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Abstract. The paper analyzes an efficient alternative to the Box-Cox and Johnson’s 

transformation to normality methods which operates under fairly general settings. The 

method hinges on two results in mathematical statistics: the fact that the cumulative 

distribution function F(x) of a random variable x always has a U(0,1) distribution and the 

Box-Mueller transformation of uniform random variables to standard normal random 

variables.  Bounds for the Kolmogorov-Smirnov statistic between the distribution of the 

transformed observations and the normal distribution are provided by numerical 

simulation and by appealing to the Dvoretzky-Kiefer- Wolfowitz inequality. 
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I. INTRODUCTION

Most  parametric  statistical  tests  of  hypotheses  in  statistical  inference  rely  on  the 

assumption that the data on hand are normally distributed. In fact, for some of these statistical 

tests, departure from this assumption can lead to serious consequences in terms of either  the 

power of the  tests or the  level of significance of the  tests  while others  can  be  quite  robust  

to  departures  from  the  normality  assumption [5] . Since such statistical tests are often used, 

it is a good practice to transform the data to one which obeys the normal distribution prior to 

their use in data analysis. 

The  most  popular  method  used  to  transform  data  to  normality  is  the  Box-Cox 

transformation technique [6].  Thus, if X is any non-negative random variable whose 

distribution is not normal, then the Box-Cox technique finds an exponent a such that:  

1aX
Y

a
−

= , if 0a  or  ( )logY X= if 0a= (1)   

is normal.  If a  =  1,  then  no  transformation  is  needed;  if  a  = - 1,  then  an  inverse 

transformation is required; if a = ½, a square root transformation may be appropriate. By 

convention, a = 0 will refer to a logarithmic data transformation. The usual range for the values 

of a is between -2 to 2 and the process is by trial and error. The trial and error procedure 

involved in using the family of Box-Cox transformations makes it unpopular in practice.  

Despite the limitation, the Box-Cox transformation remains highly effective in normalizing 

skewed data, especially when simpler transformations like the log transformation fail [11]. 
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Unlike other methods, such as generalized power transformations (GPA), the Box-Cox method 

virtually normalizes data by selecting the appropriate power transformation. Osborne [14] 

demonstrated that the Box-Cox transformation outperforms other techniques in achieving 

normality. Furthermore, the Box-Cox transformation is more general because the log 

transformation is a special case of the Box-Cox method. It can handle both positive and 

negative skewness effectively, making it a powerful tool in data analysis [12, 13]. 

In addition to normalizing skewed data, the Box-Cox transformation is often used in 

conjunction with weighted least squares (WLS) techniques to address heteroscedasticity, 

where the variance of the errors is not constant. Agarwal et al. also developed a weighted least 

squares model to determine the optimal weighting parameter, further enhancing the Box-Cox 

transformation's effectiveness in dealing with non-constant variance [15].  

A more recent addition to the methodologies for transforming data to normality is the Yeo-

Johnson transformation [10]. This method generalizes the Box-Cox approach to handle 

negative random variables. However, like the Box-Cox method, the Yeo-Johnson 

transformation still faces similar analytic challenges. For instance, when data are obtained from 

a uniform distribution on [0, 1], the Yeo-Johnson method may fail to find an appropriate 

transformation to normality, even though established procedures exist for transforming 

U(0,1)random variables to normally distributed ones. 

The search for better and more efficient methods for transforming non-normal data 

continues. This paper proposes a more general approach to data transformation that does not 

require trial and error and can be easily implemented with today’s faster and more efficient 

computing power. The proposed method is surprisingly simple and is based on the well-known 

inverse transform theorem in probability. 

II. PRELIMINARIES 

The uniform distribution on [0, 1] whose density is given by: 

                                                ( ) 1,    0 1f u u=  
                                                                  

(2) 

is  the  basis  for  generating  random  numbers  from  other  distribution.  Lemma 1 will be 

used in the proposed procedure later. 

 

Lemma 1 Let  x  be  a random variable with density f(x) and cumulative distribution function 

F(x), then it can be easily shown that F(x) is uniformly distributed on [0,1]. Thus, ( )U F x= has 

a U[0, 1] distribution. It follows that ( )1x F x−= . If we can generate a uniform random number 

U, then we can always generate a random variable x from a distribution f(x) by simply 

following this inversion formula. 

 

Proof: Let x have the cdf F(x). Then, ( ) ( )( ) ( )( )1P U u P F x u P x F u u− =  =  =  which 

is the cdf of a uniform random variable.  It follows that F(x) is uniformly distributed on              

[0, 1]. Next, if we have two independent uniform random variables 1U and 2U , then we can 
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always  use  the  Box-Mueller [1] method  to  generate  two  standard   normal  random 

variables Z0 and  Z1. Suppose U1 and U2 are independent random variables that are uniformly 

distributed in the interval (0, 1]. Let 

( ) ( )0 1 2cos 2ln cos 2Z R U U = = −  

and 

( ) ( )1 1 2sin 2ln sin 2Z R U U = = − . 

Then, Z0 and Z1 are independent random variables with a normal distribution of standard 

deviation of 1. The  proof  is  done  by  the  method  of  Jacobians  and  can  be  seen  in  

standard textbooks in mathematical Statistics (see for example, Hogg and Craig [3]).  

 

A  combination of  these  two  standard  results  in  Mathematical Statistics  provides  a 

way  of   transforming   non-normal  observations  into   normally  distributed   random 

variables.  Roughly,  if  X  is  distributed  F(X),  then  we  know  that F(X)  has  a  U(0,1) 

distribution. Let Y be independently drawn from F(.) so that F(Y)  will also  have the uniform   

distribution   on   (0,1).   Define   Z = g((F(X),F(Y))   be   the   Box-Mueller transformation 

provided above. Our ability to implement this algorithm depends on a large  extent  on  the  

availability  of  a  closed-form  expression  for  the  cumulative distribution function F(X). 

                                             
( ) ( ) F X f x dx



−
=                                                                 

(3) 

Even for well-known probability densities f(.), a closed-form expression (3) may not be easily 

obtained e.g. normal densities, the family of beta densities and others. In order  to  circumvent  

this  problem,  we  assume  that  we  have  a  sufficiently  large number  of observations,  x1,  

x2, ..., xn iid  F(.), where  F(.)  is unknown.  We estimate F(x) by the empirical distribution 

function Fn(x) given by: 

                                              
( ) ( )1

n iF X I x
n

=                                                               (4) 

where ( )iI x is the indicator function. In effect, the empirical distribution function puts a mass 

of 
1
n

 to each of the observations less than or equal to ix . Each ( )iI x is a Bernoulli random 

variable with ( )F x=  so that by the Law of Large Numbers, we know that ( )nF x  converges 

to ( )F x in probability. A stronger result was established independently by Glivenko and 

Cantelli showing that the convergence to F(x) in fact is uniform. 

 

In  the  theory  of  probability,  the  Glivenko-Cantelli  theorem,  named  after  Valery 

Ivanonich   Glivenko[4] and   Francisco   Paolo   Cantelli [2],   determines   the   asymptotic 

behavior  of the  empirical distribution  function as  the  number  of independent and identically 

distributed observation grows. This uniform convergence of more general empirical   

measures   becomes   an   important   property of   the   Glivenko-Cantelli classes of functions 

and sets.    The  Glivenko-Cantelli  classes  arise  in  Vapnik- Chervonenkis  theory [9],  with  
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applications  to  machine  learning.  Applications can be found in econometrics making use of 

M-estimators. The Glivenko-Cantelli Theorem states that: 

                                       
( ) ( ) 0   as nSupF x F x n− → →                                                  (5) 

Bounds for the approximation have been established in the past, the latest being that of Massart 

[7]. The more popular bound, however, is the Dvoretzky-Kiefer- Wolfowitz bound. It is an 

inequality bounds theprobability that the random function Fndiffers from F by more than a 

given constant ε > 0 anywhere on the real line. More precisely, there is the one-sided estimate

( ) ( )( ) 22 1
Pr sup    for every ln2,

2
n

n
x

F x F x e
n

 −



 
−    

   

and the two-sided estimate 

( ) ( )( ) 22Pr sup 2    for every 0.n
n

x

F x F x e  −



 
−    

   

This strengthens   the   Glivenko-Cantelli   

theorem   by   quantifying   the   rate   of convergence as n tends to infinity.  It  also  estimates  

the  tail  probability  of  the Kolmogorov-Smirnov statistic. The Dvoretzky-Kiefer-Wolfowitz 

inequality provides a convenient way for determining the  number  of  observations  needed  

to  estimate  F(x)  to  any  desired  degree  of accuracy with probability 1 – α. 

                                      
2

1
log

2 2
n




                                                        (6) 

We  illustrate  the  sample  size  requirements  for  a  95%  confidence  with  various 

accuracy levels in Table 1. 

 

Table 1 Sample Size Requirements (N) for Varying Effect Sizes (Epsilon) 

epsilon Alpha N 

0.01 0.05 18444.4 

0.02 0.05 4611.1 

0.03 0.05 2049.4 

0.04 0.05 1152.8 

0.05 0.05 737.8 

0.06 0.05 512.3 

0.07 0.05 376.4 

0.08 0.05 288.2 

0.09 0.05 227.7 

0.10 0.05 184.4 

 

III. PROPOSED PROCEDURE 

We formalize the proposed procedure in this section.  Let x1, x2,..., xn be i.i.d. F(x). We 

assume that F(x) is absolutely continuous with respect to a Lebesgue measure viz. the density 

function f(x) exists but is not known. Let Fn(x) be the empirical distribution function of the 

random sample and whose properties are well-established [8]. Assume n is large enough so 

that the maximum difference between parent distribution and the empirical distribution 
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function is small, say . Such a sample size can be obtained from the Dvoretzky-Kiefer-

Wolfowitz inequality. Let: 

 

          ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2, 2ln cos 2   and  , 2ln sin 2g u u U U h u u U U = − = −                         (7) 

 

Lemma 2 Let  U1= Fn(x1) and  U2= Fn(x2).  We claim that g(.)  and  h(.)  are  approximately 

independent standard normal random variables. 

 

Proof: It suffices to prove that g(.) is a standard normal random  variable. If U1 = F(x1) and    

U2  = F(x2), then by the previous result of Box-Mueller, the result follows. We replace F by 

its empirical estimate Fn: 

( ) ( )1 21 2 and n nU F x U F x= =
 

We measure the difference between ( )1 2,g U U
 
and ( )1 2,g U U .Now,  

( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 21 2 1 2 1 2

1 2 1 2

1 2 1 2 1 2 1 2

1 2 2 1 1 1

1 2

, , , ,

2ln cos2 2ln cos2

2ln cos2 2ln cos2 2ln cos2 2ln cos2

2ln cos2 cos2 cos2 2ln 2ln

2ln

n n

n n

n n n n

n n n

g U U g U U g F X F X g F X F X

F X F X F X F X

F X F X F X F X F X F X F X F X

F X F X F X F X F X F X

F X F X F

 

   

  

− = − =

− − − =

− − − + − − − 

− − + − − − 

− − ( ) ( ) ( ) ( )2 1 1cos2 2ln 2ln

1
2 2

n n n nX F X F X F X

 

+ − − −

 + =

 

by the Dvoretzky-Kiefer-Wolfowitz inequality or Glivenko-Cantelli theorem. It follows that 

( )1 2,g U U  is stochastically close to ( )1 2,g U U . Since ( )1 2,g U U is a standard normal variate by the 

by the Box-Mueller, it follows that ( )1 2,g U U is approximate normal. We now establish the fact 

that the maximum deviation of the distribution of ( )1 2,g U U  from the standard normal 

distribution ( )x is bounded by Dvoretzky-Kiefer-Wolfowitz upper bound. Let ( )( )1 2,nF g U U

be the empirical distribution of ( )1 2,g U U . Then: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ) 
( )( ) ( )( ) ( )( ) ( )( ) 

1 2 1 21 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

sup , , sup , , , ,

sup , , sup , ,

n n

n

D F g U U g U U F g U U F g U U F g U U g U U

F g U U F g U U F g U U g U U

 





= − = − + −

 − + −

  
 

It follows that 

( )( ) ( )( )( ) 22
1 2 1 2sup , , 2 n

nP F g U U g U U e   −−   . 

The larger the sample size n is, the better approximation of the sampling distribution of the 

statistic g(.) by a standard normal distribution.  
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The   Yeo-Johnson  method  transforms  an  observation  X  to:  Y  = g(x),  which  is normally  

distributed.  In theory,  thus,  the  original  observation  X  can  be  recovered from X = g-1(y). 

For the proposal method, the original observation undergoes a series of transformations: 

                          ( ) ( )( ) ( ) ( )( )1 1 2 2, ,               ,Z B F X F Y Z B F X F Y= =                                     (8) 

where  F(.)  is  the  cdf  of  X  and  B1 is  the  Box-Mueller  transformation  involving  the cosine 

function and B2 is the transformation involving the sine function. Theoretically,  we  can  solve  

for  F(x)  and  F(y)  given  Z1   and  Z2   by  simultaneously solving Equation (8). This leads to 

( )1U F x=  and ( )2U F y= for which ( )1
1x F U−=

 
and  ( )1

2y F U−= . The problem  ( )1
1x F U−=

 
and  ( )1

2y F U−= is that F is unknown and is replaced by ( )nF x . Thus, to affect the inversion 

process, we need an analytic expression for ( )nF x or an estimated analytic expression as 

( ) ( )1 expn

A
F x

Bx

+ −

which is the sigmoidal function. We note that this expression is the form 

needed to implement a logistic regression. 

 

IV. SIMULATION RESULTS AND DISCUSSION 

4.1 Simulation Results 

We wish to compare the proposed procedure withthe Yeo-Johnson transformation 

technique  using  numerical  simulations.  We  simulated  500  observations  from  the family 

of beta densities, Gamma densities and Laplace distribution. For each set of observations,  we  

performed  both  the  proposed  procedure  and  the  Yeo-Johnson transformation  to  transform  

them  into  normally  distributed  random  numbers.  The results   of   the   transformations   

were   compared   using   the   Kolmogorov-Smirnov deviance statistics. The following 

distributions were used as base distributions for generating the random observations: 

Beta  : B(1,2), B(1,3), B(2,1), B(2,2), B(2,3), B(3,1), B(3,2), B(3,3)  

Gamma :(1,2), G(1,3), G(2,1), G(2,2), G(2,3), G(3,1), G(3,2), G(3,3)  

Laplace : L(1,2), L(1,3), L(2,1), L(2,2), L(2,3), L(3,1), L(3,2), L(3,3). 

In order to implement the proposed procedure, we followed the Algorithm 4.1. 

 

Algorithm 1 

1. Input random data. 

2. Arrange random data from smallest to highest. 

3. Assign a weight of 1 2 3 1
, , , , ,1

n
n n n n

− to the smallest, second lowest, and third lowest 

up to the highest data respectively. 

4. Put the appropriate weights to the original set of unsorted data. 

5. Apply Box-Mueller transformation to the weights in step 4. 

6. Test the transformed data for normality by the Kolmogorov-Smirnov statistic. 
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Whenever  feasible,  we  apply  the   Yeo-Johnson  transformation  in  step  4  to  the original 

data set and compute the Kolmogorov-Smirnov statistic for the transformed data by this 

method. Table 2 shows the summary of the simulation results. 

 

Table 2 Comparison of the Yeo-Johnson Algorithm and the Proposed Algorithm 

 

Distribution 

Proposed Algorithm Yeo-Johnson Algorithm 

P-value Kolmogorov-Smirnov      P-value Kolmogorov-Smirnov      

Beta(1,3) >0.15 0.021 >0.15 No Transformation 

Beta(1,2) >0.15 0.027 >0.15 No Transformation 

Beta(2,3) >0.15 0.016 >0.15 No Transformation 

Beta(2,2) >0.15 0.013 >0.15 No Transformation 

Beta(2,1) >0.15 0.030 >0.15 No Transformation 

Beta(3,1) >0.15 0.020 >0.15 No Transformation 

Beta(3,2) >0.15 0.017 >0.15 0.019 

Beta(3,3) >0.15 0.026 >0.15 0.024 

Gamma(1,3) >0.15 0.021 >0.15 0.017 

Gamma(1,2) >0.15 0.028 >0.15 0.016 

Gamma(2,3) >0.15 0.031 >0.15 No Transformation 

Gamma(2,2) >0.15 0.021 >0.15 No Transformation 

Gamma(2,1) >0.15 0.022 >0.15 No Transformation 

Gamma(3,1) >0.15 0.020 >0.15 No Transformation 

Gamma(3,2) >0.15 0.024 >0.15 No Transformation 

Gamma(3,3) >0.15 0.028 >0.15 No Transformation 

Laplace(1,3) >0.15 0.029 >0.15 0.020 

Laplace(1,2) >0.15 0.032 >0.15 0.029 

Laplace(2,3) >0.15 0.026 >0.15 0.025 

Laplace(2,2) >0.15 0.032 >0.15 0.031 

Laplace(2,1) >0.15 0.026 >0.15 0.025 

Laplace(3,1) >0.15 0.019 >0.15 0.015 

Laplace(3,2) >0.15 0.023 >0.15 0.031 

Laplace(3,3) >0.15 0.029 >0.15 0.033 

 

The   null  hypothesis  that  the  distribution  of  the  transformed  data  is  normal  is 

accepted in all cases for the proposed method. The same observation holds true for the Yeo-

Johnson algorithm whenever a transformation is available. Whenever  a  Yeo-Johnson  

transformation  is  available,  the  computed  Kolmogorov statistic or  maximum deviation 

statistic  tended  to be  lower for it than the proposed method. However, the differences 

observed for the Kolmogorov statistical distances between  the  proposed  method  and  Yeo-

Johnson  method  are  very  small  indeed showing that the two methods provide equally reliable 

results. 
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The main advantage of the proposed method over the Yeo-Johnson algorithm (and Box-Cox 

Method) is that transformations to normally be always possible for the proposed method while 

the same way not be available for the Yeo-Johnson algorithm. The disadvantage, however, is 

the fact that the proposed method requires large number of observations (n > 100) for it to work 

efficiently. The proposed method can easily be coded and incorporated in statistical packages. 

 

4.2 Implications of the Method 

 

The algorithm for generalized conversion to a normal distribution has significant 

applications across various scientific fields where independent and identically distributed 

(i.i.d.) random variables are considered. In healthcare and biostatistics, transforming skewed 

biological measurements, such as biomarkers or survival times, ensures accurate modeling, 

enabling robust statistical inference and better predictive modeling in clinical trials and 

epidemiological studies [20, 21]. In economics and finance, where data often exhibit heavy 

tails and skewness, normalization reduces bias in portfolio optimization, risk modeling, and 

econometric forecasting [22, 23]. Similarly, environmental science benefits from the 

transformation of skewed data like pollutant levels or meteorological observations, facilitating 

effective modeling, trend analysis, and regulatory compliance assessments [17]. In engineering 

and manufacturing, the method enhances quality control by normalizing defect rates and 

measurement deviations, improving process control and reliability assessment [24, 25]. 

Furthermore, social sciences, with their reliance on surveys and psychometric data, leverage 

this algorithm to improve the accuracy of regression models and structural equation modeling 

[26, 27].  

 

4.3 Limitations of the Algorithm in Non-IID Cases 

 

When independent and identically distributed (i.i.d.) random variables are involved, the 

generalized conversion to a normal distribution procedure performs admirably; however, when 

these conditions are not satisfied, it is less useful. A significant disadvantage of data 

dependency is that many real-world datasets exhibit correlations rather than independence. For 

example, in geostatistics or environmental modeling [17], time-series data often exhibit 

autocorrelation [16], where current values depend on previous observations, and spatial data 

may exhibit spatial dependence, which defies the independence assumption. Additionally, the 

algorithm's assumption that all data points have homogeneous distributions might not hold true 

when data comes from mixtures of distributions, such as combining datasets from different 

populations or experiments [18], or when distributional shifts occur over time or among 

subgroups [19]. 

V. CONCLUSION 

The generalized algorithm for converting data to a normal distribution represents a 

transformative step in addressing the challenges posed by non-normality in statistical analysis. 

Its capacity to transform diverse datasets into a standard normal distribution, grounded in solid 

theoretical principles and validated through empirical testing, makes it a robust alternative to 

established methods such as the Box-Cox and Yeo-Johnson transformations. This versatility 
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allows for its application across a wide range of fields, including healthcare, finance, 

environmental science, and engineering, where reliable data normalization is critical. 

Despite the algorithm's global applicability and consistent results, its limits in non-i.i.d. and 

dependence on high sample numbers are its drawbacks. Datasets indicate areas that want 

improvement. For further developments, the novel combination of the empirical distribution 

function and the Box-Mueller transformation offers a starting point. In order to enhance data 

preprocessing and feature engineering for skewed datasets, this study could be extended to 

high-dimensional domains like machine learning or genomics and image processing, where 

relationships between variables are common. Potential uses in dynamic systems, like 

engineering predictive maintenance, adaptive environmental monitoring, and real-time 

financial modeling, could also be looked into. 

It is recommended that future academics expand on this work by changing the algorithm to 

handle non-i.i.d. data settings, improving its scalability for datasets with high dimensions, or 

incorporating it into statistical software tools that are automated. Researchers can further 

unleash the algorithm's potential by expanding and improving this study, opening the door for 

more creative and extensive applications in both established and developing scientific fields. 
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