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Abstract. The word rotund comes from Latin word "rotundus" implying wheel-shaped or 

round (from rota wheel). Rotundity is the roundness of a 3-dimensional object. Some of the 

properties of rotundity include: UR-Uniformly Rotund, LUR-Locally Uniformly Rotund, 

MLUR-Midpoint Locally Uniformly Rotund, WUR-Weakly Uniformly Rotund, URED-

Uniformly Rotund in Every Direction, HR- Highly Rotund, WLUR-Weakly Locally Uniformly 

Rotund and URWC-Uniformly Rotund in Weakly Compact sets of directions. Problems on 

Rotundity properties are still open. Smith gave a summary chart on rotundity of norms in 

Banach spaces. The chart left an open question whether or not a Highly Rotund norm(HR) 

implies Uniformly Rotund norm on Every Direction(URED). It is not clear whether if a Banach 

space has a Highly Rotund(HR) norm it follows that it has and equivalently URED. In this 

paper, we investigated the relationship between a Highly Rotund norm(HR) and a Uniformly 

Rotund norm in Every Direction(URED) on a Freche’t Space. The result shows that both 

Highly Rotund norm and Uniformly Rotund norm on Every Direction(URED) exist in Freche’t 

spaces. The implication of this result is that rotundity properties can be extended within spaces. 

This research work is very important since rotundity properties are strongly applicable in many 

branches of mathematics. 
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I.   INTRODUCTION 

A rotunda is a circular building with a dome over it. The rotundity or roundness of its structure 

is what gives it its name. The study of rotundity of the unit ball in Banach space has been of 

interest to many mathematicians. Any 3-dimensional object that has a roundness property to it 

can be described in terms of its rotundity. Some of the properties of rotundity include: Uniform 

Rotund(UR), Locally Uniformly Rotund(LUR), Midpoint Locally Uniformly Rotund(MLUR), 

Weakly Uniformly Rotund(WUR), Uniformly Rotund in Every Direction(URED), Highly 

Rotund(HR), Weakly Locally Uniformly Rotund(WLUR) and Uniformly Rotund in Weakly 

Compact sets of directions(URWC) among others. In 1936, Clarckson [1] introduced the 

stronger notion of uniform rotundity of the norm in a Banach space. He proved that for p > 1, 

the space 𝑳𝒑and 𝒍𝒑 are uniformly rotund. According to Smith in [2], a Banach space B is 

uniformly rotund in weakly compact sets of directions(URWC) if whenever Z is in B and {𝒙𝒏} 

and {𝒚𝒏} are sequences in B such that ∥ 𝒙𝒏 ∥→ 1, ∥ 𝒚𝒏 ∥→ 1, ∥ 𝒙𝒏 + 𝒚𝒏 ∥→ 2 and 𝒙𝒏− 𝒚𝒏 → 

z weakly, then z = 0. Garkavi in [3] brought the idea of uniformly rotund in every direction. A 

Banach space B is uniformly rotund in every direction(URED) if whenever non zero z is in B 

and {𝒙𝒏} and {𝒚𝒏} are sequences in B such that ∥ 𝒙𝒏∥→ 1, ∥ 𝒚𝒏 ∥→ 1, ∥ 𝒙𝒏 + 𝒚𝒏∥→ 2 and 
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𝒙𝒏− 𝒚𝒏 = 𝜶𝒏z then 𝜶𝒏→ 0. It is well known that among the many kinds of rotundities of Banach 

spaces, local uniform rotundity is the most important one. One reason is that this kind of 

rotundity ensures the fixed point property [4]. Jim Ming in [4] gave criteria for local uniform 

rotundity and weak local uniform rotundity of Musielak-Orlicz sequence spaces equipped with 

the Luxemburg norm. Criteria for locally uniform rotundity of Orlicz space have been obtained 

in [5, 6], locally uniform rotundity of Musielak-Orlicz space was discussed also and the result 

plus proof are similar to those of Orlicz space [7].  

In this paper, we investigated the relationship between a Highly Rotund norm(HR) and a 

Uniformly Rotund norm in Every Direction(URED) on a Freche’t Space. 

II.  PRELIMINARIES 

In this section, we give the fundamental concepts underlying this research that are very 

important in understanding Highly Rotund Norm and Uniformly Rotund Norm in Every 

Direction on a Freche’t space. 
 

Definition 1 [3] A Banach space B is uniformly rotund in every direction(URED) if whenever 

non zero z is in B and {xn} and yn are sequences in B such that ∥xn∥ → 1, ∥yn∥ → 1, ∥xn + yn∥ 

→ 2, and xn − yn = αn z, then αn → 0. 

Definition 2 [8, Definition 1.1] A Banach space (X,∥.∥) is Rotund(R) if given x , y ∈ 𝑆𝑋 with x 

≠ y, then ‖
𝑥+𝑦

2
‖ < 1. 

Definition 3  [9] A Banach space B has property H(B) if whenever x is in B and {xn} is a 

sequence in B such that ∥xn∥ → ∥x∥ and xn → x weakly, then xn → x. If B ∈ H and R, write 

B is Highly Rotund. 

Definition 4. [13, Definition 1.0] Let F denote either the field of R or C. A norm on a 

real or complex vector space X is a real-valued function on X whose value at an x ∈ X 

is denoted by ∥ 𝑥 ∥ (read as norm of x) and which has the properties: 

(i) ∥ 𝑥 ∥≥  0 ∀𝑥 ∈  𝑋 

(ii) ∥ 𝑥 ∥=  0 ⇔  𝑥 =  0 

(iii) ∥ 𝛼𝑥 ∥= | 𝛼 | ∥ 𝑥 ∥ 

(iv) ∥ 𝑥 + 𝑦 ∥≤ ∥ 𝑥 ∥ +∥ 𝑦 ∥  (Triangular inequality). 

Definition 5. [14, Definition 1.5] A Fre’chet space ((F) for short) is a locally convex 

topological vector space. Trivial example of a Fre’chet space is a Banach space. Every 

Banach space (in particular, lp  ∀ 1 ≤ p ≤ ∞) is a Fre’chet space. 

As part of the preliminaries, the following theorems, some stated without proof were 

important: 
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Theorem 1 [10, Theorem 7.2] Any uniformly convex Banach space is reflexive. 

Proof. Assume that the norm of X is uniformly convex. Then the dual norm of X⋆ is 

uniformly Frechet differentiable, therefore X⋆ is reflexive thus X is reflexive.  

Theorem 2 [10, Theorem 6.2] Any space X with a Frechet differentiable norm which has 

a Gateaux defferentiable dual norm admits an equivalent LUR norm. 

Theorem 3 [11, Theorem 4.1] The space c(Tˆ
0)⋆ admits an equivalent LUR norm but c(Tˆ

0) 

does not admit an equivalent R norm. 

Proof. Since T0 is scattered, Tˆ
0 is also scattered. Therefore c(Tˆ

0)⋆ is isometrically 

isomorphic to l1(Γ) for some Γ [11] and consequently admits an equivalent LUR 

norm[12]. c0(T0) is closed subspace of c(Tˆ
0). It is proved in [12] that c0(T0) does not 

admit an equivalent R norm. Hence c(Tˆ
0) does not admit an equivalent R. 

III. RESULT AND DISCUSSION 

In this section we presented  the results and discussions on the research. 

Theorem 2.0. Let (𝐸, ∥. ∥𝐹) be a Fre’chet space. Then the norm ∥. ∥𝐹 is Highly rotund. 

Proof. From the hypothesis, ∥. ∥𝐹 is Highly rotund. It suffices to show that ∥. ∥𝐸 is rotund. For 

(𝑥1
1, 𝑥2

2, … ) in 𝐸, let 𝑥1 = (0, 𝑥2, … ) and define the equivalent norm 

        ∥ 𝑥 ∥𝐹= |𝑥1| +∥ 𝑥1 ∥2                                                        (1) 

Let {𝛼𝑛} be a sequence of positive real numbers decreasing to zero and define the continuous 

linear mapping 𝑇: 𝐸 → 𝐸 by  

𝑇(𝑥1, 𝑥2, … ) = (𝛼2𝑥2, 𝛼3𝑥3, … ∀𝛼 ∈ ℝ, 𝑛 ∈ ℕ)                     (2)  

For 𝑥 ∈ 𝐸, define 

      ∥ 𝑥 ∥𝐹=  (∥ 𝑥 ∥𝐹
2 +∥ 𝑇𝑥 ∥2

2 )
1

2                                                       (3)        

Then to show that ∥. ∥𝐹 is rotund, let 𝑥 and {𝑥𝑛} be given such that ∥ 𝑥𝑛 ∥𝐹⟶∥ 𝑥 ∥𝐹= 1 and 

𝑥𝑛 ⟶ 𝑥 weakly. In this case, we may assume that ∥ 𝑥𝑛 ∥𝐹=∥ 𝑥 ∥𝐹= 1; otherwise we normalize 

𝑥𝑛 and  𝑥. Thus  

|𝑥𝑛
1| +∥ 𝑥𝑛

1 ∥2= |𝑥1| +∥ 𝑥1 ∥2  ∀𝑛 ∈ ℕ                                                (4)             

Since 𝑥𝑛 ⟶ 𝑥 weakly, it follows that 𝑥𝑛
1 ⟶ 𝑥 and hence ∥ 𝑥𝑛

1 ∥2⟶∥ 𝑥1 ∥2 and 𝑥𝑛
1 ⟶ 𝑥1 

weakly. Since ∥. ∥2 is rotund, it follows that 𝑥𝑛
1 ⟶ 𝑥1 and hence 𝑥𝑛

1 ⟶ 𝑥 implying a higly 

rotund norm in a Fre’chet space 𝐹  from Eq. (4) 

 

Theorem 2.1. Let (𝐸, ∥. ∥) be any separable Fre’chet space and (𝐸∗, ∥. ∥)be its associated 

separable dual Fre’chet space. Then E admits an equivalently Highly Rotund and Uniformly 

Rotund norm in Every Direction. 

Proof. From the hypothesis and supposing that (𝑒𝑖)𝑖=1
∞  is dense in 𝑆(𝐸) and (𝑓𝑖)𝑖=1

∞  be dense 

in 𝑆(𝐸∗). Given 𝑖 ∈ 𝐼 ⊆ ℕ, put 𝐹𝑖 = 𝑠𝑝𝑎𝑛 {𝑓1, 𝑓2, … , 𝑓𝑖}. We define a norm | ∥. ∥ | on 𝐸∗ by  

| ∥ 𝑓 ∥ |2 =∥ 𝑓 ∥∗2+ ∑ 2−𝑖𝑑𝑖𝑠𝑡(𝑓, 𝐹𝑖)2 +

∞

𝑖=1

∑ 2−𝑖𝑓2(𝑒𝑖)

∞

𝑖=1

      (5) 
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Then | ∥. ∥ | is a 𝑤𝑒𝑎𝑘∗ lower semicontinous function on 𝐸∗ equivalent with ∥. ∥∗streched from

∥. ∥. hence | ∥. ∥ | is the dual of a norm |. | equivalent with ∥. ∥ which is highly rotund(HR) and 

also it is URED in both  (𝐸, ∥. ∥)  and  (𝐸∗, ∥. ∥)

IV. CONCLUSIONS

Based on the results and discussion, we conclude that a Fre’chet space admits both Highly 

Rotund norm and Uniformly Rotund Norm in Every Direction. we investigated whether a 

Highly Rotund norm implies Uniformly Rotund norm in Every Direction on a Fre’chet space. 

It is shown that a Fre’chet space admits both Highly Rotund norm and Uniformly Rotund Norm 

in Every Direction. 
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