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Abstract. In this paper, we explore a cutting-edge technique called as Physics-
Informed Neural Networks (PINN) to tackle boundary layer problems. We here ex-
amine four different cases of boundary layers of second-order ODE: a linear ODE
with constant coefficients, a nonlinear ODE with homogeneous boundary conditions,
an ODE with non-constant coefficients, and an ODE featuring multiple boundary lay-
ers. We adapt the line of PINN technique for handling those problems, and our results
show that the accuracy of the resulted solutions depends on how we choose the most
reliable and robust activation functions when designing the architecture of the PINN.
Beside that, through our explorations we aim to improve our understanding on how the
PINN technique works better for boundary layer problems. Especially, the use of the
SiLU (Sigmoid-Weighted Linear Unit) activation function in PINN has proven to be
particularly remarkable in handling our boundary layer problems.
Keywords: PINN, boundary layers, perturbations, activation functions.

I. Introduction

Dealing with thin boundary layers presents significant computational difficulties due to
their inherently steep gradients. When analyzing momentum transport, these boundary layers
are often turbulent, leading to high numerical costs in modeling. In heat and mass transport
scenarios, thin boundary layers can arise even in the laminar regime due to reduced diffusiv-
ity. For instance, cardiovascular mass transport problems involve extremely thin concentration
boundary layers caused by the very low diffusion coefficients of biochemicals in blood, making
their numerical modeling exceptionally challenging [1].

Physics-Informed Neural Networks (PINN) have emerged as a promising paradigm in sci-
entific computing, revolutionizing the way complex physical systems and differential equations
are solved. By integrating domain-specific physics into the neural network architecture, PINN
effectively leverage the laws of physics to guide their learning process. This unique capability
makes them particularly well-suited for tackling diverse scientific and engineering problems,
such as fluid dynamics, structural mechanics, and heat transfer, where accurate modeling and
prediction are paramount. Despite their popularity, the robustness of PINN remains a concern
in certain applications. The scientific machine learning community recognizes the need to de-
velop robust and dependable models as a priority. Boundary layers present one of the critical
challenges to the robustness of PINN.
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In recent years, several modifications to the original Physics-Informed Neural Network
(PINN) approach have been proposed to address specific limitations. To tackle the spectral
bias in deep neural networks, which restricts the learning of high-frequency functions, Fourier
feature networks have been integrated into PINN [2]. Other variants like Conservative PINN
(cPINN) [3], extended PINN (XPINN) [4], and domain decomposition techniques [5] have
emerged to leverage localized neural networks in areas with high gradients or complex pat-
terns, enabling efficient learning of intricate functions. Some approaches have also explored
enhanced local sampling of collocation or training points near regions with high gradients to
improve convergence [6, 7]. However, despite these efforts, none of these techniques have thor-
oughly studied or effectively addressed the challenges posed by thin boundary layers. This
study reveals that domain decomposition alone cannot resolve the issues caused by learning in
thin boundary layers, given their highly localized and abrupt behavior. Furthermore, increasing
the resolution of collocation points within the boundary layer does not lead to a resolution of
PINN training issues. While PINN has been successfully applied to various advection-diffusion
transport problems, including boundary layers, through optimal weighting of loss terms and a
focus on low Peclet numbers [8, 9, 10, 11, 12, 13, 14], it has remained elusive in handling
thin boundary layers with vanishing viscosity/diffusivity, presenting a significant challenge for
PINN.

Besides, selecting the appropriate activation function in neural networks is of paramount
importance as it directly influences the model’s learning capacity and overall performance. Ac-
tivation functions introduce non-linearity to the network, allowing it to learn complex patterns
and relationships within the data. Choosing the right activation function can prevent issues like
vanishing or exploding gradients, which can hinder convergence during training. Moreover,
different activation functions are suited for specific tasks; for instance, the rectified linear unit
(ReLU) is effective in tackling the vanishing gradient problem, while the sigmoid function is
often used in binary classification tasks. By understanding the characteristics of activation func-
tions and tailoring them to the network architecture and task at hand, we can ensure faster con-
vergence, enhanced model accuracy, and improved generalization on unseen data, ultimately
leading to more robust and reliable neural networks.

In this paper, we comprehensively explore the utilization of various activation functions
within neural networks to determine which function that robust enough and compatible for
addressing boundary layer problems. We employ these methodologies to analyze four distinct
categories of boundary layer problems. Initially, we tackle a basic linear second-order ordi-
nary differential equation (ODE) characterized by constant coefficients, serving as the simplest
form of a boundary layer problem. Subsequently, we delve into a nonlinear ODE with homo-
geneous boundary conditions to demonstrate that PINN does not converge to trivial solutions.
Furthermore, we examine ODEs with non-constant coefficients that give rise to interior bound-
ary layers. Lastly, we address second-order ODEs involving multiple boundary layers.

The structure of the document is outlined as follows. Section II presents the explanation
of perturbation theory to address the boundary layer problem, including the discussions of four
chosen types of boundary layer problems. In Section III, we provide our results of utilizing
PINN, and compare them with their provided analytical solutions. Concluding remarks are
written in the last section.
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II. Boundary Layer Problems

Let us consider a perturbation problem of the form

εy′′ + F (x, y, y′; ε) = 0, 0 < ε ≪ 1,

subject to appropriate boundary conditions. Note that, during our discussion we do not have
a certain physical meaning for the variable y in above equation. However, for some cases the
variable y can be interpreted, for instance, as the vertical displacement of an elastic string
with fixed ends. Our equation is a singularly perturbed problem, which means that the solution
found by the differential equation when ε = 0 behaves very differently from the solution when
ε −→ 0. This equation leading to what is known as a ”boundary layer”. There is a region where
the solution rapidly changes within a small span, and the thickness of this region diminishes
as ε tends to zero. To handle this, perturbation theory comes into play, where the solution is
expressed using asymptotic expansions and is divided into inner and outer regions. A procedure
to solve boundary layer problem using matched asymptotic expansion can be found in [15]. To
be self-contained we here rewrite the procedure as follows:

1. Find and solve the differential equation in the outer region. The outer equation can be
found by setting ε = 0. To solve this equation, assume that the solution can be expanded
in powers of ε.

youter(x) ∼ youter0(x) + εyouter1(x) + ε2youter2(x) + . . . .

Then solve the equation for each order, O(1), O(ε), . . ..

2. Specify where the boundary layer occurs. Let the boundary layer be at xl.

3. Define inner variable as
ξ =

x− xl

δ(ε)
,

where δ(ϵ) is a positive function that is yet to be determined, tending towards 0 as ϵ
approaches zero. This function can be regarded as a scaling factor in the inner region.

4. Find a solution in the inner region by assuming that

y(x; ε) = yinner(ξ; ε).

So, in this region the equation becomes

εδ−2∂
2yinner
∂ξ2

+ F (xl + δξ, δ−1∂yinner
∂ξ

, yinner; ε) = 0

and then assume that the solution can be expanded in powers of ε.

yinner(ξ) ∼ yinner0(ξ) + εα1yinner1(ξ) + εα2yinner2(ξ) + . . .

5. Based on step (4), carry out a balancing process between terms to find an appropriate
δ(ε) (see [15]).
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6. Apply a matching process between the inner and outer solution for every order. Briefly,
the inner solution for ξ −→ ∞ is enforced to match the outer solution for x −→ xl.

7. Solution for problem at hand is given by the following composite form :

y ∼ youter(x) + yinner(ξ)−matching term.

We attempt to address various cases of boundary layer problems using PINN. Conven-
tional PINN approaches, including those with dense collocation points and domain decomposi-
tion, have proven ineffective in solving these singular perturbation problems. Arzani et al. [16]
proposed a new approach employing PINN with separate neural networks to approximate so-
lutions at different order in the outer and inner expansion. By applying matching conditions, a
consistent solution was obtained. However, the paper did not specify which activation function
is suitable and robust enough to handle differential equations with sharp gradients.

The matching condition requires that the output of the inner PINN solution as ξ approaches
infinity aligns with the output of the corresponding outer PINN solution as x approaches xl.
However, directly taking the limit to infinity is problematic due to the limitation of computation.
To address this challenge, inspired from the classical similarity solutions found in boundary
layer theory [17], Arzani et al. [16] proposed a new variable, z = ξ

A
, 0 < z < 1, with a

suitably large constant A. Hence, a value of limit ξ → ∞ was approximated by z → 1.

In our study, we apply PINN technique introduced by Arzani et al. [16] to four boundary
layer problems of second-order ODE, by employing diverse activation functions. The cases
considered are a linear ODEs with constant coefficients, a nonlinear ODEs with homogeneous
boundary conditions, an ODEs with non-constant coefficients, and an ODEs featuring multiple
boundary layers. The first two cases are taken from [16] as our benchmarks. In each of these
cases, we consider ε as a small value appearing in the given equation, leading to the formation
of boundary layers. We treat ε as the perturbation parameter.

2.1. Case 1: Equation with constant coefficient and non-homogeneous boundary condi-
tions

The equation is given by

ε
∂2y

∂x2
+ (1 + ε)

∂y

∂x
+ y = 0, (1)

with boundary conditions:
y(0) = 0, y(1) = 1.

The outer equation leads to
∂youter
∂x

+ youter = 0. (2)

An asymptotic analysis of (1) for ε −→ 0 reveals that the distinguished limit based on the
dominant balance among terms leads to δ(ε) = ε. Referring to the perturbation theory [18, 15],
since the coefficient of dy

dx
of the original problem is greater than 0, the boundary layer will take

place at xl = 0. So, defining an inner variable ξ = x
ε
, and substituting back into (1), we have
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the inner equation:
∂2yinner
∂ξ2

+
∂yinner
∂ξ

= 0.

Following the work of Arzani et al. [16], the inner equation is rescaled to z = ξ
A

to make the
matching condition possible, Thus,

1

A

∂2yinner
∂z2

+
∂yinner
∂z

= 0. (3)

We choose A = 10 as in [16]. Then, the boundary and matching conditions are written as

yinner(0) = 0,

youter(1) = 1,

lim
ξ−→∞

yinner = lim
z−→1

yinner = lim
x−→0+

youter.

By combining the outer and inner solutions with the appropriate matching conditions at
the boundary layer, we here approximate the solution up to the zeroth order of the perturbation
terms. The inner solution accounts for the behavior near the boundary layer, while the outer
solution handles the behavior away from the boundary layer. The value of A affects the accuracy
of the approximation. For the present case, we have the following analytical solution:

youter(x) = e1−x,

yinner(x) = e− e1−
x
ε ,

and in terms of composite solution for the leading order, we get

y(x) = e1−x − e1−
x
ε . (4)

We find (4) different from the solution from [16] because of the method used to find the analyt-
ical solution. Our methodology involves employing perturbation theory to distinguish between
the inner and outer regions. In contrast, Arzani [16] utilized the characteristic polynomial ap-
proach.

2.2. Case 2: Equation with non-linear term and homogeneous boundary Conditions

The equation is provided by

ε
∂2y

∂x2
+ 2

∂y

∂x
+ ey = 0 (5)

with the boundary conditions:
y(0) = y(1) = 0

This particular case holds considerable importance as it sheds light on an inherent limitation
of PINN. Despite their powerful capabilities, there are instances where PINN struggle to over-
come the complexities presented by certain functions, such as exponential functions, and ho-
mogeneous boundary conditions. Consequently, these challenges may lead to the emergence of
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trivial solutions. An equation for the leading order outer problem is given by

2
∂youter
∂x

+ eyouter = 0. (6)

Using a similar analysis as in Case 1, the boundary layer takes place at xl = 0.. Furthermore,
the distinguished limit leads to δ(ε) = ε. So, the inner variable becomes: ξ = x

ε
. Substituting

back this variable into (5), for the leading order of inner equation we have

∂2yinner
∂ξ2

+ 2
∂yinner
∂ξ

= 0.

In term of z = ξ
A

, the inner equation now becomes:

1

A

∂2yinner
∂z2

+ 2
∂yinner
∂z

= 0. (7)

The boundary and matching conditions that should be satisfied are

yinner(0) = 0,

youter(1) = 0,

lim
ξ−→∞

yinner = lim
x−→0+

youter,

The leading order analytical solutions to this problem are given by

youter(x) = ln
2

x+ 1
,

yinner(x) = ln(2)(1− e−2x
ε ),

or in term of the composite solutions we obtain

y(x) = ln
2

x+ 1
− ln(2)e−2x

ε .

2.3. Case 3: Equation with Non-constant Coefficient and Non-Homogeneous Boundary
Condition

The equation is given by

ε
∂2y

∂x2
+ x

∂y

∂x
+ xy = 0, (8)

where the boundary conditions are

y(−1) = e/2, y(1) = 2/e.

The leading order for the outer equation is

x
∂youter
∂x

+ xyouter = 0. (9)

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v6i2.20084 106 p-ISSN: 2621-6019 e-ISSN: 2621-6035



Using a similar analysis as before, the boundary layer takes place at xl = 0 which is an interior
point, separating two outer regions, say y

(1)
outer on the left and y

(2)
outer on the right of the interior

point. Via balancing process we obtain δ(ε) = ε
1
2 . So, we have the inner variable ξ = x

ε
1
2

, and
the inner equation becomes

∂2yinner
∂ξ2

+ ξ
∂yinner
∂ξ

= 0.

Introducing the scale inner variable z = ξ
A

, we obtain

1

A2

∂2yinner
∂z2

+ z
∂yinner
∂z

= 0. (10)

The boundary and the matching conditions are

y
(1)
outer(−1) = e/2,

y
(2)
outer(1) = 2/e,

lim
ξ−→−∞

yinner = lim
x−→x−

l

y
(1)
outer,

lim
ξ−→∞

yinner = lim
x−→x+

l

y
(2)
outer,

In this case, analytical solutions are not used to be compared with solutions from the neural
network. Instead, the network’s errors will be used to determine how accurate the solutions are.

2.4. Case 4: Multiple Boundary Layer

Let us consider

ε
∂2y

∂x
+ (1− 2x)

∂y

∂x
− 2y = 0, (11)

with the boundary conditions
y(0) = −1, y(1) = 1.

The leading order for the outer equation is given by

(1− 2x)
∂youter
∂x

− 2youter = 0. (12)

Using a similar analysis as before, we identify the presence of two boundary layers, namely
xl = 0 and xl = 1. After balancing process among terms, we obtain δ(ε) = ε. Consequently,
we introduce two corresponding inner variables: ξ1 = x

ε
and ξ2 = x−1

ε
. Substituting back into

equation (11), we obtain the inner equations

1

A

∂2y
(1)
inner

∂z2
+

∂y
(1)
inner

∂z
= 0,

1

A

∂2y
(2)
inner

∂z2
− ∂y

(2)
inner

∂z
= 0.

(13)
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The boundary and matching condition that must be satisfied are

y
(1)
inner(0) = −1,

y
(2)
inner(0) = 1,

lim
ξ−→∞

y
(1)
inner = lim

x−→0+
youter,

lim
ξ−→−∞

y
(2)
inner = lim

x−→1−
youter.

Just like in Case 3, in this case, analytical solutions are not being used to compare with the
neural network’s solutions. Instead, the focus is on analyzing the network’s errors to determine
how accurate the solutions are.

III. Results

For our simulations, we employ distinct networks to train the solutions for both the inner
and outer components, aiming to minimize the overall error. The error is defined as follows,

MSE =
∑

i∈{outer}

MSEi +
∑

j∈{inner}

MSEj +
∑

k∈{bmc}

MSEk

where MSEi denotes the squares of the left-hand sides of the outer (inner, boundary and match-
ing conditions). For example, for Case 1, the MSE is defined as follows:

MSE = (
∂ŷouter
∂x

+ ŷouter)
2 + (

1

A

∂2ŷinner
∂z2

+
∂ŷinner
∂z

)2+

(ŷinner(0))
2 + (ŷouter(1)− 1)2 + (ŷinner(z = 1)− ŷouter(0))

2
(14)

where the ŷouter, ŷinner are the network output for the outer and the inner solution, respectively.

Algorithm 1: Network Training Procedure
Data: Outer differential equation, inner differential equation, boundary, and matching

condition
Result: Networks for the outer and inner regions

1 Initialize the number of hidden layers, dimension of hidden layers, batch size, and
number of epochs (N);

2 Set the flag is outer to false;
3 for i = 1 to N do
4 if is outer is false then
5 Solve the outer equation;
6 if outer solution is found then
7 is outer = true;

8 else
9 Solve the inner equation and adjust the outer solution based on boundary and

matching conditions;

10 return Networks for the outer and inner regions;

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 2 (NOV 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v6i2.20084 108 p-ISSN: 2621-6019 e-ISSN: 2621-6035



The pseudo-code detailing the procedure for training the networks is presented in Algo-
rithm 1. Results for four cases are presented in the next subsections. Note that simulations apply
to the leading-order term only.

3.1. Case 1

We construct neural network architecture consisting of five hidden layers, each containing
50 neurons. During the training process, the network is subjected to 60 distinct random col-
location points within the domain for every iteration. Those number of hidden layers are just
optional. However, for Case 4 (see detail discussion below) more number of neurons are needed
to attain good error of calculations. Various activation functions are chosen to demonstrate the
method, such as CELU [19], ELU [20], GELU [21], LeakyReLU [22], Mish [23], ReLU [24],
SELU [25], SiLU [26], Sigmoid, Softmax [27], Softmin, Softplus [28], Tanh. The results for
various activation functions are presented in Table 1.

Table 1. Network Errors in Solving Problem Case 1 with Different Activation Functions.

Activation Function Error
GELU() 0.0012683691456913948
SiLU() 0.008932067081332207
Tanh() 0.010858217254281044
Mish() 0.011430460028350353
SELU() 0.02776332013309002

Softmax() 2.969837498326403
Softmin() 2.977969169616699

ELU(alpha=1.0) 4.531148910522461
CELU(alpha=1.0) 4.531148910522461

Softplus(beta=1, threshold=20) 5.172677040100098
Sigmoid() 5.269680023193359
ReLU() 35.36870574951172

LeakyReLU(negative slope=0.01) 36.54730987548828

Among the activation functions tested, GELU and SiLU stand out as the most promising
options, yielding significantly lower errors compared to others. These two activations enable the
accurate approximation of both inner and outer solutions. In contrast, the other activation func-
tions, such as ReLU(), LeakyReLU(negative slope=0.01), and Softplus(beta=1, threshold=20),
show substantially higher errors, indicating their limited suitability for effectively tackling this
specific type of singular perturbation problem.

SiLU and GELU are fundamentally similar-shape activation functions. SiLU, formulated
as

SiLU(x) = x
1

1 + e−x
,

represents the multiplication of the input by the sigmoid function. Initially developed for re-
inforcement learning tasks [26], SiLU has also demonstrated remarkable performance in solv-
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ing singular differential equations in this case. On the other hand, GELU was introduced by
Hendrycks (2016) [21] defined as follows:

GELU(x) =
x

2

[
1 + erf

(
x√
2

)]
and approximated with

GELU(x) = 0.5x

(
1 + tanh

(√
2

π

(
x+ 0.044715x3

)))

The progression of the loss and the resulting solution obtained by the PINN are presented
in Figure 1. Notably, the PINN solution has demonstrated a high level of accuracy in approx-
imating both the inner and outer solutions. We also observe that the PINN boundary layer
solution (red) is close to the PINN inner solution (blue) for x → 0 and to the PINN outer
solution (green) for x → 1.

Figure 1. Evolution of Loss for the Network with Optimal Activation Function and the PINN Approximate
Solution for Case 1

3.2. Case 2

Use the same architecture of previous case, we have results given in Table 2.

Table 2. Network Errors in Solving Problem Case 2 with Different Activation Functions.

Activation Function Error
GELU(approximate=’none’) 0.0031172852031886578

Mish() 0.0037429218646138906
SiLU() 0.0054158661514520645

Softplus(beta=1, threshold=20) 0.7815308570861816
Tanh() 0.8075517416000366

ELU(alpha=1.0) 0.8107149600982666
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CELU(alpha=1.0) 0.8107149600982666
SELU() 0.8469527959823608

Softmin(dim=None) 0.9993693232536316
Softmax(dim=None) 1.0017437934875488

ReLU() 2.0091211795806885
LeakyReLU(negative slope=0.01) 3.824784278869629

Sigmoid() 4.371834754943848

We see two activation functions that were outstanding before, still did a good job for this
problem. In addition, the Mish activation function can solve the problem in this case as well.
The Mish activation function is defined as [23]:

Mish(x) = x · tanh(ln(1 + ex))

The progression of the loss and a comparison between the PINN solution and the analytic
solution are illustrated in Figure 2. We can see that the PINN solution can approximate the
analytical solution accurately. As same as in Case 1, we also observe that the PINN boundary
layer solution (red) is close to the PINN inner solution (blue) for x → 0 and to the PINN outer
solution (green) for x → 1.

Figure 2. Evolution of Loss for the Network with Optimal Activation Function and the PINN Approximate
Solution for Case 2

3.3. Case 3

For this interior point boundary layer problem, using the same network, we have results
shown in Table 3.
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Table 3. Network Errors in Solving Problem Case 3 with Different Activation Functions.

Activation Function Error
Mish() 0.0012397984974086285

GELU(approximate=’none’) 0.001125918235629797
Tanh() 0.0020164770539849997
SiLU() 0.006233099848031998

CELU(alpha=1.0) 0.011121336370706558
ELU(alpha=1.0) 0.011121336370706558

Softplus(beta=1, threshold=20) 0.07702594995498657
ReLU() 0.09418447315692902
SELU() 0.040741708129644394

Softmin(dim=None) 1.900456428527832
Softmax(dim=None) 1.9024630784988403

Sigmoid() 17.83125114440918
LeakyReLU(negative slope=0.01) 21.132722854614258

Interestingly, despite the increased complexity of this problem due to the presence of a
boundary layer in the interior domain, several activation functions have proven to be effective
in solving it. Among these options, the Mish activation function stands out as the most suit-
able choice. However, it is worth noting that the commonly used tanh activation function also
performs well, yielding only minor errors in this context. Moreover, the SiLU and GELU acti-
vation functions demonstrate their ability to successfully tackle this case without encountering
any significant challenges. The loss evolution and the PINN approximate solution are shown
in Figure 3.. We also observe that the PINN boundary layer solution (red) is close to the PINN
inner solution (blue) for x close to zero from both directions and to the PINN outer solution
(green) for x → ±1.

Figure 3. Evolution of Loss for the Network with Optimal Activation Function and the PINN Approximate
Solution for Case 3
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3.4. Case 4

In this scenario, employing only 50 neurons for each layer proved insufficient to achieve
networks with errors close to zero. Consequently, a more intricate architecture with 80 neurons
for each layer was constructed. Results for various activation functions are presented in Table
4.

Table 4. Network Errors in Solving Problem Case 4 with Different Activation Functions.

Activation Function Error
SiLU() 0.0028864527121186256

Softplus(beta=1, threshold=20) 0.002719464246183634
Tanh() 0.5100778937339783

SELU() 3.809145212173462
ELU(alpha=1.0) 4.441868782043457

CELU(alpha=1.0) 4.441868782043457
LeakyReLU(negative slope=0.01) 5.346591949462891

Softmax(dim=None) 9.852494239807129
Softmin(dim=None) 9.856649398803711

Sigmoid() 10.597221374511719
ReLU() 16.048564910888672

GELU(approximate=’none’) 16.8748836517334
Mish() Failed

Remarkably, the previously effective GELU activation function exhibited complete failure
in addressing this particular case. However, the SiLU activation function, on the other hand,
continued to show its prowess in conquering this challenging problem. Despite the increased
complexity of the situation, SiLU managed to deliver promising results and successfully tackle
the task at hand. In Figure 4., the loss evolution and the approximate solution by modified-
PINN are shown. We also observe that the PINN boundary layer solution (red) is close to the
PINN inner solution (blue) for x close to 0 and to 1 (since both ends act as boundary layer
points) and to the PINN outer solution (green) for x ∈ (0, 1).

IV. Conclusions

We here demonstrated that Physics-Informed Neural Networks (PINN) offer a promising
alternative for tackling boundary layer problems. The use of the SiLU activation function has
proven to be particularly remarkable in handling differential equations, even those with sharp
gradients. Its effectiveness in approximating solutions to complex equations and its ability to
handle perturbations made it a valuable tool in the realm of scientific computing. PINN, along
with advanced activation functions like SiLU, led to a great potential in efficiently solving a
wide range of differential equations, providing researchers and engineers with valuable insights
into various physical phenomena.
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Figure 4. Evolution of Loss for the Network with Optimal Activation Function and the PINN Approximate
Solution for Case 4
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