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Abstract. The prime labeling of a graph G of order n is a bijection function from the set of vertices
in G to the set of the first n positive integers, such that any two adjacent points in G have labels that
are coprime to each other. In this paper we discuss the primality of the graph W0(2, n) along with
its combinations with similar graphs and various types of edges subdivisions in the graph W0(2, n).
Moreover, it is also presented the necessary and sufficient conditions for the graph to be prime.
Keywords: Prime Labeling, Web Graph without Center, Independence Number.

I. INTRODUCTION

In mathematics, graph theory is a branch of science that studies graphs and their properties.
A graph [11] is defined as a pair (V (G), E(G)) where V (G) is a non-empty finite set whose
elements are called vertices, and E(G) is a finite set of unordered pairs of distinct elements
from V (G) called edges.

One of the topics in graph theory is graph labeling. Based on a survey by Gallian [3], graph
labeling was first introduced in the mid-1960s, and in the intervening years over 200 graph la-
belings techniques have been studied in over 3000 papers. Graph labeling [10] is a mapping that
assigns elements of a graph to numbers (usually positive or non-negative numbers). Typically,
the elements being mapped are either points or edges. If the elements being mapped are points,
the labeling is called vertex labeling.

One type of vertex labeling is prime labeling. The idea of prime labeling originated from
Entriger’s conjecture in 1980, which stated that every tree graph can have a prime labeling. The
development of this conjecture was last discovered in 2011 by Haxell et al. [4], who proved that
all tree graphs with a sufficiently large number of vertices are prime graphs. According to this
conjecture, Tout et al. [9] introduced prime labeling in a paper published in 1982. Recall that a
vertex labeling f : V (G) → {1, 2, . . . , n}, where f is a bijection function is said to be prime
labeling of a graph G if for every x, y ∈ V (G) with xy ∈ E(G), f(x) and f(y) are relatively
prime, in other words, gcd(f(x), f(y)) = 1. A graph G that admits a prime labeling is called a
prime graph on G.

Recall that the set I ⊆ V (G) is called as independent set in G if for any x, y ∈ I ,
xy ̸∈ E(G). The size of largest independent set in G is called the independence number of
G and is denoted β0(G). In [6], it is stated that in order a graph G to be prime, necessarily

β0(G) ≥
⌊
|V (G)|

2

⌋
.

If n ≥ 4 then the complete graph Kn is not prime [7]. On the other hand, the cycle Cn

is a prime graph [1], which may be observed by labeling the sequence of its adjacent vertices
by the sequence of consecutive integers. The disjoint union graph Cm ∪ Cn of Cm and Cn is a
prime graph if and only if mn is even. This fact motivated Kansagara in [5] and [6] for similar
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Figure 1. Prime labeling of graph W0(2, 7)

results for the web graph without center. Inspired by the work of Kansagara [5], we then modify
the web graphs without center W0(2, n) by performing a subdivision on some specific edges in
these graphs. Furthermore, we study the primality of these graphs and the disjoint union of two
of them as well. The primality of the disjoint union of the graph W0(2, n) with the Jahangir
graph Jm,k previously given in [6] is also examined. We found a counter example of the result
given in [6]. Furthermore, a more accurate version of the theorem is presented.

II. DISCUSSION

Throughout this paper, for any positive number n ≥ 3, the web graph without center
W0(2, n) is a graph with vertex and edge sets as follows

V (W0(2, n)) = {vtj | t = 1, 2, 3 ; j = 1, 2, . . . , n}
E(W0(2, n)) = {vtjvt+1

j | t = 1, 2 ; j = 1, 2, . . . , n} ∪
{vt1vtn, vtjvtj+1 | t = 1, 2 ; j = 1, 2, . . . , n− 1}.

Observe that for t = 1, vtj’s represent the vertices of the inner cycle, for t = 2, vtj’s represent
the vertices of the outer cycle, and for t = 3, vtj’s represent the pendent vertices. Moreover
|V (W0(2, n))| = 3n and |E(W0(2, n))| = 4n. Based on the order and the size of W0(2, n), the
following Lemma 2.1 has been proven in [6].

Lemma 2.1 [6] Let n ≥ 3 be any positive integer. It holds that

β0(W0(2, n)) =

⌊
3n

2

⌋
.
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Figure 2. Prime labeling of graph W0(2, 6) ∪W0(2, 3)

Recall that for any positive positive numbers a and b, it follows that gcd (a, b) = gcd (b, a)
and gcd (a, b) = gcd (a± kb, b) for any positive integer k and a− kb > 0.

The following theorem gives necessary and sufficient condition for the union of two web
graphs without center to be prime.

Theorem 2.1 [6] For any positive integers m,n ≥ 3, the graph W0(2,m) ∪ W0(2, n) is prime
if and only if mn is even.

The example of prime labeling of graph W0(2,m) ∪ W0(2, n) is shown in Figure 2.

Now, for any given graph G, and a specific edge subset A of E(G) we define a graph GA

as follows.

Definition 2.1 Given a, b ∈ V (G) such that ab ∈ E(G). The subdivision of the edge ab in G is
an operation on the graph G that adds a new vertex c on the edge ab resulting in the removal of
the edge ab and the formation of two new edges, named ac and cb. If the subdivision operation
is applied to all edges in A ⊆ E(G), the resulting graph is denoted as GA.

Particularly for the web graph without center W0(2, n) and a particular edge subset C of
W0(2, n), the primality of WC

0 (2, n) is given in the subsequent theorem.

Theorem 2.2 Let C be the set of all edges joining the inner and outer cycles in the graph
W0(2, n). The graph WC

0 (2, n) is a prime graph for any positive integer n ≥ 3.

Proof. Given WC
0 (2, n) by

V (WC
0 (2, n)) = {vtj | t = 1, 2, 3, 4; j = 1, 2, . . . , n}

E(WC
0 (2, n)) = {vtjvt+1

j | t = 1, 2, 3; j = 1, 2, . . . , n} ∪
{vt1vtn, vtjvtj+1 | t = 1, 3; j = 1, 2, . . . , n− 1}
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Figure 3. Prime labeling of graph WC
0 (2, 6)

Let G = WC
0 (2, n). Thus |V (G)| = 4n and |E(G)| = 5n. Define f : V (G) → {1, 2, . . . , 4n},

Therefore, for every i = 2, 3, . . . , n,

f(v11) = 2 f(v21) = 3 f(v31) = 1 f(v41) = 4

f(v1i ) = 4i− 3 f(v2i ) = 4i− 2 f(v3i ) = 4i− 1 f(v4i ) = 4i.

Hence, gcd (f(v11), f(v
2
1)) = gcd (2, 3) = 1, gcd (f(v21), f(v

3
1)) = gcd (3, 1) = 1, gcd

(f(v31), f(v
4
1)) = gcd (1, 4) = 1, gcd (f(v11), f(v

1
n)) = gcd (2, 4n−3) = 1, gcd (f(v31), f(v

3
n)) =

gcd (1, 4n− 1) = 1, gcd (f(v11), f(v
1
2)) = gcd (2, 5) = 1, gcd (f(v31), f(v

3
2)) = gcd (1, 7) = 1.

For i = 2, 3, . . . , n−1, gcd (f(v1i ), f(v
1
i+1)) = gcd (4i−3, 4i+1) = 1 and gcd (f(v3i ), f(v

3
i+1)) =

gcd (4i − 1, 4i + 3) = 1. Rest of the adjacent vertices are labeled with consecutive integers.
Hence, f is a prime labeling on WC

0 (2, n), so WC
0 (2, n) is a prime graph.

The example of prime labeling of graph WC
0 (2, n) is shown in Figure 3.

In the following theorem, we prove that the the union of two web graphs WC
0 (2,m) and

WC
0 (2, n) is a prime graph.

Theorem 2.3 For any positive integers m,n ≥ 3, the graph WC
0 (2,m) ∪WC

0 (2, n) is a prime.

Proof. Given WC
0 (2,m) with

V (WC
0 (2,m)) = {vtj | t = 1, 2, 3, 4 ; j = 1, 2, . . . ,m}

E(WC
0 (2,m)) = {vtjvt+1

j | t = 1, 2, 3 ; j = 1, 2, . . . ,m} ∪
{vt1vtm, vtjvtj+1 | t = 1, 3 ; j = 1, 2, . . . ,m− 1}
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and WC
0 (2, n) with

V (WC
0 (2, n)) = {vtj | t = 5, 6, 7, 8 ; j = 1, 2, . . . , n}

E(WC
0 (2, n)) = {vtjvt+1

j | t = 5, 6, 7 ; j = 1, 2, . . . , n} ∪
{vt1vtn, vtjvtj+1 | t = 5, 7 ; j = 1, 2, . . . , n− 1}.

Let G = WC
0 (2,m) ∪ WC

0 (2, n). Thus |V (G)| = 4m + 4n and |E(G)| = 5m + 5n. Let us
define f : V (G) → {1, 2, . . . , 4m+ 4n} with for every i = 3, 4, . . . ,m and j = 2, 3, . . . , n,

f(v11) = 8 f(v21) = 5 f(v31) = 4 f(v41) = 3

f(v12) = 9 f(v22) = 10 f(v32) = 7 f(v42) = 6

f(v1i ) = 4i− 1 f(v2i ) = 4i f(v3i ) = 4i+ 1 f(v4i ) = 4i+ 2

f(v51) = 2 f(v61) = 4m+ 3 f(v71) = 1 f(v81) = 4m+ 4

f(v5j ) = 4m+ 4j − 3 f(v6j ) = 4m+ 4j − 2 f(v7j ) = 4m+ 4j − 1 f(v8j ) = 4m+ 4j.

On graph WC
0 (2,m), gcd (f(v11), f(v

2
1)) = gcd (8, 5) = 1, gcd (f(v21), f(v

3
1)) = gcd

(5, 4) = 1, gcd (f(v31), f(v
4
1)) = gcd (4, 3) = 1, gcd (f(v11), f(v

1
m)) = gcd (8, 4m − 1) = 1,

gcd (f(v31), f(v
3
m)) = gcd (4, 4m − 3) = 1, gcd (f(v11), f(v

1
2)) = gcd (8, 9) = 1, gcd

(f(v31), f(v
3
2)) = gcd (4, 7) = 1, gcd (f(v12), f(v

1
3)) = gcd (9, 11) = 1, and gcd (f(v32), f(v

3
3)) =

gcd (7, 13) = 1. For i = 3, 4, . . . ,m, gcd (f(v1i ), f(v
1
i+1)) = gcd (4i− 1, 4i + 3) = 1 and gcd

(f(v3i ), f(v
3
i+1)) = gcd (4i+ 1, 4i+ 5) = 1.

On graph WC
0 (2, n), gcd (f(v51), f(v

6
1)) = gcd (2, 4m + 3) = 1, gcd (f(v61), f(v

7
1)) =

gcd (4m + 3, 1) = 1, gcd (f(v71), f(v
8
1)) = gcd (1, 4m + 4) = 1, gcd (f(v51), f(v

5
n)) = gcd

(2, 4m + 4n− 3) = 1, gcd (f(v71), f(v
7
n)) = gcd (1, 4m + 4n− 1) = 1, gcd (f(v51), f(v

5
2)) =

gcd (2, 4m + 5) = 1, and gcd (f(v71), f(v
7
2)) = gcd (1, 4m + 7) = 1. For j = 2, 3, . . . , n,

gcd (f(v5j ), f(v
5
j+1)) = gcd (4m + 4j − 3, 4m + 4j + 1) = 1 and gcd (f(v3j ), f(v

3
j+1)) = gcd

(4m+ 4j − 1, 4m+ 4j + 3) = 1.

Rest of the adjacent vertices are labeled with consecutive integers. Hence, f is a prime
labeling on G.

The example of prime labeling of graph WC
0 (2,m) ∪WC

0 (2, n) is shown in Figure 4.

Theorem 2.4 Let D be the set of all edges of the inner cycles and outer cycles in the graph
W0(2, n). The graph WD

0 (2, n) is a prime for all n ≥ 3.

Proof. Given graph WD
0 (2, n) as

V (WD
0 (2, n)) = {vtj | t = 1, 2, 3; j = 1, 2, . . . , n} ∪

{xt
j | t = 1, 2; j = 1, 2, . . . , n}

E(WD
0 (2, n)) = {vtjvt+1

j , vtjx
t
j | t = 1, 2; j = 1, 2, . . . , n} ∪

{vtnxt
1, v

t
jx

t
j+1 | t = 1, 2; j = 1, 2, . . . , n− 1}

Let G = WD
0 (2, n). Thus, |V (G)| = 5n and |E(G)| = 6n. Define f : V (G) → {1, 2, . . . , 5n},
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Figure 4. Prime labeling of graph WC
0 (2, 9) ∪WC

0 (2, 3)

so for every i = 1, 3, . . . , 2

⌊
n+ 1

2

⌋
− 1 and j = 2, 4, . . . , 2

⌊n
2

⌋
,

f(v1i ) = 5i− 4 f(v1j ) = 5j − 3

f(v2i ) = 5i− 2 f(v2j ) = 5j − 1

f(v3i ) = 5i f(v3j ) = 5j

f(x1
i ) = 5i− 3 f(x1

j) = 5j − 4

f(x2
i ) = 5i− 1 f(x2

j) = 5j − 2.

For i = 1, 3, . . . , 2

⌊
n+ 1

2

⌋
− 1, then gcd (f(v1i ), f(v

2
i )) = gcd (5i− 4, 5i− 2) = 1, gcd

(f(v2i ), f(v
3
i )) = gcd (5i− 2, 5i) = 1, gcd (f(v1i ), f(x

1
i )) = gcd (5i− 4, 5i− 3) = 1, and gcd

(f(v2i ), f(x
2
i )) = gcd (5i− 2, 5i− 1) = 1.

For i = 1, 3, . . . , 2
⌊n
2

⌋
− 1, it is clear that i + 1 is even, so gcd (f(v1i ), f(x

1
i+1)) = gcd

(5i− 4, 5(i+ 1)− 4) = 1, and gcd (f(v2i ), f(x
2
i+1)) = gcd (5i− 2, 5(i+ 1)− 2) = 1. For n is

odd, gcd (f(v1n), f(x
1
1)) = gcd (5n− 4, 2) = 1 and gcd (f(v2n), f(x

2
1)) = gcd (5n− 2, 4) = 1.

For j = 2, 4, . . . , 2
⌊n
2

⌋
, then gcd (f(v1j ), f(v

2
j )) = gcd (5j − 3, 5j − 1) = 1, gcd

(f(v2j ), f(v
3
j )) = gcd (5j − 1, 5j) = 1, gcd (f(v1j ), f(x

1
j)) = gcd (5j − 3, 5j − 4) = 1,

and gcd (f(v2j ), f(x
2
j)) = gcd (5j − 1, 5j − 2) = 1.

For j = 2, 4, . . . , 2

⌊
n+ 1

2

⌋
− 2, it is clear that j + 1 is odd, so gcd (f(v1j ), f(x

1
j+1)) =

gcd (5j−3, 5(j+1)−3) = 1, and gcd (f(v2j ), f(x
2
j+1)) = gcd (5j−1, 5(j+1)−1) = 1. For n

is even, gcd (f(v1n), f(x
1
1)) = gcd (5n− 3, 2) = 1 and gcd (f(v2n), f(x

2
1)) = gcd (5n− 1, 4) =

1.
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Figure 5. Prime labeling of graph WD
0 (2, 5)

The example of prime labeling of graph WD
0 (2, n) is shown in Figure 5.

Definition 2.2 The Jahangir graph Jm,k is a graph with

V (Jm,k) = {xj | j = 0, 1, 2, . . . ,mk}
E(Jm,k) = {x1xm, xjxj+1 | j = 1, 2, . . . ,mk − 1} ∪

{x0xjk | j = 1, 2, . . . ,m}.

In Theorem 2.5 given in [6], necessary and sufficient conditions for the labeling of union
of W0(2, n) and Jahangir graph Jm,k with a prime labeling is given as follows.

Theorem 2.5 [Kansagara (2021)] The graph W0(2, n) ∪ Jm,k is prime if and only if one of the
following and only if one of the following two conditions hold.

1. n and m both are even.

2. k is even.

The necessary and sufficient conditions for the union of graph W0(2, n) and Jm,k in Theo-
rem 2.5 is not entirely correct. Figure 6. is one of the counter example to the theorem. We find
that with n = 6,m = 2, and k = 4, the graph W0(2, n) ∪ Jm,k is prime. The more accurate
theorem is given in Theorem 2.6 as follows.

Theorem 2.6 The graph W0(2, n) ∪ Jm,k is prime if and only if either one or both of the
following statements hold.
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1. n and m both are even.

2. k is even.

Proof. Let G = W0(2, n) ∪ Jm,k. Thus |V (G)| = 3n+mk + 1. We consider several cases.

1. Statement 1 and statement 2 hold.
Define f : V (G) → {1, 2, . . . , 3n + mk + 1}, such that for every i = 2, 3, . . . , n and
j = 2, 3, . . . ,mk,

f(v11) = 3 f(v21) = 4 f(v31) = 5

f(v1i ) = 3i+ 2 f(v2i ) = 3i+ 1 f(v3i ) = 3i

f(x0) = 1 f(x1) = 2 f(xj) = 3n+ j + 1.

Based on the proof of Theorem 2.1, it is clear that vertices in W0(2, n) have a prime
labeling. Furthermore, for every i = 1, 2, . . . ,m, gcd (f(x0), f(xik)) = gcd (1, 3n +
ik + 1) = 1, gcd (f(x1), f(x2)) = gcd (2, 3n + 3) = 1, and gcd (f(x1), f(xmk)) =
gcd (2, 3n+mk + 1) = 1. The remaining adjacent vertices are labeled with consecutive
integers. Hence, f is a prime labeling on G so that graph G is a prime graph.

2. Statement 1 holds and statement 2 does not hold.
We can choose f as in case 1. Since there are no changes in the labeling pattern for the
formed edges, f is a prime labeling. Therefore, for k is odd and m,n is even, G is a prime
graph.

3. Statement 2 holds and statement 1 does not hold.
It can be easily shown that for even n, f as in case 1 is a prime labeling. Hence the graph
G is prime. For odd n, f is no longer a prime labeling as 3n+3, 3n+mk+1, and 3n+1
are all even, so that

gcd (f(x1), f(xmk)) = gcd (2, 3n+mk + 1) = 2

gcd (f(x1), f(x2)) = gcd (2, 3n+ 3) = 2

gcd (f(v21), f(v
2
n)) = gcd (4, 3n+ 1) = 2 or 4.

However, we can modify f into a new labeling, namely g : V (G) → {1, 2, . . . , 3n +
mk + 1} defined by

g(v) =


f(v) for v /∈ {v2n, v3n}
f(v2n) for v = v3n
f(v3n) for v = v2n

for every v ∈ V (W0(2, n)), for every i = 1, 2, . . . , k − 1 and j = 1, 2, . . . , (m− 1)k,

g(x0) = 2 g(xi) = 3n+ (m− 1)k + 2 + i

g(xk) = 1 g(xk+j) = 3n+ 2 + j.

It is easily check that g is prime labeling, so that graph G is a prime.
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Figure 6. Prime labeling of graph W0(2, 6) ∪ J2,4

4. Both statement does not holds.
Clearly k is odd and the values of n and m are either one or both is odd. Thus,

β0(G) ≤


3n− 1

2
+

mk

2
if n is odd and m is even

3n

2
+

mk − 1

2
if n is even and m is odd

3n− 1

2
+

mk − 1

2
if n and m both are odd.

Therefore, in every condition we have β0(G) <

⌊
3n+mk + 1

2

⌋
=

⌊
|V (G)|

2

⌋
. As a

result, G is not a prime graph.

III. CONCLUSIONS

Based on the discussion above, it can be concluded that any modified web graphs without
center WC

0 (2, n), WD
0 (2, n) are prime, and the disjoint union of any two modified web graphs

without center WC
0 (2, n) ∪WC

0 (2,m) is also prime for all n ≥ 3.
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