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Abstract. This study developed a model for the spread of measles based on the SEIR model 

by adding the factors of using the first dose of vaccination, the second dose of vaccination, 

and treatment. Making this model begins with making a compartment diagram of the spread 

of the disease, which consists of seven subpopulations, namely susceptible subpopulations, 

subpopulations that have received the first dose of vaccination, subpopulations that have 

received the second dose vaccination, exposed subpopulations, infected subpopulations, 

subpopulations that have received treatment, and subpopulations healed. After the model is 

formed, the disease-free equilibrium point, endemic equilibrium point, and basic 

reproduction number (𝑅0) are obtained. Analysis of the stability of the disease-for 

equilibrium point was locally asymptotically stable when (𝑅0) < 1 . The backward 
bifurcation analysis occurs when (𝑅𝑐) is present and 𝑅𝑐 < 𝑅0. Numerical simulations of 

disease-free and endemic equilibrium points are carried out to provide an overview of the 

results analyzed with parameter values from several sources. The results of the numerical 

simulation are in line with the analysis carried out. From the model analysis, the disease 

will disappear more quickly when the level of vaccine used and individuals who carry out 

treatment are enlarged. 

Keywords: Measles, SEIR model, Equilibrium Point, Basic Reproduction Number, 

Bifurcation 

I. INTRODUCTION

Measles is an acute infectious disease caused by the measles virus from the paramyxovirus 

group [1]. A person who interacts closely with a person infected with measles can become 

infected if they do not yet have immunity. People previously vaccinated or infected with the 

measles virus may be immune to measles [2]. Meanwhile, people exposed to the measles virus 

are characterized by red spots on the skin, followed by early symptoms of fever, watery eyes, 

cough, and runny nose. Usually, the rash appears first on the face and upper neck. Then, the 

rash will spread to the hands and feet after three days [3]. Measles is very dangerous because 

it can cause brain and organ damage, complications, and paralysis, and the most dangerous is 

death [4].  

Measles surged worldwide in 2019, reaching the highest number of cases reported in 23 

years. Highlighted in WHO and United States Centers for Disease Control and Prevention 

(CDC) publications, the global number of measles cases rose to 869,770 in 2019, the highest

number reported since 1996, with increases in all World Health Organization (WHO) regions.

Deaths from global measles have increased by almost 50% since 2016, with an estimated
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207,500 deaths in 2019 [5]. Until 2018, there were 89,127 cases of measles in Indonesia, with 

22 of them ending in death [6]. The incidence of measles outbreak transmission in a population 

can be modeled mathematically. Many studies are on modeling this measles disease. 

Jaharuddin and Toni Bakhtiar [7], who developed the SVEITR model. In this model, there are 

six populations, namely S susceptible human population (Susceptible), V vaccinated 

population (Vaccinated), E exposed human population (Exposed), I infected human population 

(Infected), T human population undergoing treatment (Treated), and R human population 

recovered (Recovered). Furthermore, Abdul Kudus, Mohiuddin, and Rahman [8] developed 

the SVEIR model. In this model, there are six populations, namely S susceptible human 

population (Susceptible), V vaccinated population (Vaccinated), where the vaccine is divided 

into two, namely, first dose vaccination and second dose vaccination, E human population 

exposed (Exposed), I human population infected (Infected), and the human population R 

recovered (Recovered). 

This research will develop a mathematical model for the spread of measles by integrating 

the models presented in [7] and [8], incorporating the administration of vaccines and treatment. 

The model in this study assumes that individuals who are given up to two stages, individuals 

who have been vaccinated, can still be infected with measles. However, individuals who have 

been vaccinated will have optimal immunity. Thus, the measles infection that occurs will not 

be too severe. 

II. MATHEMATICAL MODEL 

The model used in the spread of Measles is 𝑆𝑉1𝑉2𝐸𝐼𝑇𝑅 (Susceptible, Vaccination dose 1, 

Vaccination dose 2, Exposed, Infected, Treatment, Recovered), which was developed by 

dividing the individual population into seven compartments: Susceptible (S), which is 

individuals who are susceptible to infection, first dose vaccination (V1) namely disease-prone 

individuals who carry out the first dose of vaccination, second dose vaccination (V2) namely 

disease-prone individuals who have vaccinated the first dose and then take the second dose, 

exposed (E) is individuals who have contracted the disease but have not shows signs of disease 

and cannot transmit the disease, Infected (I) is an individual who is infected with measles, 

treatment (T) is an infected individual who is receiving treatment, recovered (R) is an 

individual who has recovered from measles. Assuming the total population (𝑁) is constant, 

with 𝑁 = 𝑆 + 𝑉1 + 𝑉2 + 𝐸 + 𝐼 + 𝑇 + 𝑅 . In forming the model, we use the following 

assumptions: (1) The population is assumed to be homogeneous, meaning that each individual 

has the same opportunity to make contact with other individuals; (2) the population is assumed 

to be closed, meaning that no individual enters the population or leaves the population ( no 

migration) total population is assumed to be constant, (3) every individual born is susceptible 

to contracting the disease, (4) natural birth and death rates are assumed to be the same per unit 

of time, (5) vaccination is carried out in two stages. It is assumed that individuals who carry 

out the first dose of vaccination can still be infected, while those who have received the second 

dose of vaccination are immune to the disease, (6) infected individuals will undergo treatment 

or recover naturally, (7) individuals who receive treatment will recover from disease, (8) 

recovered individuals have immunity to disease, (9) death from disease is negligible. 

Schematically spreading Measles by vaccination and treatment can be presented in the transfer 

diagram in Figure 1 and the list of parameters in Table 1. 
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Table 1. List of Parameters for the Measles Disease Spread Model with Two-Dose 

Vaccination and Treatment 

NO Parameter Definition Requirement Unit 

1 𝜇 Birth and natural death rate. 0 < 𝜇 ≤ 1 
1

𝑑𝑎𝑦
 

2 𝜌 

Rate of development of susceptible 

individuals who have just received the 

first vaccination. 

0 < 𝜌 ≤ 1 
1

𝑑𝑎𝑦
 

3 𝛽 

Transition rate from susceptible 

individuals to exposed individuals 

through contact with infected individuals. 

0 < 𝛽 ≤ 1 

 
1

𝑑𝑎𝑦
 

4 𝛼 
Transition rate from exposed individuals 

to infected individuals. 
0 < 𝛼 ≤ 1 

1

𝑑𝑎𝑦
 

5 𝜖 
Transition rate from infected individuals 

to individuals undergoing treatment. 
0 ≤ ϵ ≤ 1 

1

𝑑𝑎𝑦
 

6 𝜂 

Transition rate from susceptible 

individuals to individuals receiving the 

first dose of vaccination. 

0 < η ≤ 1 
1

𝑑𝑎𝑦
 

7 𝜎 

Transition rate from individuals receiving 

the first vaccination dose to receiving the 

second dose. 

0 ≤ 𝜎 ≤ 1 
1

𝑑𝑎𝑦
 

8 𝜔 

The recovery rate of individuals who 

have received the second dose of 

vaccination. 

0 ≤ ω ≤ 1 
1

𝑑𝑎𝑦
 

9 𝛾1 The recovery rate of exposed individuals. 0 ≤ 𝛾1 ≤  1 
1

𝑑𝑎𝑦
 

10 𝛾2 
The recovery rate of infected individuals 

(natural recovery). 
0 ≤ 𝛾2 ≤  1 

1

𝑑𝑎𝑦
 

11 𝛾3 
The recovery rate of individuals 

undergoing treatment for measles. 
0 ≤ 𝛾3 ≤  1 

1

𝑑𝑎𝑦
 

 

The mathematical model above transfer diagram can be expressed as follows: 
𝑑𝑆

𝑑𝑡
 = 𝜇𝑁 +  𝜌𝑉1 − 𝑆 (𝜇 + 𝜂) −

𝛽𝑆𝐼

𝑁
 

𝑑𝑉1

𝑑𝑡
  = 𝜂𝑆 − 𝑉1 (𝜌 + 𝜎 + 𝜇) 

𝑑𝑉2

𝑑𝑡
  = 𝜎𝑉1 − 𝑉2 (𝜇 + 𝜔) 

𝑑𝐸

𝑑𝑡
  = 

𝛽𝑆𝐼

𝑁
− 𝐸 (𝜇 + 𝛼 + 𝛾1)                   (1) 

𝑑𝐼

𝑑𝑡
  = 𝛼𝐸 − 𝐼 (𝜇 + 𝛾2 + 𝜖) 

𝑑𝑇

𝑑𝑡
  = 𝜖𝐼 − 𝑇 (𝜇 + 𝛾3) 

𝑑𝑅

𝑑𝑡
  = 𝛾1𝐸 + 𝛾2𝐼 + 𝛾3𝑇 + 𝜔𝑉2 − 𝜇𝑅 
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From the system (1) obtained 𝑁 = 𝑆 + 𝑉1 + 𝑉2 + 𝐸 + 𝐼 + 𝑇 + 𝑅, 
𝑑𝑁

𝑑𝑡
= 0, so 𝑁(𝑡) = 𝑘, to 𝑘 

the real number positive, therefore proved 𝑁(𝑡) is constant. The system (1) is formed in a non-

dimensional model to simplify the system (1). The proportion of the number of individual 

compartments can be expressed as follows: 

 𝑠 =
𝑑𝑆

𝑑𝑁
 , 𝑣1 =

𝑑𝑉1

𝑑𝑁
 , 𝑣2 =

𝑑𝑉2

𝑑𝑁
, 𝑒 =

𝑑𝐸

𝑑𝑁
 , 𝑖 =

𝑑𝐼

𝑑𝑁
 , 𝑡 =

𝑑𝑇

𝑑𝑁
 , 𝑟 =

𝑑𝑅

𝑑𝑁
             (2) 

Furthermore, the system (2) variable 𝑟 does not appear in other equations, then the equation 𝑟 

for a while can be ignored from the system. So, the system (2) can be written into: 
𝑑𝑠

𝑑𝑡
 = 𝜇 +  𝜌𝑣1 − 𝑠 (𝜇 + 𝜂 + 𝛽𝑖) 

𝑑𝑣1

𝑑𝑡
  = 𝜂𝑠 − 𝑣1 (𝜌 + 𝜎 + 𝜇) 

𝑑𝑣2

𝑑𝑡
  = 𝜎𝑣1 − 𝑣2 (𝜇 + 𝜔) 

𝑑𝑒

𝑑𝑡
  = 𝛽𝑠𝑖 − 𝑒 (𝜇 + 𝛼 + 𝛾1)                                                                                                   (3) 

𝑑𝑖

𝑑𝑡
  = 𝛼𝑒 − 𝑖 (𝜇 + 𝛾2 + 𝜖) 

𝑑𝑡

𝑑𝑡
  = 𝜖𝑖 − 𝑡 (𝜇 + 𝛾3) 

III. MODEL ANALYSIS 

The stability of the equilibrium point of the model carries out the analysis model. The 

equilibrium point is obtained by creating an equation on the system (3) equal to zero. First, to 

find the equilibrium-free disease that is the point of equilibrium when there is no infected in 

the population so that 𝑖 = 0. It obtained free of the disease equilibrium point. 

𝐸1(𝑠, 𝑣1, 𝑣2, 𝑒, 𝑖, 𝑡) = (
𝜇(𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂))+𝜌𝜂𝜇

[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)](𝜇+𝜂)
,

𝜂𝜇

[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)]
,

𝜎𝜂𝜇

[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)](𝜇+𝜔)
, 0,0,0).  

To simplify the next writing, suppose 𝐴 = (𝜎 + 𝜇),  𝐵 = (𝜇 + 𝜂), 𝐶 = (𝜇 + 𝛾2 + 𝜖), 𝐷 =
(𝜇 + 𝛼 + 𝛾1), 𝐸 = (𝜇 + 𝜂), 𝐹 = (𝜌 + 𝜎 + 𝜇), 𝐺 = (𝜇 + 𝛼𝛾1), and 𝐻 = (𝜇 + 𝛾2 + 𝜖), 𝐼 =
(𝜇 + 𝜔), 𝐽 = (𝜇 + 𝛾3). 

 
Figure 1. The diagram of transfer model of spread disease Measles 
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Then, determine the basic reproduction number of (𝑅0) from the system (3) by finding the 

maximum eigenvalues obtained from the next-generation matrix. The system Determination 

steps 𝑅0 system (3) as [9]: 

1. Take the equations that describe the case of new infections and changes in the infection 

compartment of the system. Furthermore, this system is called an infected subsystem. 

2. Do linearization against infected subsystems at the disease-free equilibrium point. This 

linear system is represented by the Jacobi matrix (J) as follows: 

𝐽(𝑒,𝑖,𝑡) = [

−(𝜇 + 𝛼 + 𝛾1) 𝛽𝑠 0

𝛼 −(𝜇 + 𝛾2 + 𝜖) 0

0 𝜖 −(𝜇 + 𝛾3)

] 

3. The Jacobi matrix (J) decomposition becomes 𝑱 = 𝑭 − 𝑽 , with 𝑭  being the 

transmission matrix and 𝑽 being the transmission matrix. 

 𝑭 = [
0 (

𝛽𝜇[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)]+𝛽𝜌𝜂𝜇

[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)](𝜇+𝜂)
) 0

0 0 0
0 0 0

], 𝑽 [

(𝜇 + 𝛼 + 𝛾1) 0 0

−𝛼 (𝜇 + 𝛾2 + 𝜖) 0
0 −𝜖 (𝜇 + 𝛾3)

] 

4. Find 𝑅0 with 𝑅0 = 𝜌(𝐹𝑉−1) 

By completing the equation det(𝜆𝐼 − 𝐹𝑉−1) = 0  or (𝜆 −
𝛼𝛽𝜇(𝑧+𝑥𝑦)+𝛼𝛽𝜌𝜂𝜇

(𝑧+𝑥𝑦)𝑦𝑢ℎ
) 𝜆2 = 0 , 

obtained 𝜆1,2 = 0 and  𝜆3 =
𝛼𝛽𝜇(𝑧+𝑥𝑦)+𝛼𝛽𝜌𝜂𝜇

(𝑧+𝑥𝑦)𝑦𝑢ℎ
. As 𝑅0 obtained from spectral radius or 

the greatest value of the eigenvalues, then obtained: 

𝑅0 =
𝛼𝛽𝜇(𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂))+𝛼𝛽𝜌𝜂𝜇

[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)](𝜇+𝜂)(𝜇+𝛼+𝛾1)(𝜇+𝛾2+𝜖)
  

Next, we will look for the endemic equilibrium point when the infected class is not zero or 

when the disease spreads or becomes epidemic in the population. Endemic equilibrium point 

means that in a population there are always individuals with disease, obtained 𝐼 at the disease 

endemic equilibrium point 𝐼∗ > 0. So, disease endemic equilibrium point system (3) is 𝐸2 =
(𝑠∗, 𝑣1

∗, 𝑣2
∗, 𝑒∗, 𝑖∗, 𝑡∗) with 

 𝑠∗  = 
𝜇[𝜌(𝜇+𝛽𝑖∗)+(𝜎+𝜇)(𝜇+𝜂+𝛽𝑖∗)]+𝜌𝜂𝜇

[𝜌(𝜇+𝛽𝑖∗)+(𝜎+𝜇)(𝜇+𝜂+𝛽𝑖∗)](𝜇+𝜂+𝛽𝑖∗)
 

 𝑣1
∗ = 

𝜂𝜇

[𝜌(𝜇+𝛽𝑖∗)+(𝜎+𝜇)(𝜇+𝜂+𝛽𝑖∗)]
 

 𝑣2
∗ = 

𝜎𝜂𝜇

[𝜌(𝜇+𝛽𝑖∗)+(𝜎+𝜇)(𝜇+𝜂+𝛽𝑖∗)](𝜇+𝜔)
 

 𝑒∗  = 
𝛽𝑖∗𝜇[𝜌(𝜇+𝛽𝑖∗)+(𝜎+𝜇)(𝜇+𝜂+𝛽𝑖∗)]+𝜌𝜂𝜇

[𝜌(𝜇+𝛽𝑖∗)+(𝜎+𝜇)(𝜇+𝜂+𝛽𝑖∗)](𝜇+𝜂+𝛽𝑖∗)(𝜇+𝛼+𝛾1)
                          

(4) 

 𝑖∗ = 
−𝑏±√𝑏2−4𝑎𝑐

2𝑎
 

 𝑡 = 
𝜖𝑖∗

𝜇+𝛾3
 

with  

𝑎 = 𝐶𝜌𝛽2𝐷 + 𝐶𝐴𝛽2𝐷 

𝑏 = 𝐶𝜌𝜇𝐷𝛽 + 𝐶𝜌𝛽𝐷𝐵 + 𝐶𝐴𝐵𝐷𝛽 + 𝐶𝐴𝛽𝐷𝐵 − 𝛼𝛽2𝜌𝜇 − 𝛼𝛽2𝜇𝐴 

𝑐 = 𝐶𝜌𝜇𝐷𝐵 + 𝐶𝐴𝐵2𝐷 − 𝛼𝛽𝜌𝜇2 − 𝛼𝛽𝜇𝐴𝐵 − 𝛼𝛽𝜌𝜂𝜇 

𝐴 = (𝜎 + 𝜇), 𝐵 = (𝜇 + 𝜂), 𝐶 = (𝜇 + 𝛾2 + 𝜖), dan 𝐷 = (𝜇 + 𝛼 + 𝛾1). 
 

Theorem 1 If 𝑅0 > 1, the system (3) has two equilibrium points: the free equilibrium point of 

this disease, E1, and the equilibrium endemic to 𝐸2. 
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Proof: To prove theorem 1 needs to be demonstrated if 𝑅0 > 1 then the equilibrium point 𝐸2 

exists. The existence of an equilibrium point is indicated by each of its positive elements then 

𝑖  at the equivalence point of 𝐸2 = (𝑠∗, 𝑣1
∗, 𝑣2

∗, 𝑒∗, 𝑖∗, 𝑡∗)  the equation (4) clearly positive 

𝑠∗, 𝑣1
∗, 𝑣2

∗, 𝑒∗, 𝑖∗, 𝑡∗ and positive, so it needs to be demonstrated 𝑖∗ > 0. 

𝑐 = (𝜇 + 𝛾2 + 𝜖)𝜌𝜇(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝜂) + (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇) 

 (𝜇 + 𝜂)2(𝜇 + 𝛼 + 𝛾1) − 𝛼𝛽𝜌𝜇2 − 𝛼𝛽𝜇(𝜎 + 𝜇)(𝜇 + 𝜂) − 𝛼𝛽𝜌𝜂𝜇  

 = 
(𝜇+𝛾2+𝜖)𝜌𝜇(𝜇+𝛼+𝛾1)(𝜇+𝜂)+(𝜇+𝛾2+𝜖)(𝜎+𝜇)(𝜇+𝜂)2(𝜇+𝛼+𝛾1)

(𝜇+𝛾2+𝜖)𝜌𝜇(𝜇+𝛼+𝛾1)(𝜇+𝜂)+(𝜇+𝛾2+𝜖)(𝜎+𝜇)(𝜇+𝜂)2(𝜇+𝛼+𝛾1)
 

  ((𝜇 + 𝛾2 + 𝜖)𝜌𝜇(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝜂) + (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇)(𝜇 + 𝜂)2 

  (𝜇 + 𝛼 + 𝛾1) − (𝛼𝛽𝜌𝜇2 + 𝛼𝛽𝜇(𝜎 + 𝜇)(𝜇 + 𝜂) + 𝛼𝛽𝜌𝜂𝜇)) 

 = (𝜇 + 𝛾2 + 𝜖)𝜌𝜇(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝜂) + (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇)(𝜇 + 𝜂)2   

  (𝜇 + 𝛼 + 𝛾1) (
(𝜇+𝛾2+𝜖)𝜌𝜇(𝜇+𝛼+𝛾1)(𝜇+𝜂)+(𝜇+𝛾2+𝜖)(𝜎+𝜇)(𝜇+𝜂)2(𝜇+𝛼+𝛾1)

(𝜇+𝛾2+𝜖)𝜌𝜇(𝜇+𝛼+𝛾1)(𝜇+𝜂)+(𝜇+𝛾2+𝜖)(𝜎+𝜇)(𝜇+𝜂)2(𝜇+𝛼+𝛾1)
− 

  (
𝛼𝛽𝜌𝜇2+𝛼𝛽𝜇(𝜎+𝜇)(𝜇+𝜂)+𝛼𝛽𝜌𝜂𝜇

(𝜇+𝛾2+𝜖)𝜌𝜇(𝜇+𝛼+𝛾1)(𝜇+𝜂)+(𝜇+𝛾2+𝜖)(𝜎+𝜇)(𝜇+𝜂)2(𝜇+𝛼+𝛾1)
))  

 = ((𝜇 + 𝛾2 + 𝜖)𝜌𝜇(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝜂) + (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇)(𝜇 + 𝜂)2 

  (𝜇 + 𝛼 + 𝛾1))(1 − 𝑅0 ) 

 = (𝐻(𝜌𝜇)𝐺𝐸 + 𝐻(𝜎 + 𝜇) 𝐸2𝐺)(1 − 𝑅0 )                           

(5) 

with 𝐸 = (𝜇 + 𝜂), 𝐺 = (𝜇 + 𝛼 + 𝛾1), and 𝐻 = (𝜇 + 𝛾2 + 𝜖).  
With 𝑅0 > obtained the value 𝑐 < 0, the equation has at least one positive root. Then obtained 

𝑖∗ > 0 if and only if 𝑅0 > 1. 

 

Theorem 2: If 𝑅0 < 1, then 𝐸1 disease-free Equilibrium point stable asymptotic local. 

Bukti: The value of Eigen matrix Jacobi from the system (3) at the 𝐸1 disease-free equilibrium 

point is obtained from the following dispute 

𝐽(𝐸1) =

[
 
 
 
 
 
−(𝐸 + 𝛽𝑖) 𝜌 0 0 −𝛽𝑠 0

𝜂 −𝐹 0 0 0 0
0 𝜎 −𝐼 0 0 0
𝛽𝑖 0 0 −𝐺 𝛽𝑠 0
0 0 0 𝛼 −𝐻 0
0 0 0 0 𝜖 −𝐽]

 
 
 
 
 

 

det(𝜆𝐼 −  𝐽(𝐸1)) = 0 

⇔ 
|

|

𝜆 + 𝐸 −𝜌 0 0 𝛽𝑠 0
−𝜂 𝜆 + 𝐹 0 0 0 0
0 −𝜎 𝜆 + 𝐼 0 0 0
0 0 0 𝜆 + 𝐺 −𝛽𝑠 0
0 0 0 −𝛼 𝜆 + 𝐻 0
0 0 0 0 −𝜖 𝜆 + 𝐽

|

|
= 0 

So, the characteristic equation for 𝐽(𝐸1) is 

⇔ (𝜆 + 𝐽)(𝜆 + 𝐼)[𝜆2 + (𝐻 + 𝐺)𝜆 + 𝐺𝐻 − 𝛽𝑠𝛼][𝜆2 + (𝐹 + 𝐸)𝜆 + 𝐹𝐸 − 𝜂𝜌] = 0 

Obtained   𝜆1 = −(𝜇 + 𝛾3) and 𝜆2 = −(𝜇 + 𝜔), because   𝜇,  𝛾3, and 𝜔 positive value, then 

the real part of both Eigenvalues are, negative. The other Eigenvalues are the polynomial roots 

as follow. Let 𝑃 = [𝜆2 + (𝐻 + 𝐺)𝜆 + 𝐺𝐻 − 𝛽𝑠𝛼] 
Obatined 𝑎𝑃0 = 1, 𝑎𝑃1 =  𝐻 + 𝐺, 𝑎𝑃2 = 𝐺𝐻 − 𝛽𝑠𝛼, with 𝐺 = (𝜇 + 𝛼 + 𝛾1),  and 𝐻 = (𝜇 +
𝛾2 + 𝜖). 
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𝑎𝑃1 =  𝐻 + 𝐺 

        = (𝜇 + 𝛾2 + 𝜖) + (𝜇 + 𝛼 + 𝛾1) 

       = 2𝜇 + 𝛾2 + 𝜖 + 𝛼 + 𝛾1 > 0                    

(6) 

𝑎𝑃2 = 𝐺𝐻 − 𝛽𝑠𝛼 = 𝐺𝐻(1 − 𝑅0)                                    (7) 

Based on the equation (8)  because 𝑅0 < 1 then 𝑎𝑃2 > 0. 

Let 𝑄 = [𝜆2 + (𝐹 + 𝐸)𝜆 + 𝐹𝐸 − 𝜂𝜌] 
Obatined 𝑎𝑄0 = 1, 𝑎𝑄1 =  𝐹 + 𝐸, 𝑎𝑄2 = 𝐹𝐸 − 𝜂𝜌, with 𝐸 = (𝜇 + 𝜂), and   𝐹 = (𝜌 + 𝜎 + 𝜇). 

𝑎𝑄1 =  𝐹 + 𝐸 = (𝜌 + 𝜎 + 𝜇) + (𝜇 + 𝜂) = 2𝜇 + 𝜌 + 𝜎 + 𝜂 > 0                                           (8) 

𝑎𝑄2 = 𝐹𝐸 − 𝜂𝜌 = (𝜌 + 𝜎 + 𝜇)(𝜇 + 𝜂) − 𝜂𝜌 = (𝜌 + 𝜎 + 𝜇)𝜇 + (𝜎 + 𝜇)𝜂 > 0               (9) 

Because of 𝑎𝑃1, 𝑎𝑃2, 𝑎𝑄1and 𝑎𝑄2 are positive, so based on the Lienard-Chipart criteria [10], the 

equation (6) has negative. So, it can be concluded that the disease-free equilibrium 𝐸1 point is 

a local asymptotic stable.  

 

3.1 Bifurcation Analysis 

In this case, we use the endemic equilibrium point to find the optimum 𝑅0 equation to create 

a bifurcation curve, so that for the 𝑅0 alue which is smaller than the optimum value, there is no 

spread of infectious diseases. [11]. 

know the equation as follows: 
𝑔(𝐼) =  𝑎(𝑖∗)2 + 𝑏(𝑖∗) + 𝑐 = 0  (10) 

with 

𝑎 = (𝜇 + 𝛾2 + 𝜖)𝜌𝛽2(𝜇 + 𝛼 + 𝛾1) + (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇)𝛽2(𝜇 + 𝛼 + 𝛾1) 

𝑏 = (𝜇 + 𝛾2 + 𝜖)𝜌𝜇(𝜇 + 𝛼 + 𝛾1)𝛽 + (𝜇 + 𝛾2 + 𝜖)𝜌𝛽(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝜂) + 

  (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇)(𝜇 + 𝜂)(𝜇 + 𝛼 + 𝛾1)𝛽 + (𝜇 + 𝛾2 + 𝜖)(𝜎 + 𝜇) 

  𝛽(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝜂) − 𝛼𝛽2𝜌𝜇 − 𝛼𝛽2𝜇(𝜎 + 𝜇) 

𝑐 = (H(𝜌𝜇)GE + H(𝜎 + 𝜇) E2G)(1 − 𝑅0 ) 

and 𝑅0 = (
𝛼𝛽𝜇(𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂))+𝛼𝛽𝜌𝜂𝜇

[𝜌𝜇+(𝜎+𝜇)(𝜇+𝜂)](𝜇+𝜂)(𝜇+𝛼+𝛾1)(𝜇+𝛾2+𝜖)
) 

where, 

𝐸 = (𝜇 + 𝜂), 𝐹 = (𝜌 + 𝜎 + 𝜇), 𝐺 = (𝜇 + 𝛼 + 𝛾1), and 𝐻 = (𝜇 + 𝛾2 + 𝜖). 

Next, the backward bifurcation equation will be searched by finding the optimum point 

Equation 𝑔(𝐼) then, substitute the result into the equation 𝑔(𝐼) = 0 to get value 𝑅𝑐. 

𝑅0
𝑐 = 1 −

𝑏2

4𝑎(𝐻(𝜌𝜇)𝐺𝐸+𝐻(𝜎+𝜇) 𝐸2𝐺)
 

So, the backward bifurcation is true for the value of 𝑅0 < 1, so the backward bifurcation 

equation is 𝑅0
𝑐 < 𝑅0 < 1. This means that the disease will remain in the population when 𝑅0 >

1 and 𝑅0
𝑐 < 𝑅0 < 1, disease disappears from the population when 𝑅0 < 1. 

3.2 Model Simulation 

This section contains a numerical simulation of a mathematical model of the spread of 

measles with the first dose of vaccination, second dose of vaccination, and treatment. 

Simulations are carried out to see the stability of the disease-free equilibrium point and the 
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endemic equilibrium point. Simulation using Maple 2020 and the function DETools with the 

parameters obtained from previous studies and measles-related assumptions. 

 

Table 2. The parameter and unit are used in the simulation 

No Parameter Value Unit Reference 

1 𝜇 0,02 
1

𝑑𝑎𝑦
 [12] 

2 𝜌 0,6 
1

𝑑𝑎𝑦
 [8] 

3 𝛽 0,33 
1

𝑑𝑎𝑦
 [13] 

4 𝛼 0,018 
1

𝑑𝑎𝑦
 [8] 

5 𝜖 0,050 
1

𝑑𝑎𝑦
 [7] 

6 𝜂 0,94 
1

𝑑𝑎𝑦
 [8] 

7 𝜎 0,93 
1

𝑑𝑎𝑦
 [8] 

8 𝜔 0,8 
1

𝑑𝑎𝑦
 [8] 

9 𝛾1 0,08 
1

𝑑𝑎𝑦
 [7] 

10 𝛾2 0,6 
1

𝑑𝑎𝑦
 [8] 

11 𝛾3 0,136 
1

𝑑𝑎𝑦
 [7] 

 

Based on Figure 2, it can be interpreted as follows: the vulnerable individual population 

declines, reaching a point and stabilizing on that point by day 20. The population of individuals 

who have received the first vaccination dose decreases, reaching a point and stabilizing on that 

point by day 20. The population of individuals who have received the second vaccination dose 

decreases, reaching a point and stabilizing on that point by day 20. The exposed individual 

population decreases, reaching 0 by day 70 and stabilizing. The infected individual population 

decreases, reaching 0 by day 15 and stabilizing. The population of individuals undergoing 

treatment decreases, reaching 0 by day 60 and stabilizing. The recovered individual population 

increases, reaching a point and stabilizing on that point by day 50. 

Next, a numerical simulation will be performed for 𝑅0 > 1. Based on Table 1, if the value 

of the parameter 𝛽 is enlarged from the previous value to 𝛽 = 0.94, the value of the parameter 

𝛼 is enlarged from the previous value to 𝛼 = 0.3, the value of the parameter 𝜂 is reduced from 

the previous value to 𝜂 = 0.00015, and the value of the parameter 𝛾2 is reduced from the 

previous value to 𝛾2 = 0.2. Based on these parameters' values, the system's basic reproduction 

number (3) is 𝑅0 = 2.887959271 > 1. Because 𝑅0 > 1, the disease will spread, or in other 

words, it will be endemic. Then, the simulation results are obtained as follows: 
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Based on the results of numerical simulations, it can be concluded that the disease will 

disappear if 𝑅0 < 1 and remain in the population if 𝑅0 > 1. 

3.3 Sensitivity Analysis 

Sensitivity analysis is used to identify which parameter significantly influences the value of 

𝑅0, which is then used as an intervention. Parameters with the highest impact on 𝑅0 indicate 

that these parameters have the most dominant influence on the epidemic or the spread of 

measles. Using the parameter values in Table 1, the sensitivity index of each parameter in the 

 
Figure 2. Simulation System (3) to a disease free equilibrium point. 

3 

 
Figure 4. Simulation System (3) to an endemic equilibrium 

point. 
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basic reproduction number 𝑅0  is shown in Table 2 below as an example of finding the 

sensitivity index value of 𝑅0 to the parameter 𝛽.  

𝐶𝛽
𝑅0 =

𝜕𝑅0

𝜕𝛽
×

𝛽

𝑅0
 

=
𝛼𝜇(𝜌𝜇 + (𝜎 + 𝜇)(𝜇 + 𝜂)) + 𝛼𝜌𝜂𝜇

[𝜌𝜇 + (𝜎 + 𝜇)(𝜇 + 𝜂)](𝜇 + 𝜂)(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝛾2 + 𝜖)
×

𝛽

𝑅0
 

=
𝛽𝛼𝜇(𝜌𝜇 + (𝜎 + 𝜇)(𝜇 + 𝜂)) + 𝛽𝛼𝜌𝜂𝜇

[𝜌𝜇 + (𝜎 + 𝜇)(𝜇 + 𝜂)](𝜇 + 𝜂)(𝜇 + 𝛼 + 𝛾1)(𝜇 + 𝛾2 + 𝜖)𝑅0
 

= 1.000000000 

 

Table 3. Parameter Sensitivity Index 

No Parameter Sensitivity Index 

1 𝛽 +1,000000000 

2 𝜂 −0,9664502161 

3 𝛾2 −0,8955223883 

4 𝛼 +0,8474576273 

5 𝜇 +0,7592319496 

6 𝛾1 −0,6779661013 

7 𝜌 +0,3741097612 

8 𝜎 −0,3662337660 

9 𝜖 −0,07462686566 

Table 3 shows the sensitivity index of each parameter used in this model. The sensitivity 

index is ordered by how much influence the parameter has on the value of 𝑅0. The parameter 

index with a positive value indicates that if the index is enlarged while the other indexes are 

constant, it will affect the value of 𝑅0 , which also increases. In contrast, if the index is 

decreased, the value of 𝑅0 will also decrease. Parameter index with a negative value indicates 

that if the index is increased, the value of 𝑅0 will decrease, whereas if the index is decreased, 

the value of 𝑅0 will increase.  

The sensitivity index shows that the parameter 𝛽 (the rate of transmission from susceptible 

individuals to exposed individuals after infection from infected individuals) is the parameter 

that has the most influence (positive) on measles transmission if the sensitivity index value 

level 𝛽 is 1.00 when the parameter 𝛽 is increased (or reduced) by 10%, the value of 𝑅0 will 

increase or decrease by 10%. If the value is 10%, then the value of 𝑅0  will increase (or 

decrease) by 10%. The sensitivity index 𝜂 (the rate of transfer from susceptible individuals to 

individuals vaccinated with the first dose) is the most influential (negative) parameter on the 

transmission of Measles when the sensitivity index 𝜂 value is 0,966 when the parameter 𝜂 

enlarged (or reduced) by 10%, and the 𝑅0 value will increase or decrease. reduced by 10%, 

then the value of 𝑅0 will decrease (or increase) by 9,66%. 

Next, a numerical simulation will be carried out to see the effectiveness of using the first 

dose of vaccine by changing the parameter value of the proportion of the first dose of vaccine 
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(𝜂) with other parameter values constant according to Table 2 and presented in the following 

table: 

Table 4. Effectiveness of Using the First Dose of Vaccine 

𝜼 𝑹𝟎 The disease disappeared day - 

𝟎 0,07513281052 35 

𝟎, 𝟑 0,007370623818 30 

𝟎, 𝟔 0,003875402873 25 

𝟏 0,002374227449 13 

The following is a graph for simulating the effectiveness of using the first dose of the 

vaccine: 

 

 

 

a. simulation of point i when 𝜂 = 0  b. simulation of point i when 𝜂 = 0,3 

 

 
c. simulation of point i when 𝜂 = 0,6  d. simulation of point i when 𝜂 = 1 

Figure 5. (a) simulation of point i when 𝜂 = 0; (b) simulation of point i when 𝜂 = 0,3; 

(c) simulation of point i when 𝜂 = 0,6; (d) simulation of point i when 𝜂 = 1 
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Next, a numerical simulation will be carried out to see the effectiveness of using the second 

dose of vaccine by changing the parameter value of the second vaccine dose proportion (𝜎) 

with the other parameter values constant according to Table 1 and presented in the following 

table: 

Table 4. Effectiveness of Using Second Dose of Vaccine 

𝜎 𝑅0 The disease disappeared day - 

0 0,02986047598 35 

0,3 0,004330964015 30 

0,6 0,003019170910 25 

1 0,002455915115 13 

 

 

 

a. simulation of point i when 𝜎 = 0  b. simulation of point i when 𝜎 = 0,3 

 

 
c. simulation of point i when 𝜎 = 0,6  d. simulation of point i when 𝜎 = 1 

Figure 6. (a) simulation of point i when 𝜎 = 0; (b) simulation of point i when 𝜎 = 0,3; 

(c) simulation of point i when 𝜎 = 0,6; (d) simulation of point i when 𝜎 = 1 
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Next, a numerical simulation will be carried out to see the effectiveness of individuals 

undergoing treatment by changing the value of the treatment proportion parameter (𝜖) with the 

other parameter values constant according to Table 1 and presented in the following table: 

 

Table 1. Effectiveness of Individuals Performing Treatment 

𝜖 𝑅0 The disease disappeared day - 

0 0,002723970945 25 

0,3 0,001835719550 20 

0,6 0,001384313103 15 

1 0,001042507399 10 

 

 

 

a. simulation of point i when 𝜖 = 0  b. simulation of point i when 𝜖 = 0,3 

 

 
c. simulation of point i when 𝜖 = 0,6  d. simulation of point i when 𝜖 = 1 

Figure 7. (a) simulation of point i when 𝜖 = 0; (b) simulation of point i when 𝜖 = 0,3; 

(c) simulation of point i when 𝜖 = 0,6; (d) simulation of point i when 𝜖 = 1 
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Based on the simulation results of the effectiveness of the use of the first dose of vaccine, 

second dose of vaccine, and treatment, the disease will disappear more quickly when the level 

of use of the vaccine and the individual undergoing treatment is increased, which means that 

the use of vaccine and treatment is quite effective. 

Research implications were further detailed before conclusions were drawn. For instance, 

recommendations to mitigate the spread rate and actions stakeholders can take to decrease the 

number of infected individuals have been included. In light of the simulation results regarding 

the effectiveness of the first dose of the vaccine, the second dose of the vaccine, and treatment, 

it has been emphasized that the disease will dissipate more rapidly with increased vaccine 

utilization and greater numbers of individuals undergoing treatment. This underscores the 

effectiveness of both vaccination and treatment. 

IV. CONCLUSIONS 

This research obtained a mathematical model for the spread of Measles 𝑆𝑉1𝑉2𝐸𝐼𝑇𝑅 

where Suspectible (𝑆), First Dose Vaccination (𝑉1), Second Dose Vaccination (𝑉2), Exposed 
(𝐸), Infected (𝐼), Treatment (𝑇), Recovery (𝑅). It has a disease-free equilibrium point 𝐸1 =
(𝑠, 𝑣1, 𝑣2, 𝑒, 𝑖, 𝑡) which has a local asymptotically stable equilibrium point when 𝑅0 < 1 and an 

endemic equilibrium point 𝐸2 = (𝑠∗, 𝑣1
∗, 𝑣2

∗, 𝑒∗, 𝑖∗, 𝑡∗) which exists if the value of 𝑅0 > 1. 

The basic reproduction number of the model that has been obtained. Based on the stability 

analysis of the equilibrium point and numerical simulations, it is concluded that the disease 

will disappear if 𝑅0 < 1 and remain in the population or become epidemic if  𝑅0 > 1. Based 

on the simulation results of the effectiveness of the use of the first dose of vaccine, second dose 

of vaccine, and treatment, the disease will disappear more quickly when the level of use of the 

vaccine and the individual undergoing treatment is increased, which means that the use of 

vaccine and treatment is quite effective. 
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