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Abstract. The study of width parameters and related graph parameters is an active
area of research in graph theory. In this brief paper, we explore the upper and lower
bounds of graph parameters, including path-distance-width, tree-distance-width, tree-
depth, and linear-width. These bounds are crucial for understanding the complexity
and structure of graphs.
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I. INTRODUCTION

Graph theory studies networks of vertices (nodes) and edges, modeling relationships and
structures in both mathematics and real-world systems [1, 2]. In graph theory, graph parameters
quantify structural properties, such as width, depth, and connectivity, which significantly influ-
ence computational complexity and algorithmic performance [3]. The study of graph width
parameters is a well-established area in graph theory, focusing on metrics that measure the
structural complexity of graphs. Parameters such as tree-width [4], path-width [5], and branch-
width [6, 7] are essential for understanding the computational complexity of various problems
[8, 9, 10, 11]. These parameters, as discussed later, have been extensively studied in terms of
their bounds for reasons outlined in subsequent sections.

In this brief paper, we explore the relationships and establish upper and lower bounds on
graph parameters, including path-distance-width, tree-distance-width, tree-depth, and linear-
width. Path-distance-width measures the size of vertex sets in a decomposition along a path,
ensuring graph edge coverage with minimal overlap [12, 13]. Tree-depth represents the min-
imum height of a rooted forest whose closure contains the graph as a subgraph, reflecting
graph hierarchy[14, 15]. Linear-width calculates the maximum number of vertices shared be-
tween consecutive edge partitions in a linear edge ordering of the graph[7]. Understanding
these bounds is essential for comprehending the complexity and structural properties of graphs
(cf. [16, 17]).

Our contributions are as follows:

1. Establishing Relationships Between Graph Parameters:

• We prove that if a graph G has bounded path-distance-width k, then it also has
bounded linear-width lw(G) ≤ k (Theorem 1).

• We demonstrate that if a graph G has bounded tree-depth h, then it has bounded
path-distance-width PDW(G) ≤ h, linear-width lw(G) ≤ h, and tree-distance-
width TDW(G) ≤ h (Theorems 2, 4, and corresponding results).
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2. Implications for Algorithmic Complexity and Graph Decomposition:

• Our results have significant implications for algorithm design and graph decom-
position strategies. Specifically, they indicate that algorithms optimized for graphs
with bounded tree-depth or path-distance-width can be applied more broadly under
certain conditions.

Note that the importance of establishing these bounds lies in several key areas:

1. Algorithmic Complexity:

• Upper Bounds help determine whether problems can be solved efficiently. If a
graph’s width parameter has a low upper bound, algorithms that are generally diffi-
cult on arbitrary graphs may become more tractable.

• Lower Bounds indicate the intrinsic difficulty of problems. A high lower bound
suggests that certain computational problems will remain challenging, regardless
of algorithmic optimizations.

2. Graph Decomposition:

• Upper Bounds enable efficient graph decomposition into simpler structures like
trees or paths, which are easier to manage computationally.

• Lower Bounds highlight the minimum complexity required for any decomposition,
reflecting inherent structural challenges within the graph.

3. Graph Class Comparison:

• Comparing upper and lower bounds across different graph classes reveals structural
differences. This can guide the development of specialized algorithms tailored to
specific classes of graphs.

4. Optimization and Approximation:

• Upper Bounds can lead to the development of efficient approximation algorithms
by limiting the scope of computationally intensive tasks.

• Lower Bounds demonstrate the difficulty of achieving near-optimal solutions, in-
forming researchers about the potential need for heuristic or approximate methods.

II. PRELIMINARIES AND DEFINITIONS

This section presents an overview of the fundamental definitions and notations used through-
out the paper. Additionally, several examples are provided.

2.1. Simple Notation in this paper

Consider a simple undirected graph G, where the vertex set is denoted by V (G) and the
edge set by E(G). For simplicity, we will often write G = (V,E), with V representing the
vertices and E the edges. If X is a subset of the vertices V (G) (or the edges E(G)), then
Xc represents the complement set V (G) \ X (or E(G) \ X , respectively), which includes all
elements not in X . For other basic concepts in graph theory, please refer to [18].
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2.2. Graph width parameter

In this paper, we consider about follwoing definitions of graph parameters.

Definition 1 [7] A branch decomposition of a graph G = (V,E) is a pair (T, σ), where T is a
tree with vertices of degree at most 3, and σ is a bijection from the set of leaves of T to E. The
width of an edge e in T is the number of vertices v in V such that there exist leaves t1 and t2
in T that are in different components of T [E(T ) \ {e}] with σ(t1) and σ(t2) both incident to v.
The width of (T, σ) is the maximum width over all edges of T . The branch width, bw(G), of a
graph G is the minimum width over all its branch decompositions. If |E(G)| ≤ 1, the branch
width of G is zero by definition.

To define linear width, let G = (V,E) be a graph with |E| = m. The linear width, lw(G),
of G is defined as the smallest integer k ≥ 0 such that the edges of G can be arranged in a
linear ordering (e1, . . . , em) in such a way that for every i = 1, . . . ,m− 1, there are at most k
vertices incident to edges that belong both to (e1, . . . , ei) and to (ei+1, . . . , em). Linear orders
over the edges of a graph and branch decompositions have a relationship that resembles the
one between tree decompositions and path decompositions.

Example 1 Consider the cycle graph G = (V,E) with vertices V = {v1, v2, v3, v4} and edges
E = {e1, e2, e3, e4}, where:

• e1 = {v1, v2}

• e2 = {v2, v3}

• e3 = {v3, v4}

• e4 = {v4, v1}

We construct a branch decomposition (T, σ):

• Tree T is a binary tree with four leaves corresponding to the edges of G.

• Bijection σ maps leaves to edges:

– σ(t1) = e1

– σ(t2) = e2

– σ(t3) = e3

– σ(t4) = e4

The width of each edge in T is the number of vertices shared between the two parts when
the edge is removed. In this example, the maximum width is 2, so the branch width of G is 2.

Definition 2 [12, 13] A tree distance decomposition of a graph G = (V,E) is a triple ({Xi |
i ∈ I}, T = (I, F ), r), where

•
⋃

i∈I Xi = V (G) and, for all i ̸= j, Xi ∩Xj = ∅,
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• For each v ∈ V , if v ∈ Xi, then dG(Xr, v) = dT (r, i),

• For each edge {v, w} ∈ E, there exist i, j ∈ I such that v ∈ Xi, w ∈ Xj , and either
i = j or {i, j} ∈ F ,

• r ∈ I .

The node r is called the root of the tree T , and Xr is called the root set of the tree distance
decomposition. The width of a tree distance decomposition ({Xi | i ∈ I}, T, r) is equal to
maxi∈I |Xi|. The tree distance width of a graph G is the minimum width over all possible tree
distance decompositions of G. The corresponding graph parameter is denoted by TDW.

A rooted tree distance decomposition of a graph G = (V,E) is a tree distance decompo-
sition ({Xi | i ∈ I}, T = (I, F ), r) of G in which |Xr| = 1. The rooted tree distance width of a
graph G is the minimum width over all rooted tree distance decompositions. The corresponding
graph parameter is denoted by RTDW.

The (rooted) path distance decomposition and the parameter of (rooted) path distance
width of a graph G = (V,E) are defined similarly to the (rooted) tree distance decomposi-
tion and (rooted) tree distance width, but now the tree T is required to be a path, and the
root has degree one in T . For simplicity, we denote a (rooted) path distance decomposition as
(X1, X2, . . . , Xt), where X1 is the root set of the decomposition. We denote the corresponding
graph parameters by PDW and RPDW, respectively.

Example 2 Consider the path graph G′ = (V ′, E ′) with V ′ = {v1, v2, v3, v4} and edges:

• {v1, v2}

• {v2, v3}

• {v3, v4}

We construct a tree-distance decomposition ({Xi}, T, r):

• Tree T is a rooted tree with nodes I = {i1, i2, i3, i4} connected linearly.

• Root r = i1.

• Assign vertex sets:

– Xi1 = {v1}
– Xi2 = {v2}
– Xi3 = {v3}
– Xi4 = {v4}

This decomposition satisfies the conditions of a tree-distance decomposition with width 1.

Example 3 Using the same graph G′, we construct a path-distance decomposition:
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• Path T consists of nodes i1, i2, i3, i4 connected sequentially.

• Root r = i1.

• Assign vertex sets:

– Xi1 = {v1}
– Xi2 = {v2}
– Xi3 = {v3}
– Xi4 = {v4}

This satisfies the conditions of a path-distance decomposition with width 1.

Definition 3 [14, 15] A rooted forest is a disjoint union of rooted trees. The height of a vertex
v in a rooted forest F is the number of vertices in the path from the root (of the tree to which
v belongs) to v and is denoted by h(v). The height of F is the maximum height of the vertices
in F . Let u and v be vertices of F . The vertex u is an ancestor of v in F if u belongs to the
path connecting v to the root of the tree in F to which v belongs. The closure cl(F ) of a rooted
forest F is the graph with vertex set V (F ) and edge set {{u, v} | u is an ancestor of v in F}.
A rooted forest F defines a partial order on its set of vertices: u ≤F v if u is an ancestor of v
in F . The comparability graph of this partial order is clearly cl(F ).

The tree-depth td(G) of a graph G is the minimum height of a rooted forest F such that
the closure cl(F ) contains G as a subgraph.

Example 4 Consider the graph G = (V,E) where:

• V = {v1, v2, v3}

• E = {{v1, v2}, {v2, v3}}

This is a path graph on three vertices.

Our goal is to find the minimum height of a rooted forest F such that the closure cl(F )
contains G as a subgraph.

Attempt with Height 1 At height 1, each vertex is a root of its own tree:

• Tree 1: root v1

• Tree 2: root v2

• Tree 3: root v3

In this forest:

• There are no ancestor-descendant relationships.

• The closure cl(F ) has no edges.

Since cl(F ) has no edges, it does not contain G.
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Attempt with Height 2 Construct a rooted forest F with height 2:

• Tree:

– Root v2
– Children v1 and v3

In this forest:

• v1 and v3 are descendants of v2.

• Ancestor-descendant pairs are (v2, v1) and (v2, v3).

The closure cl(F ) includes edges:

• {v2, v1} and {v2, v3} (since v2 is an ancestor of both v1 and v3).

Edges in G:

• {v1, v2} is in cl(F ).

• {v2, v3} is in cl(F ).

Thus, cl(F ) contains G as a subgraph.

The minimal height achieved is 2. Therefore, the tree-depth of G is:

td(G) = 2

III. MAIN RESULT OF THIS PAPER

In this section, we discuss the relationships between various graph width parameters,
specifically focusing on upper and lower bounds.

Theorem 1 If a graph G has bounded path-distance-width, then it has bounded linear-width.

Proof. Given that G has path-distance-width k, there exists a path-distance decomposition
(X1, X2, . . . , Xt) where each Xi ⊆ V (G), Xi ∩ Xj = ∅ for i ̸= j, and |Xi| ≤ k for all
i.

We construct a linear ordering of the edges of G as follows:

• For each i = 1 to t− 1:

– List all edges with both endpoints in Xi.

– List all edges between Xi and Xi+1.

• Finally, list all edges with both endpoints in Xt.
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Let E(G) = {e1, e2, . . . , em} be this ordered list of edges. For each 1 ≤ i < m, consider
the partition of E(G) into Pi = {e1, e2, . . . , ei} and Si = {ei+1, ei+2, . . . , em}.

Define Vprefix = {v ∈ V (G) | v is incident to an edge in Pi} and Vsuffix = {v ∈ V (G) |
v is incident to an edge in Si}.

The linear-width lw(G) is the maximum size of Vprefix ∩ Vsuffix over all i:

lw(G) = max
1≤i<m

|Vprefix ∩ Vsuffix|.

At each partition point between edges in our ordering, the overlap Vprefix ∩ Vsuffix consists
of vertices that are in Xj where Xj is the boundary between the prefix and the suffix.

Since each Xj has at most k vertices, we have:

|Vprefix ∩ Vsuffix| ≤ k.

Therefore, lw(G) ≤ k, which completes the proof.

Theorem 2 If a graph G has bounded tree-depth h, then it has bounded path-distance-width.

Proof. Given that G has tree-depth h, there exists a rooted forest F of height h such that the
closure cl(F ) contains G as a subgraph.

We can construct a path-distance decomposition of G with width at most h as follows:

• Perform a depth-first traversal of the rooted forest F , listing the vertices in the order they
are first visited. Let this ordering be v1, v2, . . . , vn.

• Partition the vertices into sets Xi, where each Xi consists of a single vertex vi. Since each
Xi has size 1 ≤ h, the width of the decomposition is at most h.

• The path T in the decomposition corresponds to the sequence X1, X2, . . . , Xn.

For each edge {u, v} ∈ E(G):

• Since cl(F ) contains G, u and v are related in F as ancestor and descendant or share a
common ancestor.

• Therefore, the distance between u and v in G corresponds to their positions in the traver-
sal, and they will either be in the same Xi or in consecutive ones.

This satisfies the conditions of a path-distance decomposition. Thus, PDW(G) ≤ h.

Example 1 (Example of Theorem 2) Consider the star graph Sn with center vertex v0 connected
to n leaves v1, v2, . . . , vn.

We can construct a rooted tree F with root v0 and leaves v1, v2, . . . , vn. The height of F is
h = 2, so td(Sn) = 2.
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Perform a depth-first traversal of F , obtaining the ordering:

v0, v1, v2, . . . , vn.

Create the path-distance decomposition:

X1 = {v0}, X2 = {v1}, X3 = {v2}, . . . , Xn+1 = {vn}.

Each Xi has size 1 ≤ h.

Since PDW(Sn) ≤ h = 2, this example demonstrates Theorem 2.

Theorem 3 It is not possible to directly determine the tree-depth of a graph solely from its
path-distance-width k.

Proof. We provide two graphs with the same path-distance-width but different tree-depths.

Example 1: Path Graph Pn

• Pn is a path with n vertices.

• Path-distance-width PDW(Pn) = 1, since the graph itself is a path.

• Tree-depth td(Pn) = n, because any rooted tree containing Pn as a subgraph must have
height at least n.

Example 2: Star Graph Sn

• Sn is a star with n+ 1 vertices (one central vertex connected to n leaves).

• Path-distance-width PDW(Sn) = 1, since we can arrange the central vertex and leaves
linearly.

• Tree-depth td(Sn) = 2, as the minimal rooted tree has height 2.

Both graphs have PDW = 1, but td(Pn) = n and td(Sn) = 2. This shows that tree-depth
cannot be directly determined from path-distance-width.

Theorem 4 If a graph G has bounded tree-depth, then it has bounded linear-width.

Proof. From Theorems 1 and 2, we have:

• td(G) = h =⇒ PDW(G) ≤ h (from Theorem 2).

• PDW(G) ≤ h =⇒ lw(G) ≤ h (from Theorem 1).

Therefore, td(G) = h =⇒ lw(G) ≤ h.

Example 2 (Example of theorem 4) Using the star graph Sn from the previous example:
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Tree-Depth As before, td(Sn) = 2.

Linear Ordering of Edges We list the edges connecting the center to the leaves:

e1 = {v0, v1}, e2 = {v0, v2}, . . . , en = {v0, vn}.

Calculating Linear-Width At any partition between ei and ei+1:

• Vprefix includes v0 and v1, . . . , vi.

• Vsuffix includes v0 and vi+1, . . . , vn.

• Intersection Vprefix ∩ Vsuffix = {v0}.

Thus, |Vprefix ∩ Vsuffix| = 1 ≤ h.

Since lw(Sn) ≤ td(Sn) = 2, this example supports Theorem 4.

Theorem 5 If a graph G has bounded tree-depth, then it has bounded tree-distance-width.

Proof. Using the rooted forest F of height h associated with G’s tree-depth, we construct a
tree-distance decomposition.

• Let T be the tree structure of F .

• For each vertex v ∈ V (G), assign it to the set Xi where i corresponds to its depth dT (r, v)
in T .

• Since the maximum depth is h, the number of different sets Xi is at most h.

Edges in G are covered because cl(F ) contains G, and the distance conditions are satisfied
by construction.

The width of this tree-distance decomposition is the maximum size of any Xi, which is at
most h. Therefore, TDW(G) ≤ h.

Example 3 (Example of theorem 5) Again, consider the star graph Sn:

Tree-Depth td(Sn) = 2.

Tree-Distance Decomposition We construct a tree T identical to the rooted tree used for
tree-depth, with root v0 and children v1, . . . , vn.

Define X1 = {v0} and X2 = {v1, v2, . . . , vn}.
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Width Calculation The maximum size of Xi is:

|X2| = n.

However, to ensure the width is bounded by h, we can adjust the decomposition:

Assign each leaf to its own set:

X1 = {v0}, X2 = {v1}, X3 = {v2}, . . . , Xn+1 = {vn}.

The tree T now has a path structure.

Width Calculation Each Xi has size 1 ≤ h.

Thus, TDW(Sn) ≤ h = 2, illustrating the theorem.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

We showed the proof of the upper and lower bounds on graph parameters, including path-
distance-width, tree-distance-width, tree-depth, and linear-width. In the future, we consider
about upper bound and lower bound of other graph parameters such as Tree-partition-width
and Path-Partition-width.
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[14] J. Nešetřil and P. O. De Mendez, “Tree-depth, subgraph coloring and homomorphism
bounds,” European Journal of Combinatorics, vol. 27, no. 6, pp. 1022–1041, 2006.

[15] M. DeVos, O.-j. Kwon, and S.-i. Oum, “Branch-depth: Generalizing tree-depth of graphs,”
European Journal of Combinatorics, vol. 90, p. 103186, 2020.

[16] R. Sasak, “Comparing 17 graph parameters,” Master’s thesis, The University of Bergen,
2010.

[17] D. J. Harvey and D. R. Wood, “Parameters tied to treewidth,” Journal of Graph Theory,
vol. 84, no. 4, pp. 364–385, 2017.

[18] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall Upper Saddle River,
2001.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 7 NO. 2 (NOV 2024) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v7i2.24214 148 p-ISSN: 2621-6019 e-ISSN: 2621-6035




