
LEARNING WITH ERROR FOR DIGITAL IMAGE 
ENCRYPTION

Abstract. Learning With Error (LWE) is one of the development of a system linear 
equation that add some noise or error. These problems have good potential for cryp-
tography, especially for the development of Key Exchange Mechanism (KEM). More-over, 
the question is whether LWE can be applied for digital image security or not. The digital image 
consists of hundreds of pixels that can be interpreted as a matrix. Each Pixel is encrypted 
with LWE so that the image becomes unidentified or cipher. Keywords: Learning With 
Error, Cryptography, Digital Image, Encryption, Decryp-tion.

I. INTRODUCTION

As technology advances in modern era, of course the challenges in securing data will 
become more difficult. One of the challenges is countering attacks from quantum comput- 
ers which have superior computing capabilities and specifications compared to ordinary 
computers. National Institute of Standards and Technology Interagency or Internal Report 
NIST (2022)[6], sets evaluation standards for cryptographic systems that are resistant to 
quantum computers (Quantum Secure Cryptography), which are categorized into three 
aspects, the first is the level of security, the second is cost and performance, and The last is the 
algorithm and its implemen-tation. Furthermore, it was explained that one approach to 
constructing a cryptographic system that is resistant to quantum computers is using lattice 
(lattice-based cryptography).

The study of lattice problem was first initiated by Ajtai. In 1997, Ajtai [1] again 
introduced his idea of Short Integer Solution (SIS), which is a development of lattice 
computing problems, namely finding the shortest solution to a system of homogeneous linear 
equations. Furthermore, in 2005, Regev [9] developed SIS from the aspects of complexity and 
security by adding errors to the system of linear equations known as Learning With Error 
(LWE). Moreover, LWE is seen as one of the fundamental theories in building Quantum 
Secure Cryptography. In 2023, NIST [10] gave the standard of Key Exchange Mechanism 
(KEM) for encrypting the key to keep it secure, which is a Module-Lattice-based Key-
Encapsulation Mechanism (MLKEM). The standard is the development of Module Learning 
With Error.

It is undeniable that there is a wide variety of data in digital besides numerical data, such 
as image. These kinds of data certainly require good security as well. This paper discusses 
whether LWE also can be used for encrypting the image to keep it secure or not.
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II. PRELIMINARIES

This study requires minimal knowledge of cryptography and lattices beyond some basic
definitions and computational problems, which are as follows.

Definition 1 (Cryptosystem [10]) A cryptosystem is a five tuple (P , C,K, E ,D), where the fol-
lowing condition are satisfied:

i) P is a finite set of possible plaintext.

ii) C is a finite set of possible ciphertext.

iii) K, the key space, is a finite set of possible key.

iv) For each K ∈ K, there is an encryption rule eK ∈ E and corresponding decryption rule
dk ∈ D. Each ek : P → C and dk : C → P are function such that dk(ek) = x for every
plaintext element x ∈ P .

After knowing the definition of cryptosystem, the definition of Lattice is given as follows.

Definition 2 (Lattice [8]) An n-dimensional lattice L is any subset of Rn that is both:

1. an additive subgroup; and

2. discrete: every x ∈ L has a neighborhood in Rn in which x is the only lattice point.

Then, the computational problems on lattices that have been most useful in the study of
LWE is given as follows.

Definition 3 (Closest Vector Problem [5]) Given a lattice basis B ∈ Zm×n and a target vector
t ∈ Rm, find a lattice vector Bx closest to the target t, i.e., find an integer vector x ∈ Zn such
that |[Bx− t|] ≤ |[By − t|] for any other y ∈ Zn.

After knowing the definition of lattice and its computational problem, given the formal
definition of Learning Error (LWE). The parameterization of LWE are positive integers n and
q, and an error distribution χ over Z.
Definition 4 (LWE [8]) For a vector s ∈ Zn

q called the secret, the LWE distribution As,χ over
Zn

q ×Zq is sampled by choosing a ∈ Zn
q uniformly at random, choosing e← χ, and outputting

(a, b = ⟨s, a⟩+ e mod q).

Furthermore, the following example illustrates Defintion 4

Example 1 Let secret s = (0, 1, 2, 3, 4) and error e = 1 → Poisson(n = 1, λ = 1). then,
choosing uniformly random vector a = (3, 1, 3, 2, 1). The samples of LWE distribution As,χ is
as follows

(a, b) =




3

1

3

2

1

 , ⟨s, a⟩+ (e = 1) (mod 5)

 =




3

1

3

2

1

 , 18 (mod 5)

 =




3

1

3

2

1

 , 3

 .
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There are two computational problems of LWE i.e, search problem and decision problem,
that are defined as follows

Definition 5 (Search Problem LWE [8]) Given m independent samples (ai, bi) ∈ Zn
q × Zq

drawn from As,χ for a uniformly random s ∈ Zn
q , find s.

Definition 6 (Decision Problem LWE [8]) Given m independent samples (ai, bi) ∈ Zn
q × Zq

where every sample is distributed according to either: (1) As,χ for a uniformly random s ∈ Zn
q

(fixed for all samples), or (2) the uniform distribution, distinguish which is the case (with non-
negligible advantage).

Based on the definitions above, adding an error is significant to change the structure, such
that the vector s is hard to find. Because, without the error, finding the vector s is the same as
finding the solution by Gaussian elimination from the system of linear equation AT s = b with
the coloumn of matrix A are the sample ai ∈ Zn

q from LWE distribution, and also vector b is
constructed from sample bi ∈ Zq from LWE distribution, i = 1, 2, 3, ...,m, for some m ∈ N.
Moreover, the search problem of LWE can be seen as the closest vector problem of Lattice.
Because for LWE samples, vector b is relatively close to exactly one vector in the LWE lattice

LLWE(A) = {AT s : s ∈ Zn
q }+ qZm

The following examples demonstrates Definition 5 and Definition 6.

Example 2 Consider the following problems.

1. Let (n = 5,m = 4, q = 5) are the parameterization of LWE, secret s = (1, 2, 3, 4, 1) and
error e = (1, 0, 0, 0)→ Poisson(n = 4, λ = 1). Also,

A =


1 2 4 1

3 2 3 2

4 1 3 2

1 1 2 2

3 1 2 2

 .

Considered that,

At · s + e (mod 5) =


1 3 4 1 3

2 2 1 1 1

4 3 3 2 2

1 2 2 2 2

 ·


1

2

3

4

1

+


1

0

0

0

 (mod 5) =


2

4

4

1

→ b

After getting sample b of the LWE distribution, then we will do the simulation of the
search problem on LWE, i.e to find vector s based on the sample (A,b). Using Gaussian
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Elimination, we obtained vector s’ = (1, 2, 3, 0, 1). However, s′ ̸= s. so, it clears that the
error makes the problem hard to solve.

2. Let (n = 5,m = 4, q = 5) are the parameterization of LWE, and secreet s = (1, 2, 3, 4, 1).
Further, let e = 1 → Poisson(n = 1, λ = 1) is an error. Given some of elements in
Z5

5 × Z5, as follows ;

(i) (a, 1)
(ii) (a, 2)

(iii) (a, 3)
(iv) (a, 4)

with vector a = (3, 2, 3, 4, 4). In the decision problem, we observe each of (i),(ii),(iii),
and (iv), whether it is a sample of LWE distribution or just an element of Z5

5 × Z5.
Considered that,

⟨s, a⟩+ (e = 1) (mod 5) = 3 + 4 + 9 + 16 + 4 + 1 (mod 5)

= 1 + 1 (mod 5)

= 2.

According to the estimation, the sample of LWE distribution is (ii).

After discussing LWE problems, The implementation of LWE for encryption and encryp-
tion scheme is given as follows.

Encryption
The encryption scheme with LWE is asymmetric cryptography that uses a public key and a
private key. Then, the parameterizations of LWE are two positive integers n and q. Alice and
Bob will share a secret message ”x” to the insecure communication channel using LWE, the
steps are as follows.

i. Bob chooses his private key, r ∈ Zn
q .

ii. Both Bob and Alice acquiescent matrix A ∈ Zn×m
q for constructing their public key.

iii. Next, Alice share her public key to Bob, called b which is obtained from b = A · s + e1
with s ∈ Zm

q is Alice’s private key, and e1 is an error.

iv. Last steps, using Bob’s Private key and Alice’s Public key, the message is enrypted as
follows.

y = (u, v) = (rT · A + e2, rT · b + e3 + x) (1)

with y is a pair of ciphertext from the encryption of message x. Then, the ciphertext is
ready to be sent to Alice.

Decryption
After receiving the ciphertext from Bob, Alice does a decryption scheme using her private key
as follows

x = v − (u · s). (2)
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Futhermore,

v − (u · s) = (rT · b + e3 + x)− ((rT · A + e2) · s)
= rT · b + e3 + x− rT · A · s + e2 · s
= rT · (A · s + e1) + e3 + x− rT · A · s + e2 · s
= rT · A · s + rT · e1 + e3 + x− rT · A · s + e2 · s
≈ x+ e∗

≈ x.

The example below is given to demonstrate the encryption and decryption scheme of LWE
as follows.

Example 3 Bob wants to share a secret message m = 19 to Alice using LWE with parameters
(n = 20, q = 97). First step, Bob and Alice choose the matrix

A =
[
60 49 63 87 17 12 29 82 37 10 28 78 64 40 56 92 80 62 6 51

]
for constructing their public key. Next, Alice constructst her public key using her private key
s = 20 dan the error

e1 =
[
4 3 2 2 1 4 2 2 4 2 4 2 4 2 4 3 4 3 4 2

]
.

Then, Alice’s public key is obtained from b = A · s+ e1 as follows

b =
[
40 13 1 93 50 50 0 90 65 8 79 10 23 26 57 0 52, 79 27 52

]
.

Before encrypting the message, Bob convert the message m = 19 to 8-bit binary number
(0, 0, 0, 1, 0, 0, 1, 1). The message is encrypted one by one of binary bits. For the simulation,
we will encrypt the first bit call it x1 = 0. The steps are as follows

i) Bob choose his private key r = (1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0) ∈ Z20
97.

ii) Next, calculating the pair of ciphertext (u1, v1) as follows

u1 = A.r + e2 mod q

v1 = b.r + e3 +
q

2
·m mod q.

Then, we obtained the ciphertext for x1, they are u1 = 0 dan v1 = 1. Futhermore, (u1, v1) is
sent to Alice and be decrypted. The steps as follows.

i) The decryption scheme for (u1, v1) is using the methods,

d = v1 − u1 · s mod q

with s is Alice’s private key. If d < q
2

then the message is 0, beside that is 1.
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ii) For (u1, v1) = (9, 1), considered that

d = 1− (9 · 20) mod 97 = 15.

i) Because d < 97
2

, then x1 = 0.

The encryption and decryption for subsequent bits are left as an exercise.

III. DISCUSSION AND SIMULATION

According to Gonzalez and Woods (2018), An image may be defined as a two-dimensional
function f(x, y). where x and y are spatial (plane) coordinates and the amplitude of f at any
pair of coordinates (x, y) is called the intensity of the image at the point. Then, The digital
image is a two-dimensional image that is displayed on the digital screen as a set or discrete
digital values called pixels or image elements. Thus, the digital image can be interpretated as a
matrix whose element is a pixel value.

Marleny (2021) explained three kinds of digital images according to their colour and pix-
els, there are RGB images, grayscale images, and binary images. In this paper specifically
discusses digital image encryption using the grayscale image. The matrix representation of
grayscale image consists grey intensity values that starts from 0 (white) until 255 (black). The
following picture illustrates the matrix representation of grayscale image.

Figure 1. Pixels Value of Grayscale Image

In the previous discussion, LWE is used for encryption and decryption of a message. Then,
in this section, we will do the encryption and decryption using the digital image. Furthermore,
the simulation was using a laptop with Intel(R) Core(TM) i5-6198DU CPU @2.30GHz 2.40
GHz specifications and Python 3 with the attached algorithm.

SIMULATION
Given 2× 2 pixels image as follows
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Figure 2. The Image Before Encrypted.

Let matrix A2×2 is the grayscale matrix representation of image

A =

[
205 230

193 219

]
.

Let (n = 20, q = 251) as the parameters of LWE. Note that, selecting the value of q is important
to restrict the grayscale intensity value. After that, we define the binary string of each element
of A, call it a1 = 205, a2 = 230, a3 = 193, a4 = 219. Furthermore, we are obtained

a1 = (1, 1, 0, 0, 1, 1, 0, 1)

a2 = (1, 1, 1, 0, 0, 1, 1, 0)

a3 = (1, 1, 0, 0, 0, 0, 0, 1)

a4 = (1, 1, 0, 1, 1, 0, 1, 1).

ENCRYPTION
After converting the elements of M to a binary string, we encrypt each bit of the binary string
using the LWE encryption scheme on Equation 1 as follows

i) For a1 = (1, 1, 0, 0, 1, 1, 0, 1), the pairs of ciphertext from each bit are

a11 = 1→ (u1, v1) = (51, 144)

a12 = 1→ (u2, v2) = (51, 144)

a13 = 0→ (u3, v3) = (149, 222)

a14 = 0→ (u4, v4) = (222, 175)

a15 = 1→ (u5, v5) = (222, 49)

a16 = 1→ (u6, v6) = (231, 229)

a17 = 0→ (u7, v7) = (196, 157)

a18 = 1→ (u8, v8) = (237, 97).

From the pairs of ciphertext, contructed the new matrix call it M1

M1 =
[
u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8

]
=

[
51 144 51 144 149 222 222 175 222 49 231 229 196 157 237 97

]
.
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ii) For a2 = (1, 1, 1, 0, 0, 1, 1, 0), the pairs of ciphertext are

a21 = 1→ (u1, v1) = (184, 41)

a22 = 1→ (u2, v2) = (184, 41)

a23 = 1→ (u3, v3) = (149, 96)

a24 = 0→ (u4, v4) = (78, 58)

a25 = 0→ (u5, v5) = (244, 115)

a26 = 1→ (u6, v6) = (199, 90)

a27 = 1→ (u7, v7) = (211, 82)

a28 = 0→ (u8, v8) = (38, 0).

From the pairs of ciphertext, contructed the new matrix call it M2

M2 =
[
u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8

]
=

[
184 41 184 41 149 96 78 58 244 115 199 90 211 82 138 0

]
.

iii) For a3 = (1, 1, 0, 0, 0, 0, 0, 1), the pairs of ciphertext are

a31 = 1→ (u1, v1) = (121, 37)

a32 = 1→ (u2, v2) = (10, 76)

a33 = 0→ (u3, v3) = (121, 163)

a34 = 0→ (u4, v4) = (121163)

a35 = 0→ (u5, v5) = (93, 105)

a36 = 0→ (u6, v6) = (6, 124)

a37 = 0→ (u7, v7) = (6124)

a38 = 1→ (u8, v8) = (154, 195).

From the pairs of ciphertext, contructed the new matrix call it M3

M3 =
[
u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8

]
=

[
121 37 10 76 121 163 121 163 93 105 6 124 6 124 154 195

]
.
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iv) For a4 = (1, 1, 0, 1, 1, 0, 1, 1), the pairs of ciphertext are

a41 = 1→ (u1, v1) = (0, 129)

a42 = 1→ (u2, v2) = (144, 247)

a43 = 0→ (u3, v3) = (11, 224)

a44 = 1→ (u4, v4) = (45, 24)

a45 = 1→ (u5, v5) = (144, 247)

a46 = 0→ (u6, v6) = (30, 101)

a47 = 1→ (u7, v7) = (199, 92)

a48 = 1→ (u8, v8) = (191183).

From the pairs of ciphertext, contructed the new matrix call it M4

M4 =
[
u1 v1 u2 v2 u3 v3 u4 v4 u5 v5 u6 v6 u7 v7 u8 v8

]
=

[
0 129 144 247 11 224 45 24 144 247 30 101 199 92 191 183

]
.

Then, we construct the new matrix called C, which consists of matrix block M1,M2,M3,M4

as follows

C =


51 144 51 144 149 222 222 175 222 49 231 229 196 157 237 97

184 41 184 41 149 96 78 58 244 115 199 90 211 82 138 0

121 37 10 76 121 163 121 163 93 105 6 124 6 124 154 195

0 129 144 247 11 224 45 24 144 247 30 101 199 92 191 183


So, matrix C becomes the cipher of the image. Furthermore, we convert the matrix C to

the grayscale image to see the visual after encryption as follows

Figure 3. The Encrypted Image

According to Figure 3, it is obvious that the image size is larger than Figure 2. Also, the
pixels become noise so it is hard to identify.

DECRYPTION
This section demonstrates the decryption scheme of Figure 3. In the previous discussion, the
matrix representation of Figure 3 is
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C =


51 144 51 144 149 222 222 175 222 49 231 229 196 157 237 97

184 41 184 41 149 96 78 58 244 115 199 90 211 82 138 0

121 37 10 76 121 163 121 163 93 105 6 124 6 124 154 195

0 129 144 247 11 224 45 24 144 247 30 101 199 92 191 183


Considering the real image size is 2 × 2 pixels, each row of matrix C represents the pairs of
ciphertext from each bit of binary string of real pixel value. Then, we split matrix C into four
block matrix as follows

C1 =
[
51 144 51 144 149 222 222 175 222 49 231 229 196 157 237 97

]
C2 =

[
184 41 184 41 149 96 78 58 244 115 199 90 211 82 138 0

]
C3 =

[
121 37 10 76 121 163 121 163 93 105 6 124 6 124 154 195

]
C4 =

[
0 129 144 247 11 224 45 24 144 247 30 101 199 92 191 183

]
.

Next, we define each element of Ck for k = 1, 2, 3, 4 sequentially to be (ui, vi) for i =
1, 2, 3, 4, 5, 6, 7, 8. Then, we decrypt (ui, vi) using Equation 2. Moreover, the binary strings
from the decryption are converted to the integer so that we obtain the real pixel value of Figure
2. Considered the following steps as follows.

i) For matrix C1,

c1,1 = 51→ u1

c1,2 = 144→ v1

c1,3 = 51→ u2

c1,4 = 144→ v2

c1,5 = 149→ u3

c1,6 = 222→ v3

c1,7 = 222→ u4

c1,8 = 175→ v4

c1,9 = 222→ u5

c1,10 = 49→ v5

c1,11 = 231→ u6

c1,12 = 229→ v6

c1,13 = 196→ u7

c1,14 = 157→ v7

c1,15 = 237→ u8

c1,16 = 97→ v8.
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The plaintext d1 to represent the value of the first pixel is

d1 = (1, 1, 0, 0, 1, 1, 0, 1)→ d1 = 205.

ii) For matrix C2,

c2,1 = 184→ u1

c2,2 = 41→ v1

c2,3 = 184→ u2

c2,4 = 41→ v2

c2,5 = 149→ u3

c2,6 = 96→ v3

c2,7 = 78→ u4

c2,8 = 58→ v4

c2,9 = 244→ u5

c2,10 = 115→ v5

c2,11 = 199→ u6

c2,12 = 90→ v6

c2,13 = 211→ u7

c2,14 = 82→ v7

c2,15 = 138→ u8

c2,16 = 0→ v8.

The plaintext d2 to represent the value of the second pixel is

d2 = (1, 1, 1, 0, 0, 1, 1, 0)→ d2 = 230.
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iii) For matrix C3,

c3,1 = 121→ u1

c3,2 = 37→ v1

c3,3 = 10→ u2

c3,4 = 76→ v2

c3,5 = 121→ u3

c3,6 = 163→ v3

c3,7 = 121→ u4

c3,8 = 163→ v4

c3,9 = 93→ u5

c3,10 = 105→ v5

c3,11 = 6→ u6

c3,12 = 124→ v6

c3,13 = 6→ u7

c3,14 = 124→ v7

c3,15 = 154→ u8

c3,16 = 195→ v8.

The plaintext d3 to represent the value of the first pixel is

d3 = (1, 1, 0, 0, 0, 0, 0, 1)→ d3 = 193.
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iv) For matrix C4,

c4,1 = 0→ u1

c4,2 = 129→ v1

c4,3 = 144→ u2

c4,4 = 247→ v2

c4,5 = 11→ u3

c4,6 = 224→ v3

c4,7 = 45→ u4

c4,8 = 24→ v4

c4,9 = 144→ u5

c4,10 = 247→ v5

c4,11 = 30→ u6

c4,12 = 101→ v6

c4,13 = 199→ u7

c4,14 = 92→ v7

c4,15 = 191→ u8

c4,16 = 183→ v8.

The plaintext d3 to represent the value of the first pixel is

d4 = (1, 1, 0, 1, 1, 0, 1, 1)→ d4 = 219.

Last step, we arrange d1, d2, d3, d4 as a (2 × 2) matrix, then convert it to the grayscale
images as follows

Figure 4. The Image After Decrypted

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

The paper concludes that LWE can be used for encrypting and decrypting the digital image
(on grayscale). The paper suggests some possible future research directions, such as exploring
the encryption and decryption for RGB images with LWE. Moreover, it is also possible to
explore Ring LWE for encrypting and decrypting the digital images, whether the computation
is more efficient than LWE or not.
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