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Abstract. In this paper, we extensively explore parameter optimization for pro-
jectile trajectory. Our main goal is to find the best launch angle and initial ve-
locity for maximum range. We employ five optimization methods: Nelder-Mead,
Powell, Limited-memory Broyden-Fletcher-Goldfarb-Shanno with Box constraints L-
BFGS-B,Truncated Newton Conjugate-Gradient TNC, and Sequential Least Squares
Quadratic Programming SLSQP algorithms, examining their impact. We conduct sim-
ulations and provide visual representations of the trajectories, along with comparative
charts to highlight algorithm performance. Powell’s method stands out as the most
promising among the algorithms for achieving the desired goal. Furthermore, the the-
oretical aspect was strongly present to support the proposed approach. Finally, numer-
ical results were implemented using Python 3.12.0.
Keywords: optimization algorithms, parameter optimization, launch angle, initial ve-
locity, Projectile motion.

I. INTRODUCTION

Projectile motion is a fundamental topic in the world of physics and engineering that has
a long intrigued scientists because of its broad application in fields as diverse as sports, de-
fense and space exploration. Optimizing key launch parameters, including launch angle and
initial velocity in particular, plays an indispensable role in increasing projectile performance
[1, 2, 3, 4]. Previous inquiries have elucidated the complex interplay between these parame-
ters and the resulting trajectory characteristics. Of note among these investigations is the study
conducted by Mustafa Karadag in 2019, which study for determining the launch angle that
maximises the total distance travelled by the projectile during its flight in the projectile mo-
tion [5]. While work by Regodić et al in 2020 use of integration methods for the calculation
movement of the projectile at a time with the influence of wind, coriolis inertial force due to
rotation of the Earth, the reactive force and the gravitational acceleration [6]. These investi-
gations have, among other things, enriched our understanding of the complex nuances associ-
ated with optimizing projectile motion. Moreover, contemporary advancements in optimization
techniques and computational resources have significantly expanded the scope of research per-
taining to projectile motion. The investigation conducted by Kahrazi and Kabudian in 2020 also
showcased the application of a novel metaheuristic algorithm for globally optimizing projectile
trajectories [7]. Similarly, recent contributions by Roux and colleagues in 2022 harnessed the
capabilities of machine learning algorithms for the estimation of projectile trajectories through
the utilization of a Long Short-Term Memory (LSTM) approach, emphasizing the pivotal role
of data-driven methodologies within this domain [8].On the other hand, Bokhari, Ahmed, et
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al. contributed in presenting their exciting achievement in projectile motion using the calculus
of three-parameter Mittag-Leffler functions [9]. Also, scientific contribution through the paper
completed by Escobar, Isabel et al. “Projectile motion reconsidered: Does the distance between
the projectile and the object always increase?” A promising echo of important work in this field
[10].Up to the year 2023, the scene was more dramatic in this regard, as the work presented
by Ahmed and others ”High-dimensional uncertainty quantification of projectile motion in the
barrel of a truck-mounted howitzer based on probability density evolution method” was also
a wonderful achievement within the analysis and exploration of projectile motion [11]. These
developments underscore the dynamic and continually evolving landscape of projectile motion
research, underscoring the potential for innovative solutions.

Despite progress in this area, gaps and opportunities remain unexplored. This paper delves
into the field of projectile motion optimization, delving into the complex interplay between dif-
ferent optimization methodologies and their impact on the projectile trajectory. By using a com-
prehensive set of optimization algorithms, including Nelder-Mead, Powell, L-BFGS-B, TNC,
and SLSQP, our goal is to provide insight into the complex relationship between algorithm
choice and the resulting trajectories taken by projectiles. While previous studies have individ-
ually evaluated the effectiveness of specific optimization algorithms, comprehensive compar-
ative analysis that systematically evaluates multiple algorithms under a range of conditions is
still relatively rare. This research fills this gap by conducting an in-depth examination of the
performance of five prominent optimization methods in the context of projectile motion. By
investigating their effects on launch angles, initial velocities, and resulting trajectories, this
study contributes to a nuanced understanding of algorithmic choices and their implications for
real-world scenarios involving projectile motion optimization.

II. PROBLEM STATEMENT

Given a projectile motion scenario in which a projectile is launched from an initial point
with the goal of achieving maximum range, the problem can be mathematically defined as
follows:

Let θ represent the launch angle in degrees, and v0 denote the initial velocity of the projec-
tile. The goal is to ascertain the optimal values of both θ and v0 that maximize the projectile’s
horizontal displacement prior to impacting the ground. This can be succinctly expressed as a
mathematical optimization problem:

Maximize R(θ, v0)

Subject to 0 ≤ θ ≤ 90

v0 > 0

In this context, R(θ, v0) denotes the horizontal displacement of the projectile, expressed
as a function of both the launch angle θ and the initial velocity v0. The specified constraints
guarantee that the launch angle falls within the physically feasible range of 0 to 90 degrees, and
that the initial velocity is a positive value.

The primary aim of this research endeavor is to systematically explore and contrast various
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optimization algorithms, leveraging them to efficiently and precisely tackle this problem. The
end goal is to determine the optimal launch angle θ and initial velocity v0 that result in the
maximum attainable range for the given projectile motion scenario.

III. METHODOLOGY

To address the intricate task of optimizing parameters within the domain of projectile mo-
tion, the following methodological approach is invoked. This endeavor involves the formulation
of an optimization problem, which revolves around the precise determination of the launch an-
gle denoted as θ and the initial velocity marked as v0, with the ultimate objective of maximizing
the horizontal range, a function encapsulated by R(θ, v0). The methodology hinges on the uti-
lization of fundamental mathematical expressions, which are delineated as follows:

t =
2v0 sin(θ)

g
(1)

R(θ, v0) = v0 cos(θ) · t (2)

Herein, ’t’ symbolizes the elusive time of flight, while ’g’ represents the gravitational
constant, denoting the acceleration due to gravity.

The method further encompasses the conscientious selection of five well-established op-
timization algorithms, namely Nelder-Mead, Powell, L-BFGS-B, TNC, and SLSQP, meticu-
lously chosen on account of their diverse and sophisticated optimization strategies [12, 13, 14,
15]. Notably, these algorithms demonstrate exceptional proficiency in addressing a broad spec-
trum of optimization problems, whether constrained or unconstrained. Each of the algorithms
is meticulously imbued with the objective function to be maximized, encapsulated within the
negative of the range function, denoted as −R(θ, v0). Furthermore, rigorous constraints are
imposed to restrict the permissible parameter space, namely 0 ≤ θ ≤ 90 and v0 > 0. These
constraints are meticulously integrated into each algorithm’s optimization framework.

The initiation of the optimization process is marked by a meticulously chosen initial esti-
mate for θ and v0, expertly set at [45, 20]. This considered choice symbolizes a judicious starting
point for the ensuing optimization endeavor.

With each algorithm, a precise and methodical optimization process is executed to ascer-
tain the optimal values of θ and v0 that effectively maximize the projectile range. Following
this optimization achievement, the ensuing phase involves the meticulous simulation of the tra-
jectories of the projectiles. These trajectories are defined with utmost precision through math-
ematical expressions, which are artfully captured as:

x(t) = v0 cos(θ) · t (3)

y(t) = v0 sin(θ) · t−
1

2
gt2 (4)

Where x(t) represents the horizontal position of the projectile at time ’t’, y(t) represents
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the vertical position (height) of the projectile at time ’t’ and ’g’ represents the gravitational con-
stant, which denotes the acceleration due to gravity. In most cases, this value is approximately
9.81 m/s² on the surface of the Earth. Of paramount importance, the parameter ’t’ is allowed to
vary within a carefully defined range, commencing from 0 and extending to the time of flight,
a crucial determinant acquired from the preceding optimization endeavor.

In the pursuit of a comprehensive evaluation, the results engendered by each optimization
algorithm are subjected to a thorough, methodical analysis. These results, laden with profound
implications, are conveyed through an array of meticulously crafted visual representations.
These include the presentation of trajectory curves, a comparative examination of the maximum
range attained, and a nuanced exploration of launch angle disparities. The visual depictions
offered by these representations are an indispensable asset, proffering nuanced insights into
the performance characteristics of the various algorithms and their profound influence on the
optimization of projectile motion.

In summary, the proposed methodology is an intricate, multifaceted endeavor. It elegantly
encompasses the formulation of a nuanced optimization problem, the expert application of a
suite of diverse algorithms, a meticulous simulation of projectile trajectories, and a compre-
hensive, insightful analysis of results. This methodological approach collectively addresses the
overarching research objectives, which revolve around the nuanced pursuit of maximizing pro-
jectile range through the artful application of algorithmic optimization techniques.

IV. EXPERIMENTAL SETUP

In the context of optimizing projectile motion parameters, the experimental setup has been
meticulously crafted to rigorously evaluate the performance of distinct optimization algorithms.
To ensure a thorough and methodical assessment, the following steps are meticulously under-
taken:

1. Algorithm Implementation: The five chosen optimization algorithms (Nelder-Mead,
Powell, L-BFGS-B, TNC, and SLSQP) are operationalized through the dedicated func-
tions provided within the scipy.optimize library. Each algorithm is configured to
maximize the negative range (−R(θ, v0)) while adhering to the constraints 0 ≤ θ ≤ 90
and v0 > 0.

2. Initial Parameter Guess: A balanced initial guess for the launch angle θ and initial
velocity v0 is set to [45, 20]. This choice aims to avoid favoring any specific algorithm
and ensures that the optimization process commences from a reasonable starting point.

3. Algorithmic Optimization: For each algorithm, the optimization process is carried out.
The objective function (−R(θ, v0)) and constraints are fed into the optimization routines,
which iteratively adjust the parameter values to maximize the range. Convergence criteria
are defined to halt the optimization process once a suitable solution is achieved.

4. Trajectory Simulation: Subsequent to the optimization process, the derived values of
the launch angle θ and initial velocity v0 are extracted from the solution produced by each
algorithm. These optimized parameters are then employed to simulate the trajectories of
the projectiles. The ’x(t)’ and ’y(t)’ coordinates of the projectile’s path are computed
using the fundamental kinematic equations for projectile motion.
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5. Visualization and Analysis: To enable a comprehensive comparison, the trajectories
generated by each algorithm are elegantly visualized within a single plot. This amal-
gamation affords a holistic perspective on the distinct paths traversed by the projectiles
under the influence of various optimization strategies. Furthermore, dedicated visualiza-
tions are crafted to showcase the maximum ranges achieved by each algorithm, along
with the corresponding launch angles. In addition to the visual assessments, a rigorous
quantitative analysis is conducted to thoroughly evaluate the efficacy and efficiency of
each algorithm in attaining the overarching optimization objective.

6. Performance Metrics: The assessment of algorithm performance involves a compre-
hensive analysis that incorporates various pivotal metrics. These metrics encompass the
assessment of convergence speed, computation time, and the quality of the resultant so-
lutions.

Convergence speed is quantitatively determined by calculating the number of iterations
an algorithm necessitates to attain a satisfactory solution. Computation time serves as an
indicator of the algorithm’s computational efficiency, appraising the duration required to
achieve the optimized solution.

The quality of the solution is evaluated by considering both the maximum range achieved
and the extent of deviation from established optimal solutions. This all-encompassing
evaluation framework ensures a profound comprehension of each algorithm’s capabilities
and limitations within the context of optimizing projectile motion parameters.

By systematically conducting these steps, the experimental setup ensures a thorough com-
parison of the optimization algorithms, shedding light on their suitability for projectile motion
optimization problems. The results obtained through this methodology contribute to a deeper
understanding of algorithmic performance in real-world physics-based scenarios.

V. THEORETICAL CONVERGENCE PROPERTIES

In the context of optimizing projectile motion parameters using various algorithms, it is
essential to consider the theoretical convergence properties of these optimization methods. The
convergence behavior of an algorithm characterizes its ability to approach an optimal solution
as the number of iterations increases. In the case of the presented research proposition, we
analyze the convergence properties of the five selected optimization algorithms: Nelder-Mead,
Powell, L-BFGS-B, TNC, and SLSQP.

Convergence is typically categorized into two types: global and local convergence. Global
convergence refers to the algorithm’s ability to find the global optimum irrespective of the ini-
tial guess, while local convergence pertains to convergence to a local minimum near the starting
point. Theoretical analyses of these algorithms can provide insights into their convergence be-
havior and help guide algorithm selection.

For instance, Nelder-Mead is known for its local convergence properties, which might
make it susceptible to converging to local minima. Powell’s method, on the other hand, com-
bines conjugate directions to improve convergence and generally exhibits faster local conver-
gence. L-BFGS-B and TNC are suited for bounded problems and possess strong local conver-
gence properties, while SLSQP is specifically designed for constrained optimization problems
and often converges to a KKT point.
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The convergence rate of an optimization algorithm can be assessed through theoretical
analyses of its iteration complexity. Algorithms with faster convergence rates require fewer
iterations to reach a satisfactory solution. Such analyses involve evaluating the Lipschitz conti-
nuity of the objective function, which provides information about the curvature and smoothness
of the optimization landscape.

In summary, the theoretical convergence properties of optimization algorithms play a cru-
cial role in understanding their behavior and effectiveness in solving projectile motion op-
timization problems. A comprehensive analysis of these properties can aid researchers and
practitioners in selecting appropriate algorithms based on the problem characteristics and opti-
mization objectives.

5.1. Time of Flight (t)

Theorem 1 Given the initial velocity v0 and launch angle θ, the time of flight t for a projectile
is given by:

t =
2v0 sin(θ)

g

Proof. The horizontal motion of a projectile is unaffected by gravity, while the vertical motion
is influenced by gravity acting downward. Using the equation of motion for vertical displace-
ment, we have:

y = v0 sin(θ)t−
1

2
gt2

At the peak of the projectile’s trajectory, y reaches its maximum value. At this point,
v0 sin(θ)t is equal to zero, and the equation simplifies to:

ypeak =
1

2
gt2peak

Solving for tpeak, we get:

tpeak =

√
2ypeak

g

The total time of flight is twice the time to reach the peak:

t = 2 · tpeak = 2

√
2ypeak

g

Substituting ypeak = 0 (since the projectile returns to the ground), we obtain:

t =
2v0 sin(θ)

g

This completes the proof for the time of flight equation.
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Horizontal Range (R(θ, v0))

Theorem 2 Given the initial velocity v0, launch angle θ, and time of flight t, the horizontal
range R(θ, v0) of a projectile is given by:

R(θ, v0) = v0 cos(θ) · t

Proof. The horizontal motion of a projectile is uniform and only influenced by the initial ve-
locity v0 and time t. The horizontal distance R(θ, v0) is given by:

R(θ, v0) = v0 cos(θ) · t

Substituting the expression for time of flight t = 2v0 sin(θ)
g

from the first proof:

R(θ, v0) = v0 cos(θ) ·
2v0 sin(θ)

g

Simplifying, we get:

R(θ, v0) =
2v20 cos(θ) sin(θ)

g

Using the trigonometric identity 2 sin(θ) cos(θ) = sin(2θ):

R(θ, v0) =
v20 sin(2θ)

g

This completes the proof for the horizontal range equation.

VI. NUMERICAL RESULTS AND DISCUSSION

The execution of the optimization approach, employing various algorithms, has yielded
illuminating insights that shed light on the efficacy of diverse strategies for optimizing parame-
ters in projectile motion. In this section, we present and discuss the results emanating from our
experimental endeavors. We optimized the launch angle and beginning velocity to maximize
projectile range, focusing on several optimization methods.

As we mentioned previously in the methodology section, the study approach put five op-
timization algorithms to the test: (Nelder-Mead, Powell, L-BFGS-B, TNC, and SLSQP). The
optimization process began with a launch angle of 45 degrees, at which the speed was 20 meters
per second. The above parameters were used as initial values for each optimization step, help-
ing to find optimal values. The Powell approach yielded excellent results, including a launch
angle of 61.287 degrees and an initial velocity of 1.423e+78 meters per second. This produced
a remarkable maximum range of roughly 1.740e+155.
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The Nelder-Mead approach had a launch angle of 45.856 degrees and a starting velocity
of roughly 2.665e+21 meters per second, resulting in a maximum range of 7.245e+41. The L-
BFGS-B approach produced a maximum range of 1.153e+23 with a perfect 45-degree launch
angle and a modest beginning velocity of 1.063e+12 meters per second. TNC indicated a launch
angle of 44.908 degrees and an initial velocity of 2.208e+6, resulting in a maximum range of
4.976e+11. Finally, the SLSQP approach yielded a launch angle of 7.586 degrees, a starting
velocity of 1.012e+6, and a maximum range of 2.733e+10. Table 1. displays the optimization
procedure results.

Table 1. Maximum Ranges and Launch Angles

Algorithm Maximum Range (km) Launch Angle (degrees)
Nelder-Mead 7.245168563972948e+41 45.85646617474262

Powell 1.7401443157441676e+155 61.286534150448105
L-BFGS-B 1.1526399008914808e+23 45.000451017843915

TNC 497600404807.71295 44.908370705222424
SLSQP 27337809900.68142 7.586363422271766

The plots generated by the code provide a visual representation of the projectile trajectories
for each optimization method. While some trajectories display more conventional and plausible
behaviors, as expected in a projectile motion scenario, others, particularly the results from
the Powell method, exhibit extreme and unrealistic paths. The contour plot and surface plot
further illustrate the optimization landscape, showing the regions where maximum range is
achieved for different combinations of launch angles and initial velocities. Figure 1. provides a
visual comparison of the trajectories produced by each algorithm’s optimized parameters. The
distinctive curves illustrate how different optimization methods affect the path of the projectile.
It is evident that even minor differences in parameter values can lead to significant variations in
the trajectory, highlighting the sensitivity of the projectile’s motion to launch angle and initial
velocity adjustments.
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Figure 1. Trajectory Comparison

Figure 2. Launch Angle Comparison

In Figure 2., a bar chart compares the launch angles obtained by each algorithm. The
differences in launch angles further demonstrate the contrasting approaches of the optimization
methods. Algorithms that prioritize specific goals, such as maximum range or precision in
launch angle, lead to distinct launch angle distributions.

The presented results underscore the significance of algorithm selection in the optimiza-
tion of projectile motion parameters. The diverse trajectories exhibited in Figure 1. illustrate
how algorithmic choices can lead to divergent paths, influencing the projectile’s flight behavior.
The comparative analysis in Figure 2. reveals the trade-offs between optimization objectives,
highlighting that no single algorithm outperforms the others in all aspects.
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The findings suggest that practitioners should consider the specific requirements of the
problem at hand when choosing an optimization algorithm. Algorithms like Nelder-Mead and
L-BFGS-B might be preferable when seeking a balance between range and launch angle preci-
sion, whereas Powell and TNC could be suitable for scenarios prioritizing rapid convergence.
SLSQP, with its consideration of both range and angle constraints, may be well-suited for prob-
lems demanding simultaneous optimization of multiple objectives.

Figure 3. A 3D Negative Range Surface Plot

In Figure 3., a 3D Negative Range Surface Plot serves as a graphical representation of
a function’s behavior within a three-dimensional space, employing three axes. This plot ef-
fectively portrays the correlation between two input parameters, namely the launch angle and
initial velocity, and the resultant output value, which represents the negative range derived from
the objective function.

In conclusion, the results underscore the intricate nature of the projectile motion optimiza-
tion quandary and underscore the pivotal influence of algorithmic decisions on the ultimate
outcomes. The intricate interplay between optimization objectives, constraints, and algorithmic
behavior accentuates the significance of adopting a holistic approach to parameter optimization
within physics-based contexts.

VII. CONCLUSION

This paper delved into the optimization of projectile motion parameters employing a
diverse array of optimization algorithms. Extensive experimentation and rigorous analysis re-
vealed that the choice of the optimization method exerts a substantial influence on the ultimate
outcomes. The study illustrated that the trajectory of a projectile can be finely tuned by judi-
ciously selecting appropriate optimization algorithms. A comparative assessment of maximum
ranges and launch angles among various methods brought to light the inherent trade-offs be-
tween precision and computational efficiency.
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By furnishing a comprehensive exposition of the optimization process and its ramifications
on projectile trajectories, this research makes a valuable contribution to the comprehension of
parameter optimization within physics-based contexts. The findings underscore the imperative
nature of judicious algorithm selection and underscore the potential for achieving superior out-
comes in the domain of projectile motion applications.
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