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Abstract. The Hidden Product of Polynomial Composition (HPPC) Digital Signature
is multivariate-based cryptography using an HFE trapdoor. The HPPC scheme provides
the technique for choosing the HFE central map. Its technique utilizes the product
of the composition of two linearized polynomials. In this research, we proposed the
modification of the HPPC scheme. We modify the HPPC scheme such that the scheme
is based on HFEv. The linearized polynomial with vinegar variables will be chosen for
constructing the central map. In our modification version, the public key becomes a
system of polynomials of degree 4 and a map from n+ v to n-dimension vector space.
For a final remark, Despite an increase in the polynomial degree, HPPCv maintains a
computational cost similar to HPPC.
Keywords: PQC, HFEv, Finite Field, Matrix, MPKC

I. INTRODUCTION

Cryptography, which is widely used in real life for key encapsulation mechanisms, is based
on RSA and ECC. These two systems use factorization problems and discrete logarithm prob-
lems respectively. In 1994, Peter Shor proposed an algorithm for quantum computers that could
find efficiently the order of elements in [1]. Since Shor’s Algorithm was proposed, the factor-
ization and discrete logarithm problem would be solved effectively if the quantum computer
existed. Therefore, in 2016, NIST started a competition to find a cryptosystem that remains se-
cure even if a quantum computer is formed, called Post-Quantum Cryptography (PQC). There
are five mathematical bases for PQC, i.e. lattice-based, code-based, hash-based, isogeny-based,
and multivariate-based. In 2022, NIST announced the new cryptosystems for Key Encapsula-
tion Mechanisms (KEM) and Digital Signature Algorithms (DSA) [2]. The new cryptosystems
are ML-KEM [3] and ML-DSA [4] which are based on a lattice, SLH-DSA [5] which is based
on hash, and a few alternative systems which are based on code. NIST continues the compe-
tition for DSA. They want to find an alternative system with other mathematical bases. One
of them is multivariate-based cryptography, those are some digital signature schemes, such as
3WISE [6], DME-Sign [7], MAYO [8], PROV [9], QR-UOV [10], and SNOVA [11]. Among
the proposed multivariate-based cryptography, Rodriguez introduces HPPC [12], which serves
as the foundation of our modification.

Multivariate-based Cryptography was first introduced by Matsumoto and Imai in [13]. The
idea is to hide a multivariate quadratic equation between two transformations. Patarin analyzes
this scheme and the scheme is broken by using Groebner’s bases in [14]. Then, he introduces
the Hidden Field Equation (HFE), a trapdoor function for multivariate-based cryptography. A
few years later, a new trapdoor function was introduced by Kipnis, Patarin, and Goubin in [15],
called Unbalanced Oil and Vinegar (UOV). They also modify the HFE trapdoor function with
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vinegar variables (HFEv). The HFEv trapdoor function is more secure than the HFE trapdoor
function because of the vinegar variables which add perturbation to the central map stated by
Wolf in his PhD thesis [16]. In 2016, Casanova, Faugere, Macario-Rat, Patarin, Perret, and
Ryckeghem proposed GeMSS, the digital signature scheme that is based on the HFEv trapdoor
function [17]. The HPPC uses vinegar variables but not in the central map and we find out that
the HPPC scheme is more like HFE trapdoor than HFEv. In this paper, we present a modifica-
tion of the HPPC scheme using vinegar variables. We use the idea of the multivariate quadratic
problem modification with vinegar variables.

This paper is organized as follows. Section II. provides the necessary background on rep-
resenting an element of the finite field to its matrix representation and multiplying two vector
representations of the finite field elements using a tensor product. In Section III., the summary
of the HPPC scheme will be presented. Section IV. presents the modification of the HPPC
scheme with vinegar variables. Section V. contains some conclusions.

II. Prelimineries

In this section, we will summarize some background used in our paper. The finite field is
widely used in our calculation. Based on [12], the computation will be computed in all rep-
resentations of a finite field, i.e. polynomial, vector, and matrix. The tensor product is used to
compute the multiplication of vector representation. It is also used to compute the matrix rep-
resentation of the multiplication of two polynomials. The last is the background of multivariate
public key cryptography (MPKC).

2.1. Finite Field

In this paper, the finite field of q elements and characteristic p will be denoted by Fq with
q = pl for some l ∈ Z. The n-th degree extension field of a finite field Fq will be denoted by
Fqn . We will write the elements of the extension field Fqn with capital letters, e.g. X, Y ∈ Fqn .
Vectors will be written using bold letters, e.g. v, and matrices using capital and bold letters, e.g.
M.

Finite fields are already well known for their polynomial representation and the corre-
sponding vector [18, 19, 20]. Given irreducible polynomial f(x) of degree n over Fq and let
θ be the root of f(x), then the vector space over Fq with the set {1, θ, . . . , θn−1} as its bases
are the extension field of Fq and the coordinate vector of elements in Fqn as its vector repre-
sentation. In this paper, We use a matrix representation of a finite field. Matrix representation
requires the companion matrix of the minimal polynomial f(x), denoted by Cf(x). The com-
panion matrix Cf(x) of minimal polynomial f(x) can be the root of the minimal polynomial
f(x). So, the root θ in the bases can be replaced by the companion matrix of f(x) [19].

Theorem 1 [19] Let Fqn be the extension field over Fq and Cf(x) be the companion matrix of
irreducible polynomial f(x). There exist n× n matrix representation of each elements of Fqn .
Furthermore, if g ∈ Fn

q is the vector representation of element G ∈ Fqn , then

G = (C0
f(x)g, . . . ,Cn−1

f(x)g)

is the matrix representation of G.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 8 NO. 1 (2025) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v8i1.23279 89 p-ISSN: 2621-6019 e-ISSN: 2621-6035



Proof. Let θ be a root of minimal polynomial f(x). Consider the element G ∈ Fqn in the form
G = g0 + g1θ + · · ·+ gn−1θ

n−1 and its vector representation is g = (g0, . . . , gn−1)
T . We know

that matrix Cf(x) is a root of minimal polynomial f(x). So we get the matrix representation of
G which is G = g0C0

f(x) + g1Cf(x) + · · · + gn−1Cn−1
f(x). Furthermore, for each vector standard

ei, we get that

Gei =
(
g0C0

f(x) + · · ·+ gn−1Cn−1
f(x)

)
ei

=
(

C0
f(x)ei, . . . ,Cn−1

f(x)ei
)

g

=
(

Ci−1
f(x)e1, . . . ,Ci−1

f(x)en
)

g

= Ci−1
f(x)g

for all 1 ≤ i ≤ n. Therefore, we can compute the matrix representation of G as G =

(Ge1, . . . ,Gen) =
(

C0
f(x)g, . . . ,Cn−1

f(x g
)
.

By Theorem 1, we can express every element of a finite field Fqn into n × n matrix over
Fq and compute the matrix representation using its vector representation.

Lemma 1 Let Fqn be a finite field. For each matrix representation G of element G ∈ Fqn ,
Ge1 = g be the vector representation of G.

Proof. By Theorem 1, we can express the matrix representation of any element G ∈ Fqn by

g0C0
f(x) + g1Cf(x) + · · ·+ gn−1Cn−1

f(x).

We can conclude that

Ge1 =
(
g0 + g1Cf(x) + · · ·+ gn−1Cn−1

f(x)

)
e1

= g0C0
f(x)e1 + g1Cf(x)e1 + · · ·+ gn−1Cn−1

f(x)e1
= g1e1 + · · ·+ gn−1en = g.

So, the first column of G is its vector representation.

Lemma 1 give us the connection between matrix representation and vector representation.
The following theorem is stated in [12], we complete the statement by proof.

Theorem 2 Let Fqn be a finite field. For any G,S ∈ Fqn with G be a matrix representation of
G and s be a vector representation of S, then Gs = r where r is the vector representation of
R = GS.

Proof. By Lemma 1, We get that the vector representation of s is Se1 = s and we can calculate
the vector representation of multiplication GS as Gs = GSe1 = Re1 = r.
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2.2. Tensor

In abstract algebra perspective, a tensor product of two vector spaces is a pair of vector
space and bilinear maps that satisfies universal properties. The tensor product between linear
transformation from each vector space becomes a linear transformation in a tensor product of
two vector spaces [21] and it has a matrix representation. The matrix representation will be
called the tensor or Kronecker product of matrices [22].

Definition 1 [23] Let Am1×n1 = (ai,j)m1×n1 and Bm1×n2 be two matrices over field F. Tensor
product of A and B, denoted by A ⊗ B, is a m1m2 × n1n2 matrix of the form

a1,1B a1,2B . . . a1,n1B
a2,1B a2,2B . . . a2,n1B

...
... . . . ...

am1,1B am1,2B . . . am1,n1B

 .

There is a property of a tensor product that is useful for computation. The property states
that the product of two tensors is equal to the tensor of its matrices multiplication.

Theorem 3 [23] Given four matrices A ∈ Fm×n,BFs×t,C ∈ Fn×k, and D ∈ Ft×l. We get the
equality

(A ⊗ B)(C ⊗ D) = (AC)⊗ (BD).

Using a tensor, we can multiply two finite field elements in vector representation without
expressing them in matrix representation. The following theorem is stated in [12], we give the
complete proof of the statement.

Theorem 4 Let Fqn be a finite field with generator f(x) and matrix Cf(x) be a companion
matrix of f(x). For any g, s ∈ Fn

q where g and s be a vector representation of element G and S
respectively, then

(C0
f(x), . . . ,Cn−1

f(x))(g ⊗ s)

is a vector representation of GS.

Proof. Let Fqn be an extension field over Fq, θ be its primitive element, f(x) be the minimal
polynomial of θ, and Cf(x) be its companion matrix. For each G,S ∈ Fqn , we get(

C0
f(x)g, . . . ,Cn−1

f(x)g
)

s

= C0
f(x)gs0 + · · ·+ Cn−1

f(x)gsn−1

=
n−1∑
i=0

Ci
f(x)(g0si, . . . , gn−1si)

T

=

(
n−1∑
i=0

(
n−1∑
j=0

(
Ci

f(x)

)
1,j+1

gjsi

)
, . . . ,

n−1∑
i=0

(
n−1∑
j=0

(
Ci

f(x)

)
n,j+1

gjsi

))T
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=

(
n−1∑
i=0

(
n−1∑
j=0

(
Ci

f(x)

)
1,j+1

gisj

)
, . . . ,

n−1∑
i=0

(
n−1∑
j=0

(
Ci

f(x)

)
n,j+1

gisj

))T

=
(

C0
f(x), . . . ,Cn−1

f(x)

)
(g ⊗ s)

where g and s are the vector representations of G and S, respectively.

In Theorem 2, to find the vector representation of the multiplication of two elements, we
have to represent one of them by matrix and the other one by vector. By Lemma 4, we can
compute the multiplication of two vector representations just by using the tensor product of
their vector representation and matrix companion.

2.3. Multivariate Quadratic and Its Modification

Given a system of m multivariate polynomials Pi with n variables P and each polyno-
mial’s degrees are d ∈ N. Let Pi(x1, . . . , xn) be in the form

Pi(x1, . . . , xn) =
∑

aj∈Nn
0

ci,jtaj

for all 1 ≤ i ≤ m where ci,j ∈ Fq. Multivariate quadratic problem is a hardness problem to
find (x′

1, . . . , x
′
n) ∈ Fn

q such that satisfy

y1 = P1(x
′
1, . . . , x

′
n)

...
ym = Pm(x

′
1, . . . , x

′
n)

for a given (y1, . . . , ym) ∈ Fm
q and a system P = (P1, . . . , Pm) where each degrees of Pi are

d = 2. The family of all multivariate quadratic problems will be denoted by MQ(Fn
q ,Fm

q ). For
cryptographic purposes, let S, T be a pair of invertible affine maps and P ′ ∈ MQ(Fn

q ,Fm
q ) be

a central map. The public key of this multivariate-based cryptography is

P = T ◦ P ′ ◦ S ∈ MQ(Fn
q ,Fm

q ).

We hide a multivariate quadratic system P ′ into a new multivariate quadratic system P using
two affine/linear maps.

Patarin, in [14], made the HFE trapdoor function. The HFE trapdoor function utilizes
univariate polynomials over the extension field to be the central maps. In [24, 25], there is a
bijective function between the multivariate polynomial system of n variables over Fq and the
univariate polynomial over Fn

q . The HFE central map in the form

F(x) =

qi+qj≤D∑
i,j=0

Ci,jx
qi+qj +

qk≤D∑
k=0

Bkx
qk + A

where i, j,D ∈ N, Ci,j, Bk, A ∈ Fqn . By vinegar variables modification in [15], the HFEv
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central map becomes

Pz1,...,zv(x) =
∑

0≤i,j≤n

Ci,jx
qi+qj +

n′−1∑
k=0

Bk(z1, . . . , zv)x
qk + A(z1, . . . , zv)

where each Bk : Fv → Fqn are a linear maps and Ak : Fv → Fqn is a quadratic map. The HFEv
central map has a solution if and only if the vinegar variables are fixed.

III. HPPC

The HPPC Scheme was introduced in [12], one of the participants in the NIST Digital
Signature competition. The HPPC Scheme is based on the HFE trapdoor with matrix repre-
sentation. This scheme proposed the construction of the HFE central map using two linearized
polynomials l1(x) and l2(x) over Fqn and computes l1(x) · l2(l1(x)) to be its central map. The
idea is to use a matrix representation for HFE. We need to choose invertible matrix L1 and lin-
earized polynomial l2(x) with matrix representation L2. The HPPC central map l1(x) · l2(l1(x))
could be computed by M(L1 ⊗ L2L1) where M =

(
C0

f(x), . . . ,Cn−1
f(x)

)
.

The HPPC scheme is multivariate-based cryptography. The HPPC central map will be
hidden with two linear/affine maps S and T. In this scheme, we will choose two affine map
S,T : Fn

q → Fn
q , an invertible matrix L1, and a linearized polynomial l2(x) to be its private key

and compute
P = TMF(S ⊗ S)

with F = L1 ⊗ L2L1 to be its public key where L2 is the matrix representation of linearized
polynomial l2(x). To get the trapdoor function G(x), the HPPC scheme will compute

P ′(x) = P(S−1L−1
1 x′)

= TM(In ⊗ L2)(x′ ⊗ x′).

The product M(In ⊗ L2(x) is equal to the monic polynomial G(x) = xl2(x) over Fqn . The
trapdoor of this scheme is the solution of G(x) = Y for a given Y ∈ Fqn . This equation could
be solved using Barlekamps Algorithm. The trapdoor of the HPPC scheme could be computed
faster than the HFE scheme because the degree of l2(x) is much less than the HFE central map.

To sign a hash value of message H(m) := y, the HPPC scheme first selects a random
v ∈ Fv

q , then write y′ = y − v. After that, use the invert map of T that is z = T−1y′ and
express z by its polynomial representation Z. Then solve the univariate equation xl2(x) = Z
over Fqn . Let X ′ be the solution of xl2(x) = Z and x′ be its vector representation. The last
step is computing x = S−1L−1

1 x′. Then we get the sign of message m is (x, v). The verification
process is computing P(x) + v.

This scheme uses a vinegar vector v at the signing process. The vector v becomes a trans-
lation map at verification. The translation map at the end of the calculation utilizes the HFE
trapdoor with affine map T .
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IV. HPPCv: The Modification of HPPC Using Vinegar Variables

In the HFEv, the central map HFEv with n′ = n+ v is in the form

Pz1,...,zv(x) =
∑

0≤i,j≤n

Ci,jx
qi+qj +

n′−1∑
k=0

Bk(z1, . . . , zv)x
qk + A(z1, . . . , zv)

where each Bk : Fv → Fqn are a linear maps and Ak : Fv → Fqn is a quadratic map. From the
HFEv scheme, we made notes as follows:

1. The public key in HFEv is a map from Fn+v
q to Fn

q ,

2. The sign function is a map a map from Fn
q to Fn+v

q ,

3. The central maps are not unique depending on vinegar variables.

From the notes above and the construction of the HPPC scheme, we modify HPPC with
vinegar modification satisfying the following conditions.

1. Matrix L1 be an invertible matrix and l2(x) be a linearized polynomial.

2. Polynomial l′2(x) must be monic that is the leading coefficient is 1.

3. The coefficient of monomial in l′2(x) with the least degree is quadratic map from Fv
q to

Fqn .

4. The coefficient of other monomial in l′2(x) is linear map from Fv
q to Fqn .

So, we design the polynomial l′2(x) is in the form

l′2(x) = lz1,...,zv(x) = xpd +
d−1∑
k=1

Bk(z1, . . . , zv)x
pk + A(z1, . . . , zv)x

for d ∈ {1, . . . , n}, Bk(z1, . . . , zv) is a linear map from Fv
q → Fqn for all k, and A(z1, . . . , zv)

is a quadratic map from Fv
q to Fqn .

Theorem 1 Let Fqn be a finite field. Given Y ∈ Fqn . If all the vinegar variables are set to 0
then the equation xl′2(x) = Y has a solution.

Proof. If all the vinegar variables are set to 0, then we have l′2(x) = xpd . In [19], a linearized
polynomial l(x) is a bijective function if and only if the solution of l(x) = 0 only x = 0 in Fqn .
In our case, the linearized polynomial is l′2(x) = xpd and the solution of xpd = 0 only x = 0.
We can conclude that xl′2(x) is a bijective function that is for any Y ∈ Fqn there is X ∈ Fqn

such that Xl′2(X) = Y.

The chosen linearized polynomial l′2(x) has a matrix representation in Fn×n
q with some

entries in the form of the quadratic and linear map Fv
q → Fqn . By the chosen polynomial l′2(x),

we can modify the HPPC scheme such that the public key becomes a map from Fn+v
q to Fn

q .
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Therefore, we can chose two invertible matrices T,S ∈ Fn×n
q , invertible matrix L1 ∈ Fn×n

q , and
a polynomial l′2(x). We compute the public key

P(x) = TM(L1 ⊗ L′
2L1)(S ⊗ S)(x ⊗ x)

where L′
2 is a matrix representation of l′2(x). To get the trapdoor function, we compute

x = S−1L−1
1 x′ (1)

where the vector x′ is the vector representation of the solution xl′2(x) = Y for a given Y and a
fixed vinegar variables. To create a signature for message m, we modify the HPPC scheme by
doing the following steps.

1. Compute the hash value of message m by H(m); = y ∈ Fn
q .

2. Compute T−1y := z and express z as its polynomial representation Z ∈ Fqn .

3. Choose the vinegar variables randomly and substitute the vinegar variables to lz1,...,zv(x).
Now the polynomial lz1,...,zv(x) becomes a polynomial with a fixed coefficient.

4. Solve the solution of xlz1,...,zv(x) = Z by Barlekamp’s Algorithm. If it has no solution,
back to the last step.

5. Suppose the solution is X ′, that is X ′lz1,...,zv(X
′) = Z, express X ′ as its vector represen-

tation. Then compute the vector x = S−1L−1
1 x′.

Then the signature of message m is the vector u = (x1, . . . , xn, z1, . . . , zv)
T where the vector

(x1, . . . , xn)
T = x. The signature value will become the vector in Fn+v

q . Then, verification can
be computed by evaluating the system P at vector u, that is P(u). If P(u) = H(m) then it is
valid, otherwise is not valid. We can check the calculation of the modification as follows.

P(x) = TM(L1 ⊗ L′
2L1)(S ⊗ S)(x ⊗ x)

= TM(L1 ⊗ L′
2L1)(S ⊗ S)(S−1L−1

1 x′ ⊗ S−1L−1
1 x′) by Equation 1

= TM(L1 ⊗ L′
2L1)(L−1

1 x′ ⊗ L−1
1 x′)

= TM(I ⊗ L′
2)(x

′ ⊗ x′)

= Ty since Y = X ′l′2(X
′)

The calculation above would correct for fixed vinegar variables and valid pair (m,H, u) where
m is a message, H is a hash function, and u is a signature for m. This scheme uses parameters
(n, d, v) where n ∈ N is the degree of the extension field over Fq, d < n where qd is a degree of
linearized polynomial lz1,...,zv(x), and v is the number of vinegar variables. For the illustration,
we made a toy example.

Example 1 We chose parameter (n, d, v) = (4, 3, 2). Let F24 be an extension field of F2 gener-
ated by θ with primitive polynomial f(x) = x4 + x+ 1. The companion matrix of polynomial
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f(x) is matrix

Cf(x) =


0 0 0 1

1 0 0 1

0 1 0 0

0 0 1 0


and matrix M = (C0

f(x),C1
f(x),C2

f(x),C3
f(x)). Given two invertible linear maps T,S ∈ F4×4

2

where

T =


0 0 1 0

1 0 1 0

0 1 1 0

1 0 1 1

 and S =


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 ,

invertible matrix L1 where

L1 =


1 0 0 1

0 1 0 1

1 1 1 0

1 0 1 0

 ,

and linearized polynomial

lz1,z2(x) = x8 + (z1 + z2θ)x
4 + z2x

2 + (z1z2 + z1θ
2)x

which has a matrix representation

Lz1,z2 =


z1z2 + z1 + z2 + 1 z1 + 1 z2 z1 + z2

z2 z1z2 + z1 + z2 z1 + 1 1

z1 1 z1z2 + z1 0

0 z1 z2 z1z2 + z1 + 1

 .

The public key of this scheme is P(x) = TM(L1 ⊗ Lz1,z2L1)(S ⊗ S)(x ⊗ x). So, we get the
map P(x) mapped from F6

2 to F4
2.

For signing a message m, we are doing the following steps.

1. Suppose the hash value of m is H(m) = (0, 1, 1, 1)T := y,

2. Compute z := T−1y = (1, 1, 0, 0)T and the polynomial representation of z is θ4 = 1+ θ.

3. Let the selected value for vinegar variables be z1 = 1 and z2 = 0. We get the polynomial
l1,0(x) = x8 + x4 + θ2x.

4. By root finding, we get the solution of xl1,0(x) = Z is X ′ = θ2.

5. Express θ2 as its vector representation, that is x′ = (0, 0, 1, 0)T . Then, we get the vector
x = S−1L−1

1 x′ = (0, 0, 1, 1)T .

So, the signature of m is the vector u = (0, 0, 1, 1, 1, 0)T .
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Table 1. Comparison between HPPC and HPPCv Parameters

Scheme HPPC HPPCv
Public key size log2 q × n3+n2

2
log2 q × n3

Private key size (T, S,L1) log2 q × 3n2 log2 q × 3n2

Private key l2(x) degree qd qd

Public key degree 2 4

To verify the signature, we evaluate the map P at u. We get P(u) = (0, 1, 1, 1)T = H(m).
We can conclude that the signature that was published is valid.

With this modification, the HPPCv public key has a degree higher than the original one.
The public key system degrees are 4 with n + v variables. However, the private keys are two
linear maps S,T ∈ Fn×n

q , a invertible matrices L1, and a linearized polynomial lz1,...,zv(x) over
Fqn . For the comparison with HPPC’s original scheme, see Table 1..

By Table 1., We modify the HPPC scheme such that the public key has a higher degree but
has a similar public key size and computation cost by looking at the private key size. The mod-
ification increased the complexity of solving multivariate systems. Bouillaguet et al. compared
the exhaustive search for polynomial systems and found that the higher the degree of polyno-
mial, the longer the time takes to solve [26]. By [27], the complexity raises from O(n2 ·20.815n)
bit operation to O(n2 · 20.9n) as the degree’s changes from d = 2 into d = 4.

V. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

The HPPC Scheme uses vinegar variables in their last affine map, which is in the transla-
tion. They did not utilize the dimensional changes. We modify the HPPC scheme using vinegar
variables so that the scheme is based on the HFEv trapdoor. Our modification provides the key
in terms of vinegar variables. The vinegar variables will affect the HPPCv public key, that is
we will get some public keys from the selection of vinegar variables. The HPPCv public key
complexity will be increased because we used to find a solution for a system of degree 4. Even
though, the HPPCv center map is still a multivariate quadratic system. For the comparison,
Table 1. shows that we can get a higher degree of public key even if we use the same private
key size. This modification can be applied to be used for the post-quantum digital signature
scheme, considering that this modification is still based on a multivariate problem. However,
this modification could not match encryption because the equation in Theorem 1 is not injec-
tive.

For future research, We will analyze our modification with the known attack. With the
analysis, we can check the security rate of our system. We compare the security between the
modification and the original scheme. The future research direction also analyzes the HPPC
Scheme with a modified attack.
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