://api.semanticscholar.
org/CorpusID:258309617.

[74] Takaaki Fujita. “Extensions of MultiDirected Graphs: Fuzzy, Neutrosophic, Plithogenic,
Soft, Hypergraph, and Superhypergraph Variants”. In: preprint (2025).

[75] Takaaki Fujita and Florentin Smarandache. “Mixed graph in fuzzy, neutrosophic, and
plithogenic graphs”. In: Neutrosophic Sets and Systems 74 (2024), pp. 457–479.

[76] Takaaki Fujita and Florentin Smarandache. “A Concise Study of Some Superhypergraph
Classes”. In: Neutrosophic Sets and Systems 77 (2024), pp. 548–593. URL: https:
//fs.unm.edu/nss8/index.php/111/article/view/5416.

[77] Florentin Smarandache. “n-SuperHyperGraph and Plithogenic n-SuperHyperGraph”. In:
Nidus Idearum 7 (2019), pp. 107–113.

[78] Takaaki Fujita and Florentin Smarandache. Superhypergraph neural networks and plithogenic
graph neural networks: Theoretical foundations. Infinite Study, 2025.

[79] Takaaki Fujita. Advancing Uncertain Combinatorics through Graphization, Hyperiza-
tion, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond. Biblio Pub-
lishing, 2025. ISBN: 978-1-59973-812-3.

[80] Takaaki Fujita. “Superhypertree-length and superhypertree-breadth in superhypergraphs”.
In: Advancing Uncertain Combinatorics through Graphization, Hyperization, and Un-
certainization: Fuzzy, Neutrosophic, Soft, Rough, and Beyond (2025), p. 41.

[81] Takaaki Fujita. “Exploration of Graph Classes and Concepts for SuperHypergraphs and
n-th Power Mathematical Structures”. In: Advancing Uncertain Combinatorics through
Graphization, Hyperization, and Uncertainization: Fuzzy, Neutrosophic, Soft, Rough,
and Beyond 3.4 (), p. 512.

[82] Florentin Smarandache. Extension of HyperGraph to n-SuperHyperGraph and to Plithogenic
n-SuperHyperGraph, and Extension of HyperAlgebra to n-ary (Classical-/Neutro-/Anti-)
HyperAlgebra. Infinite Study, 2020.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 8 NO. 1 (2025) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v8i1.24222 50 p-ISSN: 2621-6019 e-ISSN: 2621-6035




