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Abstract. In this paper, a modified Householder method of fifth order is proposed for
solving nonlinear equations. The modification is done by adapting a cubic interpola-
tion polynomial to approximate the second derivative in the Householder method. We
provide a theorem to prove the order of convergence of the proposed method. The sim-
ulations reveals that the proposed method needs fewer iterations, even with challenging
initial guesses, and excels in sending large portion of initial points to convergence and
exhibits rapid convergence.
Keywords: Iterative methods, Householder method, order of convergence, basins of
attraction

I. INTRODUCTION

There is an abundant phenomena in nature that can be modeled via nonlinear equations.
However finding the solution through analytical methods does not consistently yield success.
The development of computational technology has catalyzed a significant progress in the field
of applied mathematics, leading to the emergence of a highly significant and widely explored
domain within mathematics. This domain revolves around the pursuit of numerical solutions to
nonlinear equations through the application of numerical techniques employing computational
tools. The goal is to find the solution of a nonlinear equation

ξ(x) = 0, (1)

where ξ : R −→ R, by employing an efficient iterative method. According to Traub [1],
there are two measures of an efficient iterative method. One of which is called computational
efficiency. If a method is convergent to a simple root of (1), say α, with order of convergence
d, then the computational efficiency of the method is given by I = d1/p where p is the number
of function evaluations required in each iteration.

The subject of root-finding methods has witnessed extensive research, with Newton’s
method being a classic approach known for its quadratic convergence and I = 1.414. Another
popular method was proposed by Householder [2], defined as:

xi+1 = xi −
ξ(xi)

ξ′(xi)
− ξ(xi)

2ξ′′(xi)

2ξ′(xi)2
, i = 0, 1, 2, . . . . (2)

This method is of third order of convergence and efficiency index I = 1.442. However, it should
be noted that the method involves the computation of a second derivative, which can be a draw-
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back. The introduction of higher order derivative often presents challenges including increased
computational costs and practical application difficulties. Consequently, many researchers seek
to find free second derivatives iterative methods with various approaches as evidenced in works
such as [3–8].

An alternative perspective for assessing the performance of an iterative method involves
studying its basins of attraction, which was introduced by [1]. Researchers have delved into this
subject, exploring it in various studies, including [3, 9–16]. An example of extensive analysis
regarding the performance of iterative methods through their basins of attraction and its relation
to several efficiency measures is given in [17].

To introduce a novel approach for solving nonlinear equations, we have employed poly-
nomial interpolation that approximates the second derivative within the Householder method.
Additionally, in this paper, we examine the basins of attraction associated with our proposed
method and conduct comparisons with various existing methods to establish the superiority of
our method in terms of convergence speed, efficiency index, and the number of points where
convergence is achieved.

The organization of this paper is as follows: The derivation of modified Householder
method of fifth order of convergence by approximating the second derivative using a cubic
interpolating polynomial is presented in the subsequent section. The third section is dedicated
to an exploration of the behavior of the proposed method through some simulations on several
transcendental functions. We also display the dynamics of the discussed method on complex
plain in the penultimate section. Finally, the conclusion of our research is given in the last
section of this article.

II. MODIFIED HOUSEHOLDER METHOD OF FIFTH ORDER OF
CONVERGENCE

In this section, we present our modified householder method. The modification is done
by approximating the second derivative in (2) using polynomial interpolation. we consider an
interpolating polynomial given by:

ϕ(x) = a+ b(x− xi) + c(x− xi)
2 (3)

where a, b and c are coefficients. This polynomial is chosen to satisfy the interpolation condi-
tions: ξ(xi) = ϕ(xi), ξ(yi) = ϕ(yi), ξ

′(xi) = ϕ′(xi), and ξ′′(yi) = ϕ′′(yi), where yi is obtained
from:

yi = xi −
ξ(xi)

ξ′(xi)

By imposing these conditions on (3) we obtain:

ϕ(yi) = ξ(yi) = a+ b(yi − xi) + c(yi − xi)
2

ϕ(xi) = ξ(xi) = a (4)
ϕ′(xi) = ξ′(xi) = b
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By solving system order three in (4) for the three unknowns, we have

c = −ξ′(yi − xi) + ξ(xi)− ξ(yi)

(yi − xi)2
(5)

Ultimately, by substituting to the last interpolation condition ξ′′(yi) = ϕ′′(yi), we obtain the
following expression:

ξ′′(yi) =
2

yi − xi

(
ξ(yi)− ξ(xi)

yi − xi

− ξ′(xi)

)
= ϕ2(xi, yi) (6)

By applying (6) to (2), we derive a new fifth order householder method free from second deriva-
tive that can be expressed as follows:

yi = xi −
ξ(xi)

ξ′(xi)
(7)

xi+1 = yi −
ξ(yi)

ξ′(yi)
− ξ(yi)

3ξ′(xi)
2

ξ(xi)2ξ′(yi)3
(8)

For the remainder of this paper, we will refer to these equations as Modified Householder
Method (MHM). The convergence analysis of this method is presented in the following theo-
rem:

Theorem 1 Suppose ξ : X −→ R where X ⊆ R is an open interval. Let α ∈ X be the simple
root of (1) where ξ is sufficiently differentiable around α. Then the method described by (7)
and (8) (MHM) is of fifth order.

Proof. Let α represent a simple root of ξ(x) = 0. By expanding ξ(x) around x = α using
Taylor series, we obtain:

ξ(x) = ξ(α) + ξ′(α)(x− α) +
1

2!
ξ′′(α)(x− α)2 +

1

3!
ξ′′′(x)(x− α)3 (9)

+
1

4!
ξ(4)(x)(x− α)4 +

1

5!
ξ(5)(x)(x− α)5 +

1

6!
ξ(6)(x)(x− α)6

+O(x− α)7.

By evaluating ξ(x) at xi, we have

ξ(xi) = ξ′(α)
(
ei + C2e

2
i + C3e

3
i + C4e

4
i + C5e

5
i + C6e

6
i +O(e7i )

)
, (10)

where ei = xi − α denotes error at the i-th iteration and Ci = (1/i!)(ξ(i)(α)/ξ′(α)), i =
1, 2, 3, · · · . By differentiating (9) and evaluating it at xi, we obtain:

ξ′(xi) = ξ′(α)
(
1 + 2C2e

2
i + 3C3e

2
i + 4C4e

3
i + 5C5e

4
i + 6C6eki

5 +O(e6i )
)
. (11)
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Substituting (10) and (11) into (7) results in

yi = α + C2e
2
i + (−2C2

2 + 2C3)e
3
i + (−4C3

2 − 7C2C3 + 3C4)e
4
i + (−16C2

2C3 (12)
− 10C2C4 − 6C2

3 + 4C5)e
5
i + (−20C2

2C4 − 21C2C
2
3 − 13C − 2C5

− 17C3C4 + 5C6)e
6
i +O(e7i )

Similarly, by expanding ξ(yi) around α, we obtain

ξ(yi) = ξ′(α)
(
C2e

2
i + (−2C2

2 + 2C3)e
3
i + (−3C3

2 − 7C − 2C3 + 3C − 4)e4i (13)
+ (−4C4

2 − 12C2
2C3 − 10C2C4 − 6C2

3 + 4C5)e
5
i + (−4C5

2 − 22C3
2C3

− 14C2
2C4 − 17C2C

2
3 − 13C2C5 − 17C3C4 + 5C6)e

6
i +O(e7i )

)
Furthermore, by differentiating (9) and evaluating it at yi, we get:

ξ′(yi) = ξ′(α)

(
1 + 2C2

(
C2e

2
i + (−2C2

2 + 2C − 3)e3i + (−4C3
2 − 7C2C3 + 3C4)e

4
i (14)

(−16C2
2C3 − 10C2C4 − 6C2

3 + 4C5)e
5
i + (−20C2

2C4 − 21C2C3

− 13C2C5 − 17C3C4 + 5C6)e
6
i +O(ei)

7
))

Now, inserting (10), (11), (13) and (14) into (8) and simplifying yields

ei+1 = −2C2
2C3e

5
i + (10C5

2 + 7C3
2C3 − 3C2

2C4 − 8C2C
2
3)e

6
i +O(e7i ) (15)

Based on the definition of order of convergence [18], we conclude that the method de-
scribed by (7) and (8) is of fifth order.

Number of functions evaluations for each iteration of this method is four. Hence, the effi-
ciency index of the method is I = 1.495.

III. NUMERICAL SIMULATIONS
In this section, we test MHM method on eight transcendental functions. Furthermore, we

compare our proposed method with several modified householder methods, including house-
holder method (HM3) with an efficiency index I = 1.442, householder method of fourth order
(NHM4) from the work of Naeem, et al. [3] with I = 1.414 and householder method of fifth
order (NHM5) introduced by Nazeer et al. [4] with I = 1.495. The followings are the testing
functions:

• ξ1(x) = x2 − exp(x)− 3x+ 2

• ξ2(x) = cos(x)− x

• ξ3(x) = (x− 1)3 − 1

• ξ4(x) = x3 + x2 − 10

• ξ5(x) = x2 − x exp(x) + cos(x)

• ξ6(x) = sin(x)2 − x2 + 1

• ξ7(x) = x exp(x2)− sin(x)2+3 cos(x)+5

• ξ8(x) = ln(x exp(x) + 1)

The stopping criteria for the iterations are as follows:
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1. Maximum iterations: The iterations will stop if the maximum allowed iterations exceed
100.

2. Convergence based on the difference between consecutive approximations: |xi+1−xi| ≤
10−15

3. Convergence based on the proximity to the true solution α. The iteration will stop if
the absolute difference between the current approximation and the true root is less than
10−15: |xi+1 − α| ≤ 10−15

The following table presents the comparison of the discussed methods and their perfor-
mance, considering the specified stopping criteria. The first column of the table corresponds to
the tested functions, the second column indicates the exact root of each tested function, and the
third column reveals the initial guesses. The final four columns depict the number of iterations
generated for each testing method.

Table 1: Comparison of number of iterations produced by testing methods for functions ξ1(x)
through ξ8(x)

Function Exact Root x0 HM3 NHM4 NHM5 MHM

ξ1(x) 0.257530285439861
−2.0 4 19 5 3
2.0 3 3 5 3

ξ2(x) 0.739085133215161
1.0 3 2 4 2
2.0 4 3 4 2

ξ3(x) 2.00000000000000
−0.9 13 12 6 8
3.5 5 13 7 3

ξ4(x) 1.86746002460432
−1.9 4 24 10 20
5.0 5 ∗ 7 3

ξ5(x) 0.639154096332008
3.5 6 5 5 4
0.1 4 3 4 3

ξ6(x) 1.40449164821534
4.5 4 ∗ 5 3
0.01 39 ∗ 13 11

ξ7(x) −1.20764782713092
−2.5 7 NaN 6 6
1.0 74 1 6 6

ξ8(x) 0.00000000000000
0.9 4 3 5 3
3.4 4 3 5 3

In Table 1 we provide two initial guesses for our observations. There is a case where a
method exceeds the fixed maximum iterations, hence we denote this case with ∗. The symbol
NaN is used when the iterations diverge. In order to see the accuracy of the approximation of
the root, we present relative errors produced by of each testing method in Table 2 below.

Based on Table 1, it appears that the MHM exhibits faster convergence across various
function. For function ξ1, MHM requires fewest iterations while NHM4 demands higher iter-
ations. NHM5 and HM3 show competitive performance but MHM stands out for efficiency.
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Table 2: Comparison of relative errors given by testing methods for functions ξ1(x) through
ξ8(x)

Function x0 HM3 NHM4 NHM5 MHM

ξ1(x)
−2.0 9.30E − 16 9.30E − 16 9.30E − 16 9.30E − 16

2.0 9.30E − 16 9.30E − 16 9.30E − 16 9.30E − 16

ξ2(x)
1.0 4.85E − 16 4.90E − 16 4.85E − 16 4.85E − 16

2.0 4.85E − 16 4.85E − 16 4.85E − 16 4.85E − 16

ξ3(x)
−0.9 2.22E − 35 1.81E − 28 5.67E − 24 1.71E − 28

3.5 6.12E − 32 7.67E − 47 1.88E − 18 1.22E − 28

ξ4(x)
−1.9 2.68E − 15 2.67E − 15 2.67E − 15 6.67E − 16

5.0 2.67E − 15 4.10E − 02 2.66E − 15 2.67E − 15

ξ5(x)
3.5 6.55E − 16 6.55E − 16 6.57E − 16 6.55E − 16

0.1 6.55E − 16 6.55E − 16 6.56E − 16 6.55E − 16

ξ6(x)
4.5 8.73E − 16 1.52E + 02 8.73E − 16 8.73E − 16

0.01 2.00E + 00 1.51E + 02 2.00E + 00 8.73E − 16

ξ7(x)
−2.5 2.00E + 00 1.51E + 02 2.00E + 00 8.73E − 16

1.0 2.00E + 00 1.51E + 02 2.00E + 00 8.73E − 16

ξ8(x)
0.9 Inf Inf Inf Inf
3.4 Inf Inf Inf Inf

In the case of function ξ2, NHM5 and MHM demonstrate the best performance, requiring the
fewest iterations for both initial guesses where the same case happens for function ξ3 as well. In
the case of ξ4 and ξ5, MHM and NHM5 perform well with MHM having slight edge efficiency.
MHM show efficient convergence for both initial guesses while NHM5 exceeds the fixed max-
imum iterations in function ξ6. Again, MHM require the fewest iterations together with NHM5
in function ξ7 while HM3 shows competitive performance but iterations give by NHM4 are di-
verge. Finally, MHM and NHM4 converge faster for both initial guesses in function ξ8. MHM
consistently achieves convergence within a relatively low number of iterations, even when start-
ing from various initial guesses. In contrast, some of the other methods experience divergence,
exceeded maximum iterations, or require more iterations to achieve convergence.

Table 2 exhibits that MHM often stands out with consistently low relative errors for most
functions, indicating its accuracy in obtaining solutions. For the first two functions and both
initial guesses, all methods achieved low relative errors. In function ξ3, for the first initial guess,
all methods achieve extremely low relative errors, with MHM having slightly lower error. While
for the second initial guess, MHM again exhibits a lower relative errors compared to other
methods. In function ξ4, MHM and NHM5 have the lowest errors while NHM4 failed to provide
higher accuracy. All methods produced very low and consistent relative errors ranging from
6.55e−16 to 6.57e−16 for both initial guesses in function ξ5. For both initial guesses in function
ξ6 and xi7, MHM stands out providing high precision and accuracy. Ultimately, relative errors
for function xi8 are reported as ”Inf” for all methods for both initial guesses. This suggests
challenges in handling this specific function, leading to infinite relative errors.
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IV. THE DYNAMICS OF THE METHOD ON COMPLEX PLANE

In order to gain a deeper insight on the performance of the discussed method, we present an
observation on their basins of attraction. The analysis pf these basins offers a valuable informa-
tion on the convergence and stability of the examined function when subjected to a root-finding
method.

In this analysis, we consider a complex function ξ(z) = 0 where ξ : C −→ C is a
complex plane. The figure of basins of attraction of the tested function is generated from a
uniform grid of [−1, 1] × [1, 1] ⊂ C. This gives us 1000000 initial points to be tested. Each
point is associated with a specific color that marks its convergence. In this work, we fixed error
tolerance to be 10−15. In order to see the speed of convergence of iterative method, we set the
maximum iterations to be just 10. The time required to generate the basins of attraction on our
computer is measured in seconds.

We construct basins of attraction using four distinct methods in simulation sections, specif-
ically HM3, NHM4, NHM5, and MHM. These methods are applied to evaluate the behavior of
four test functions:

• ξ1(z) = z2 − z + 1

• ξ2(z) = z3 − 1

• ξ3(z) = z4 − 10z2 + 9

• ξ4(z) = z5 − 5z3 + 4z

Table 3 presents the simulation results. In the first column, the test functions are identified,
while the second column specifies the roots of each tested function. The ”divergent” category
indicates the number of points that fail to converge to the roots, and the ”time” column denotes
the time taken by each method to process one million initial points.

The data presented in Table 3 clearly demonstrate that MHM outperforms the other meth-
ods by successfully guiding a significantly higher percentage of initial points to convergence.
To elaborate, for function ξ1(z) through ξ3(z), MHM exhibits the lowest proportion of diver-
gent points, namely 0.01%, 2.1%, and 0.8% of consecutively. In all three cases, NHM5 reports
the highest number of divergent points. In the context of ξ4(z), MHM remains advantageous
with only 1.4% of divergent points, while NHM4 struggles to achieve convergence for nearly
47% of initial points. Furthermore, it is evident that MHM consistently generates basins of at-
traction at a faster rate compared to the other methods under consideration which is showed in
Table 3 that it needs less time compared to all other methods.

Figures below display the basins of attraction of the discussed functions. Figure 1 illus-
trates the basins of attraction for function ξ1(z). This function has two complex roots, denoted
by colors blue and red, while the black color remarks the divergent initial guesses.Notably,
NHM5 and MHM exhibit the expansive areas of convergence. Figure 2 depicts the area of con-
vergence for each testing method applied to ξ2(z) which features two complex roots and a real
root. The colors blue and red represent the two complex roots successively, yellow remarks
the third root and black indicates divergence. Remarkably, MHM showcases the largest area
of convergence for all three roots. Figure 3 presents the basins of attraction for function ξ3(z),
displaying the convergence regions for four testing functions with four distinct colors for each
root. NHM5 and MHM provide the largest area of convergence where the black areas are not
as spread across as in HM and NHM4. Lastly, Figure 4 presents basins of attraction for the
solution of function ξ4(z), featuring five different colors representing each real roots, namely
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Table 3: Comparison of number of convergent, divergent and time required of four methods in
solving ξ(z) = 0

Function Roots HM3 NHM4 NHM5 MHM

ξ1(z)

0.5000000000− 0.8660254038i 489257 412064 312902 499943

0.5000000000− 0.8660254038i 489257 412064 312902 499943

divergent 175872 21486 374196 114

time 1969.402 5323.196 5206.946 1875.426

ξ2(z)

−0.5000000000− 0.8660254038i 291887 301676 256200 316599

−0.5000000000 + 0.8660254038i 291887 301676 256200 316599

1 151726 207802 302188 345648

divergent 114038 244922 279798 21154

time 3314.902 9621.241 6483.919 2408.467

ξ3(z)

−3 112754 96730 41600 123678

−1 348898 363250 394448 372550

1 348898 360012 394448 372550

3 112754 91132 41600 123678

divergent 76696 88876 127904 7544

time 3857.295 11295.855 7009.016 3917.205

Table 4: Comparison of number of convergent, divergent and time required of four methods in
solving ξ(z) = 0

Function Roots HM3 NHM4 NHM5 MHM

ξ4(z)

−2. 99554 52654 13382 111266

−1 246996 145286 293654 266420

0 199896 134560 285604 230708

1 246996 145286 293654 266420

2 99554 52654 13382 111266

divergent 107004 469560 100324 13920

time 5306.896 15930.315 7979.46 4113.141

blue for first root, red for second, yellow for the third root, and green and purple for the last two
root consecutively. MHM and NHM5 exhibit notable prominence, displaying large the areas of
convergence, while HM3 and NHM4 produces the most extensive regions of divergence.

These figures serve as valuable tools for identifying regions of divergence, enabling the
identification of potentially challenging initial guesses. Moreover, they facilitate the collection
of initial guesses leading to convergence towards specific roots, thereby ensuring the reliability
of the convergence.
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V. CONCLUSIONS

In this research, we have introduced a novel approach, a modified Householder method
where the second derivative is approximated by cubic polynomial interpolation. We have con-
ducted extensive simulations on the proposed method and have given comparisons with various
Householder methods with different order of convergence. Our analysis encompasses the con-
struction of the basins of attraction, the calculation of the number of initial guesses that con-
verge and diverge and the measurement of time needed to generate the basins of attraction. No-
tably, MHM outperforms other methods in terms of computational efficiency, requiring fewer
iterations for certain functions. It is also evident that MHM is adaptive and maintains stability
to challenging initial guesses while some methods encountered issus or anomaly in specific
scenarios. When given a million initial guesses to simulate solution fo several functions, MHM
succeeds in sending a large portions of them to converge rapidly. These findings suggest that
MHM is capable to handle diverse mathematical function effectively, thereby making it valu-
able tool for numerical optimization tasks.

(a) HM3 (b) NHM4 (c) NHM5 (d) MHM

Figure 1: Basins of attraction of iterative methods for ξ1(z) = z2 − z + 1

(a) HM3 (b) NHM4 (c) NHM5 (d) MHM

Figure 2: Basins of attraction of iterative methods for ξ2(z) = z3 − 1
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(a) HM3 (b) NHM4 (c) NHM5 (d) MHM

Figure 3: Basins of attraction of iterative methods for ξ3(z) = z4 − 10z2 + 9

(a) HM3 (b) NHM4 (c) NHM5 (d) MHM

Figure 4: Basins of attraction of iterative methods for ξ4(z) = z5 − 5z3 + 4z
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