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Abstract. This research models the spread of Covid-19 by developing the 𝑆𝑉1𝑉2𝑉3𝐸𝐼𝑅 

model. In this model there are seven compartments, namely the susceptible 

subpopulation (S), the subpopulation that has received the first dose of vaccine (𝑉1), the 

subpopulation that has received the second dose of vaccine (𝑉2), the subpopulation that 

has received the third dose of vaccine (𝑉3), the exposed subpopulation (𝐸), infected 

subpopulation (𝐼), and recovered subpopulation (𝑅). From the model that has been 

formed, a search for disease-free and endemic equilibrium points is carried out, then 

looking for the basic reproduction number (𝑅0) as a benchmark for the presence or 

absence of the spread of Covid-19 in a population, then numerically simulating it using 

the Matlab R2017a software. The results of this numerical simulation are in accordance 

with the dynamic analysis carried out, namely if the condition is 𝑅0 < 1 then Covid-19 

cannot spread, whereas if the condition is 𝑅0 > 1 then Covid-19 can spread in a certain 

area. In addition, the disease cannot spread quickly if the proportion of those who are 

vaccinated (𝛿) is increased, so that the use of vaccines can be used as an effort to 

prevent the spread of Covid-19. 
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Reproductive Number 

I. INTRODUCTION

Mathematics has an important role in analyzing and modelling various phenomena. 

One of the phenomena that can be modeled into a mathematical form is the spread of 

infectious diseases. Models that can be used to model this phenomenon include the 𝑆𝐼𝑅 

(Susceptible, Infected, Recovered) model and the 𝑆𝐸𝐼𝑅 (Susceptible, Exposed, Infected, 

Recovered) model. In the 𝑆𝐼𝑅 model there are 3 compartments, namely 𝑆 (Susceptible) or 

susceptible subpopulation, 𝐼 (Infected) or infected subpopulation, and 𝑅 (Recovered) or 

recovered subpopulation [1]. Meanwhile, the 𝑆𝐸𝐼𝑅 model has 4 compartments, namely 𝑆 

(Susceptible) or susceptible subpopulation, 𝐸 (Exposed) or latent subpopulation, 𝐼 (Infected) 

or infected subpopulation, and 𝑅 (Recovered) or recovered subpopulation [2].  

Several previous studies have discussed modelling infectious diseases, one of which is 

research by Zulaikha et al [3] which discusses HFMD (Hand, Foot, and Mouth Disease) 

which attacks children in China by developing the SEIQR model (Susceptible, Exposed, 

Infected, Quarantine, Recovered). In addition, other infectious diseases that have been widely 

studied using mathematical models are Covid-19, including research from Alam dan Abadi 

[4]. In his research, the model developed was 𝑆𝑉1𝑉2𝐼𝑅 (Susceptible, Vaccinated 1, 
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Vaccinated 2, Infected, Recovered) with 𝑉1 (Vaccinated 1) and 𝑉2 (Vaccinated 2) being 

subpopulations that had received the first and second doses of the vaccine. As Med and 

A’yun [5] also researched the development of an infectious disease model, namely the model 

(Susceptible, Vaccinated, Not Vaccinated, Infected, Recovered), where 𝑉1 is a subpopulation 

that has been vaccinated and 𝑉2 is a subpopulation that has not been vaccinated. Other 

research regarding the analysis of the Covid-19 mathematical model has also been carried out 

by Fitriyah [6]. The model studied in this study is 𝑆𝑉1𝑉2𝐸𝐼𝐼𝑣𝑅 where 𝑉1 is a subpopulation 

that has received the first dose of vaccine, 𝑉2 is a subpopulation that has received a second 

dose of vaccine, 𝐼 is an infected subpopulation that has not carried out the first and second 

doses of vaccination, and 𝐼𝑣 is an infected subpopulation that has received the first and 

second doses of vaccination.  

With the existence of this model, the dynamics of the spread of infectious diseases 

occurring in various regions of the world can be simply represented and can provide 

predictions of the dynamics of the spread of infectious diseases in the future, thus enabling 

the control of their spread by suppressing the rate of virus transmission of these infectious 

diseases. The infectious disease studied in this research is Covid-19, a disease transmitted 

from animals to humans or zoonosis [7]. With this disease, prevention measures need to be 

taken, one of which is through vaccination. Vaccines can help the body enhance immunity, so 

it can prevent the severe symptoms from occurring. In Indonesia, vaccination was carried out 

in early October 2021 with a total of two doses of vaccine, then due to the emergence of a 

new variant of Covid-19. In early January 2022, the government increased the vaccine dose 

to three doses. Due to efforts to prevent Covid-19, this study developed a mathematical 

model by adding additional variables, namely 𝑉1 (subpopulation that had received the first 

dose of vaccination), 𝑉2 (sub-population that had received the second dose of vaccination), 

and 𝑉3 (sub-population that had received the third dose of vaccination). This study focuses on 

discussing the basic reproduction number (𝑅0) or the threshold in determining the state of the 

disease virus in a specific area. This is because the variables used in this research have large 

dimensions. 

II. MATHEMATICS MODELS 

In this study, the mathematical model for the spread of Covid-19 that was developed 

was the 𝑆𝑉1𝑉2𝑉3𝐸𝐼𝑅 model with 𝑉1 (subpopulation that had received the first dose of 

vaccination), 𝑉2 (subpopulation that had received the second dose of vaccination), and 𝑉3 

(subpopulation that had received the third dose of vaccination). The model assumptions in 

determining the spread of Covid-19 in this study are 

a. Covid-19 is a fatal disease. 

b. The death rate for each subpopulation is assumed to be the same. 

c. Each subpopulation has the same proportion infected with Covid-19. 

d. Subpopulations that have had their first dose of vaccination have a higher level of 

immunity than those who have not been vaccinated. 

e. The subpopulation that had received the second dose of vaccination had a higher level of 

immunity than those who had only received the first dose of vaccination. 

f. The subpopulation that had received the third dose of vaccination had a higher level of 

immunity than those who had only received the first and second doses of vaccination. 
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g. The subpopulations that have received the first, second, and third doses of vaccination can 

be infected with Covid-19 because they interact with the infected subpopulation, so they 

enter the Exposed (𝐸) subpopulation. 

h. The subpopulation that has not been vaccinated has a higher rate of development of the 

Covid-19 virus than the subpopulation that has been vaccinated. 

i. The subpopulation that is not vaccinated has a lower recovery rate compared to the 

vaccinated subpopulation. 

j. The subpopulation infected with Covid-19 can recover from the disease. 

k. The subpopulation recovered has a good level of immune protection, making them less 

susceptible if they follow health protocols. 

The variables and parameters used in the mathematical model of the spread of Covid-

19 are shown in Table 1 and Table 2 as follows: 

Table 1. Variable Mathematical Model of the Spread of Covid-19 with the First, Second, 

and Third Doses of Vaccination 

Variable Definition Unit Condition 

𝑁(𝑡) Total population at time 𝑡 Individual 𝑁(𝑡) ≥ 0 

𝑆(𝑡) The subpopulation susceptible to Covid-19 at time 𝑡 Individual 𝑆(𝑡) ≥ 0 

𝑉1(𝑡) 
The subpopulation that has had the first dose of vaccination 

at time 𝑡 
Individual 𝑉1(𝑡) ≥ 0 

𝑉2(𝑡) 
The subpopulation that has had the second dose of 

vaccination at time 𝑡 
Individual 𝑉2(𝑡) ≥ 0 

𝑉3(𝑡) 
The subpopulation that had received the third dose of 

vaccination at time 𝑡 
Individual 𝑉3(𝑡) ≥ 0 

𝐸(𝑡) The subpopulation exposed to Covid-19 at time 𝑡 Individual 𝐸(𝑡) ≥ 0 

𝐼(𝑡) The subpopulation infected with Covid-19 at time 𝑡 Individual 𝐼(𝑡) ≥ 0 

𝑅(𝑡) The subpopulation recovered from Covid-19 at time 𝑡 Individual 𝑅(𝑡) ≥ 0 

Illustratively the process of spreading Covid-19 with the first, second and third doses 

of vaccination is shown in Figure 1 as follows. 

 
Figure 1. 

1 2 3SVV V EIR Compartmental Model Diagram 
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Table 4.2 Parameters of the Mathematical Model for the Spread of Covid-19 with the 

First, Second, and Third Doses of Vaccination 

Parameter Definition Unit Condition 

𝜇 Natural death rate 
1

𝑡𝑖𝑚𝑒
 𝜇 ≥ 0 

𝜋 Birth rate 
𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

𝑑𝑎𝑦
 𝜋 ≥ 0 

𝛽 

Rate of infective interaction between 

subpopulations susceptible (Susceptible) 

and subpopulations infected with Covid-

19 (Infected) 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∙ 𝑑𝑎𝑦
 𝛽 ≥ 0 

𝛼 Virus growth rate 
1

𝑑𝑎𝑦
 𝛼 ≥ 0 

𝛾 
Recovery rate of the subpopulation 

infected with Covid-19 

1

𝑑𝑎𝑦
 𝛾 ≥ 0 

𝜔1 
Rate of the Susceptible subpopulation 

receiving the first dose of vaccination 

1

𝑑𝑎𝑦
 𝜔1 ≥ 0 

𝜔2 
Rate of the Vaccinated 1 subpopulation 

receiving the second dose of vaccination 

1

𝑑𝑎𝑦
 𝜔2 ≥ 0 

𝜔3 
Rate of the Vaccinated 2 subpopulation 

receiving the third dose of vaccination 

1

𝑑𝑎𝑦
 𝜔3 ≥ 0 

𝜎1 
Percentage decrease in the effectiveness 

of the first dose of the vaccine 
Percent 𝜎1 ≥ 0 

𝜎2 
Percentage decrease in the effectiveness 

of the second dose of the vaccine 
Percent 𝜎2 ≥ 0 

𝜎3 
Percentage decrease in the effectiveness 

of the third dose of the vaccine 
Percent 𝜎3 ≥ 0 

𝛽1 

Rate of infective interaction between the 

subpopulation that has received the first 

dose of vaccination and the infected 

subpopulation 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∙ 𝑑𝑎𝑦
 𝛽1 ≥ 0 

𝛽2 

Rate of infective interaction between the 

subpopulation that has received the 

second dose of vaccination and the 

infected subpopulation 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∙ 𝑑𝑎𝑦
 𝛽2 ≥ 0 

𝛽3 

Rate of infective interaction between the 

subpopulation that has received the third 

dose of vaccination and the infected 

subpopulation 

1

𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 ∙ 𝑑𝑎𝑦
 𝛽3 ≥ 0 

𝜇𝑘 Death rate due to Covid-19 
1

𝑑𝑎𝑦
 𝜇𝑘 ≥ 0 

𝛿 
Proportion of the Susceptible 

subpopulation that has been vaccinated 
- 0 ≤ 𝛿 ≤ 1 
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Based on the diagram in Figure 1, it can be seen that the compartment is divided into 

seven subpopulations, namely subpopulations that are susceptible to Covid-19 (𝑆), 

subpopulations that have carried out the first dose of vaccination (𝑉1), subpopulations that 

have carried out the second dose of vaccination (𝑉2), subpopulations that have administering 

the third dose of vaccination (𝑉3), subpopulations exposed to Covid-19 (𝐸), subpopulations 

infected with Covid-19 (𝐼), and subpopulations recovering from Covid-19 (𝑅). 

The following is a model of the spread of Covid-19 involving the first to third doses of 

vaccination: 

( )

( )

( )

1

1
1 1 1 1 2 1 1

2
2 1 2 2 2 3 2 2

3
3 2 3 3 3 3

1 1 1 2 2 2 3 3 3
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− − − −

− − −

− − −

− −

− − + + + −
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=

I I

dR
I R

dt



 















 −


 −


 (1) 

 

with 𝑁 = 𝑆 + 𝑉1 + 𝑉2 + 𝑉3 + 𝐸 + 𝐼 + 𝑅 

In the system of equation (1), a simplification process is carried out by changing the 

system into a proportion form between the number of subpopulations and the total 

population. The system of equations (1) can be simplified by assuming 

31 2
1 2 3

1 1 2 2 3 3

,  ,  ,  ,  ,  , 

,  ,  ,  , Π

VV VS E I R
s v v v e i r

N N N N N N N

b N b N b N b N
N


   

= = = = = = =

= = = = =

 (2) 

Obtained 31 2
1 2 3 1s

VV V

N
v v v e

S E I R

N N N N N
i r

N
+ + + = + + ++ + ++ + + =  

So that the system of equations (1) can be simplified by substituting equation (2) into 

the system of equations (1). In addition, the system of equation (1) does not contain the 

variable 𝑟, so the variable 𝑟 is temporarily ignored from the system because it has no effect 

on other equations, then the recovered subpopulation (𝑟) can be calculated using the formula 

𝑟 = 1 − (𝑠 + 𝑣1 + 𝑣2 + 𝑣3 + 𝑒 + 𝑖). Therefore, the system of equations (1) can be written as 

follows: 
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( )

1
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2
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= 1

=

=

=                                       

= 1

= k

ds
bsi s s

dt

dv
s b iv v v

dt

dv
v b iv v v

dt

dv
v b iv v

dt

de
bsi e b iv b iv b iv e

dt

di
e i i

dt

  

   

   

  

     

   


 − − − −


 − − −


 − − −



− −

− − + + + −

− + −












 (3) 

Because each variable of the system of differential equations (3) is a human 

subpopulation, it is necessary to show that all variables 

𝑠(𝑡), 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡), 𝑒(𝑡), 𝑖(𝑡), 𝑟(𝑡) positive and boundness for each 𝑡 > 0.  

Teorema 1 If 𝑠(0) ≥ 0, 𝑣1 ≥ 0, 𝑣2 ≥ 0, 𝑣3 ≥ 0, 𝑒(0) ≥ 0, 𝑖(0) ≥ 0, and 𝑟 ≥ 0 then the set of 

solutions {𝑠(𝑡), 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡), 𝑒(𝑡), 𝑖(𝑡), 𝑟(𝑡)} of the system of equations (3) consists of 

positive elements for each 𝑡 > 0. 

Proof: Suppose 𝑁(𝑡) = 𝑠(𝑡 ) + 𝑣1(𝑡) + 𝑣2(𝑡) + 𝑣3(𝑡) + 𝑒(𝑡) + 𝑖(𝑡) + 𝑟(𝑡), it will be 

shown that the solution of the system of equations (3 ) positive. Proof of a positive solution is 

given from points a)-g). 

a) From the first equation in the system of equations (3) is obtained 

( ) ( )( )1 11 1
ds

bsi s s bi s
dt

      =− − − −  − − + +

( )( )11
ds

bi dt
s

    − − + +  

From the equation above, the two sides are integrated to obtain 

( )( )

( )( )( ) ( )

( )
( )( ) ( )1

1

1

1

1

l

,  

n 1

 
bi dt t Ce A

ds
bi dt

s

s bi dt t C

s t Ae e dengan
  

  

  

− − − +

  − − + +

  − − − + +

  =

 



 
When 𝑡 = 0 then 

( ) 0s t   

b) From the second equation in the system of equations (3) is obtained 

( )

( )

1
1 1 1 1 2 1 1 1 1 2 1

1
1 1 2

1

 

dv
s b iv v v b i v

dt

dv
b i dt

v

      

  

 = − − −  − + +

  − + +

 

From the equation above, the two sides are integrated to obtain 
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1 1 1 2
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ln

 ,  
b i dt t Ce A

b

dv
b i dt

v

v i dt t C

v t Ae e dengan
  

  

  

− − +

  − + +

  − − +

=

+

 

 

  

When 𝑡 = 0 then 

( )1 0v t   

c) From the third equation in the system of equations (3) is obtained 

( )

( )

2
2 1 2 2 2 3 2 2 2 2 3 2

2
2 2 3

2

 

dv
v b iv v v b i v

dt

dv
b i dt

v

      

  

 = − − −  − + +

  − + +

 

From the equation above, the two sides are integrated to obtain 

( )

( )( ) ( )

( )
( ) ( )2 2 3

2
2 2 3

2

2 2 2 3
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ln

 ,  
b i dt t Ce A

b

dv
b i dt

v

v i dt t C

v t Ae e dengan
  

  

  

− − +

  − + +

  − − +

=

+

 

 

  

When 𝑡 = 0 then 

( )2 0v t   

d) From the fourth equation in the system of equations (3) is obtained 

( )

( )

3
3 2 3 3 3 3 3 3 3

3
3 3

3

 

dv
v b iv v b i v

dt

dv
b i dt

v

    

 

 = − −  − +

  − +

 

From the equation above, the two sides are integrated to obtain 
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( )( )
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3
3 3
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b i dt t Ce A
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− −

  − +
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When 𝑡 = 0 then 

( )3 0v t   

e) From the fifth equation in the system of equations (3) is obtained 

( ) ( )

( )

1 1 1 2 2 2 3 3 31

 

de
bsi e b iv b iv b iv e e

dt

de
dt

e

       

 

 = − − + + + −  − +

  − +

 

From the equation above, the two sides are integrated to obtain 
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 When 𝑡 = 0 then 

( ) 0e t   

f) From the sixth equation in the system of equations (3) is obtained 

( ) ( )( )

( )( )  

k k

k

di
e i i i

dt
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dt

i

      

  

 = − + −  − + +
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From the equation above, the two sides are integrated to obtain 
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 When 𝑡 = 0 then 

( ) 0i t   

g) From the seventh equation in the system of equations (3) is obtained h 

 

dr
i r r

dt

dr
dt

r

  



 = −  −

  −

 

From the equation above, the two sides are integrated to obtain 

( )

 

ln

,   t C

dr
dt

r

r t C

r t Ae deng e Aan





−

  −

  − +

  =

 

 When 𝑡 = 0 then 

( ) 0r t 
 

Therefore, it is proven that equation a)-g) is a positive solution.
 

Teorema 2 The set of solutions {𝑠(𝑡), 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡), 𝑒(𝑡), 𝑖(𝑡), 𝑟(𝑡)} of the system of 

equations (3) with initial conditions is limited to the region Ω =

{(𝑠(𝑡), 𝑣1(𝑡), 𝑣2(𝑡), 𝑣3(𝑡), 𝑒(𝑡), 𝑖(𝑡), 𝑟(𝑡)) 𝜖 ℝ+
7 : 0 ≤ 𝑁 ≤

Π

𝜇
} 

Proof: The total population of the system of equation (3) is 𝑁(𝑡) = 𝑠(𝑡) + 𝑣1(𝑡) + 𝑣2(𝑡) +
𝑣3(𝑡) + 𝑒(𝑡) + 𝑖(𝑡) + 𝑟(𝑡). 𝑁 differentiable with respect to 𝑡 is obtained 
𝑑𝑁

𝑑𝑡
=

𝑑𝑠

𝑑𝑡
+

𝑑𝑣1

𝑑𝑡
+

𝑑𝑣2

𝑑𝑡
+

𝑑𝑣3

𝑑𝑡
+

𝑑𝑒

𝑑𝑡
+

𝑑𝑖

𝑑𝑡
+

𝑑𝑟

𝑑𝑡
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dN
s v v v e i r i
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dN
N i

dt

 

 

 = − + + + + + + −

 = − −
 

Because the state variable of equation 𝑖 is positive for every 𝑡 ≥ 0 is obtained 

dN
N

dt
  −  

Because 𝑁(𝑡) ≥ 0 then 
𝑑𝑁

𝑑𝑡
≥ 0 so we get 0 ≤ Π − 𝜇𝑁 or (𝑡) ≤

Π

𝜇
 . So it is evident that the solution to 

the system of equations (3) is boundness. 
 

III. ANALYSIS OF THE MODEL 

The system of equations (3) has an equilibrium point. The equilibrium point is obtained 

when the sixth equations of the system of equations (3) equal zero or 
𝑑𝑠

𝑑𝑡
=

𝑑𝑣1

𝑑𝑡
=

𝑑𝑣2

𝑑𝑡
=

𝑑𝑣3

𝑑𝑡
=

𝑑𝑒

𝑑𝑡
=

𝑑𝑖

𝑑𝑡
= 0. So the system of equation (3) becomes 

( ) 11 0bsi s s   − − − − =   (4) 

1 1 1 1 2 1 1 0s b iv v v   − − − =  (5) 

2 1 2 2 2 3 2 2 0v b iv v v   − − − =  (6) 

3 2 3 3 3 3 0v b iv v  − − =  (7) 

( ) 1 1 1 2 2 2 3 3 31 0bsi e b iv b iv b iv e     − − + + + − =  (8) 

( ) 0ke i i   − + − =  (9) 

The equilibrium point in the system of equations (4) to (9) is divided into two, namely 

disease-free and endemic equilibrium points. From the disease-free equilibrium point, the 

basic reproduction number (𝑅0) can be obtained in the system of equation (3). The following 

is the disease-free equilibrium point, the basic reproduction number (𝑅0), and the endemic 

equilibrium point of the system of equations (3). 

3.1 Disease-Free Equilibrium Point 

The disease-free equilibrium point is obtained when there is no disease in a population, so 

𝑖  = 0. So, the disease-free equilibrium point is obtained from the system of equation (3), 

namely 

( )

( ) ( )( ) ( )( )( ) ( )( )( )

1 1 2 3

1 2 31 1 2
1

1 1 2 1 2 3 1 2 3

ˆˆ ˆ ˆ ˆ ˆ, , , , ,

, , , ,0,0

TK s v v v e i

TK
  

                  

=

  
=   + + + + + + + + + 

 

3.2 Basic Reproduction Number 

The basic reproduction number is obtained using the next generation matrix method. The 

step in obtaining the results of the basic reproduction number in the system of equations (3), 
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namely taking the equations of the infected class subpopulations in the equation system, 

including the disease-exposed subpopulation (𝑒) and the disease-infected subpopulation (𝑖), 

is then formed into a matrix. Then, decompose the matrix formed in the second step into the 

following matrix form �̇� = 𝑭 − 𝑽 as following 

( ) 1 1 1 2 2 2 3 3 31

0

bsi b iv b iv b iv
F

    − + + + 
=  
   

1 2 3

0

usi kiv xiv yiv
F

+ + + 
=  
 

  

and 

( )

( )k

e
V

e i

 

   

+ 
=  

− + + + 
 

me
V

e ni

 
=  

− + 
  

with  

( ) ( ) ( )

2 2 3 3

1 1,  ,  1 , 

,  and 

km

x b

n u b

y b

k b



      



= + = + + = −

= =

=
 

Furthermore linearize the transmission matrix (F) and transition matrix (V) into the form 

of matrix F and matrix V as follows: 

( )

( ) ( )

( ) ( )

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

ˆˆ ˆ ˆ ˆ ˆ, , , , ,
,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , ,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , ,

iF
s v v v e i

e i

de de
s v v v e i s v v v e i

de di

di di
s v v v e i s v v v e i

de di


=


 
 

=  
 
  

 

1 2 31 1 20

0 0

u k x y
p pq pqr pqr

  



        
+ + +       

    



 
 

= 






 
 (10) 

and 

( )

( ) ( )

( ) ( )

1 2 3

1 2 3 1 2 3

1 2 3 1 2 3

ˆˆ ˆ ˆ ˆ ˆ, , , , ,
,

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , ,

   

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , , , , , , , ,

0
   

i

k

V
s v v v e i

e i

de de
s v v v e i s v v v e i

de di

di di
s v v v e i s v v v e i

de di

 

   


=


=

+
=

− + +

 
 
 
 
  

 
 
 

 

0m

n

 
=  

− 
 (11) 

with 
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The equation V is inverted, so it is obtained as follows 

1
01 n

mmn 

−  
=  

 
 

1

1
0

1

m

mn n



−

 
 

=  
 
  

 (12) 

Furthermore, determining the next generation matrix by looking for the value of 𝐾 = 𝔽𝕍−1 to 

obtain two different eigenvalues, namely  

1 1 2 1 2 3

1

2

0

u qr k r x y

mn pqr
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=
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x
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y b
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= +

= + +

= −
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3.3 Endemic Equilibrium Point 

Furthermore, the endemic equilibrium point of the Covid-19 distribution model is in the 

system of equation (2), then the equilibrium point is obtained when the spread of disease 

occurs in a population (𝑖∗ > 0). The endemic equilibrium point is obtained  𝑇𝐾2 = (𝑠∗, 𝑣1
∗, 𝑣2

∗ 

𝑣3
∗, 𝑒∗, 𝑖∗) with 
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      = + + +       + + + + + + + + + +         

 and 𝑖∗ > 0 if 𝑅0 > 1 and satisfy several possibilities that 𝑖∗ has exactly one positive real root 

by using Descartes' sign rule. 

IV. NUMERICAL SIMULATION 

The parameter values used in the Covid-19 spread model were obtained from previous 

research, while the total population and each sub-population were obtained from BPS data 

[15] and Covid-19 cases in Semarang City in 2022. The data provided have been obtained 

including 𝑆 (Susceptible) = 989.150, 𝑉1 (Vaccinated 1)= 236.408, 𝑉2 (Vaccinated 2) =
168.919, 𝑉3 (Vaccinated 3)= 108.709, 𝐸 (Exposed)= 25.127, 𝐼 (Infected)= 27.741, 𝑅 

(Recovered)= 100.510, 𝑁 (total population in Semarang City)= 1.656.564. 

4.1 Simulation when Disease-Free 

The initial values used to carry out the simulation when disease free are 𝑆(0) = 0,598,  𝑉1(0) =
0,143, 𝑉2(0) = 0,102, 𝑉3(0) = 0,066, 𝐸(0) = 0,015, 𝐼(0) = 0,017. Parameter values used to 

obtain the simulation results of the spread of Covid-19 are shown in Table 3: 

Table 3. Parameter Value when 𝑅0 < 1 
Parameter Value References 

𝜇 0,013 Assumption 

Π 0,67 Assumption 

𝛽 0,007 [6] 

𝛼 0,001 [8] 

𝛾 0,09 [9] 

𝜔1 0,022 [6] 

𝜔2 0,0071 [6] 

𝜔3 0,0056 [10] 

𝜎1 0,447 [6] 

𝜎2 0,22 [11] 

𝜎3 0,8 [12] 

𝛽1 0,005 [6] 

𝛽2 0,002 [6] 

𝛽3 0,01 [13] 

𝜇𝑘 0,002 [14] 

𝛿 0,31 [15] and [16] 
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Furthermore, plots are displayed with different values of the basic reproduction number (𝑅0) 

namely when 𝑅0 = 0,14; 𝑅0 = 0,201; and 𝑅0 = 0,22 to see the condition of the disease-free 

equilibrium point. These different basic reproduction numbers are obtained by changing the value of 

the parameter 𝛿 which is presented in Table 4 below: 

Table 4. Parameter Value 𝛿 for 𝑅0 = 0,14; 𝑅0 = 0,201; and 𝑅0 = 0,22 

Parameter  
Parameter Value 

for 𝑹𝟎 = 𝟎, 𝟏𝟒 

Parameter Value for 

𝑹𝟎 = 𝟎, 𝟐𝟎𝟏 

Parameter Value 

for 𝑹𝟎 = 𝟎, 𝟐𝟐 

𝛿 0,31 0,1 0,05 

Based on Table 4, the following simulation results are obtained: 

 
Figure 2. Simulation when 𝑅0 = 0,14 

 
Figure 3. Simulation when 𝑅0 = 0,201 

 
Figure 4. Simulation when 𝑅0 = 0,22 
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Based on Figure 2 when 𝑅0 = 0,14 the solution for each subpopulation 𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸, and 

𝐼 was obtained sequentially to 33,804; 11,47; 4,378; 1,88; 0; 0, then in Figure 3 when 𝑅0 =
0,201 the solution for each subpopulation 𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸, and 𝐼 was obtained sequentially to 

44,079; 4,824; 1,842; 0,793; 0; 0, then in Figure 4 when 𝑅0 = 0,22 the solution for each 

subpopulation 𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸, and 𝐼 was obtained sequentially to 47,518; 2,6; 0,993; 
0,428; 0; 0. These values are disease-free equilibrium points in each state of 𝑅0. Thus, when 

𝑅0 < 1, the solution for each subpopulation tends to reach a disease-free equilibrium point. 

4.2 Simulation when Endemic 

The initial values used to carry out the simulation when endemic are 𝑆(0) = 0,598,  

𝑉1(0) = 0,143, 𝑉2(0) = 0,102, 𝑉3(0) = 0,066, 𝐸(0) = 0,015, 𝐼(0) = 0,017. Parameter 

values used to obtain the simulation results of the spread of Covid-19 are shown in Table 5: 

Table 5. Parameter Value when 𝑅0 > 1 

Parameter Value References 

𝜇 0,013 Assumption 

Π 0,67 Assumption 

𝛽 0,05  Assumption 

𝛼 0,036 [14] 

𝛾 0,09 [9] 

𝜔1 0,022 [6] 

𝜔2 0,0071 [6] 

𝜔3 0,0056 [10] 

𝜎1 0,447 [6] 

𝜎2 0,22 [11] 

𝜎3 0,8 [12] 

𝛽1 0,03 Assumption 

𝛽2 0,02 Assumption 

𝛽3 0,06 Assumption 

𝜇𝑘 0,002 [14] 

𝛿 0,11 Assumption 

Furthermore, plots are shown with different basic reproduction number values (𝑅0) 

namely when 𝑅0 = 14,37; 𝑅0 = 15,098; and 𝑅0 = 16,28 to see the condition of the endemic 

equilibrium point. These different basic reproduction numbers are obtained by changing the 

value of the parameter 𝛿 which is presented in Table 6 below: 

Table  6. Parameter Value 𝛿 for 𝑅0 = 14,37; 𝑅0 = 15,098; and 𝑅0 = 16,28 

Parameter  

Parameter 

Value for 𝑹𝟎 =
𝟏𝟒, 𝟑𝟕 

Parameter Value for 

𝑹𝟎 = 𝟏𝟓, 𝟎𝟗𝟖 

Parameter Value 

for 𝑹𝟎 = 𝟏𝟔, 𝟐𝟖 

𝛿 0,11 0,085 0,048 

 

Based on Table 6, the simulation results are obtained as follows: 
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Figure 5. Simulation when 𝑅0 = 14,37 

 
Figure 6. Simulation when 𝑅0 = 15,098 

 
Figure 7. Simulation when 𝑅0 = 16,28 

Based on Figure 5 when 𝑅0 = 14,37 the solution for each subpopulation 𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸, 
and 𝐼 was obtained sequentially to 3,1799; 0,097; 0,0183; 0,00046; 12,799; 4,388223836, 

then in Figure 6 when 𝑅0 = 15,098 the solution for each subpopulation 𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸, and 𝐼 

was obtained sequentially to 3,1; 0,073; 0,014; 0,00034; 12,828; 4,398, then in Figure 7 

when 𝑅0 = 16,28 the solution for each subpopulation 𝑆, 𝑉1, 𝑉2, 𝑉3, 𝐸, and 𝐼 was obtained 

sequentially to 2,99; 0,04; 0,0074; 0,000185; 12,868; 4,412. These values are endemic 

equilibrium points in each state of 𝑅0. Thus, when 𝑅0 > 1, then the solution for each 

subpopulation tends to reach the endemic equilibrium point. 
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4.3 Vaccine Success Simulation 

In the next simulation, a numerical test was carried out to evaluate the success of using the 

vaccine using the assumption that the parameter value for the rate of development of the 

Covid-19 virus (𝛼) was 0,002 and changing the parameter value for the proportion of 

Susceptible subpopulations (S) who had been vaccinated (𝛿) which is shown in Table 7 

below: 

Table 7. Successful Use of Vaccines 

Parameter Value 

𝜹 

Basic Reproduction Number 

(𝑹𝟎)  
Condition Variable 𝒊 

0,9 0,716932511  
Free from Covid-19 

(𝑅0 < 1) 

0,8 0,837555459 
Free from Covid-19 

(𝑅0 < 1) 

0,5 1,332109546  
Covid-19 is spreading 

(𝑅0 > 1) 

0,3 1,846849514 
Covid-19 is spreading 

(𝑅0 > 1) 

 

Meanwhile, the values of parameters other than 𝛿 and 𝛼 have the same values as the 

parameters when conditions are endemic (𝑅0 > 1) as shown in Table 5. Next, a graph of the 

numerical test using MATLAB R2017a is shown in Figure 7–Figure 10 and presented with 

daily timeframes up to 300 days and 4000 days as follows: 

         
Figure 7. Simulation of variable 𝑖 when 𝛿 = 0,9 

          
Figure 8. Simulation of variable 𝑖 when 𝛿 = 0,8 
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Figure 9. Simulation of variable 𝑖 when 𝛿 = 0,5 

 
Figure 10. Simulation of variable 𝑖 when 𝛿 = 0,3 

Based on Figure 7, the infected subpopulation (𝐼) with a proportion of 𝛿 = 0,9 decreased 

until 200 days to point 0 and produced a basic reproduction number (𝑅0) of 0,716932511 

which means that Covid-19 has not spread or is disease free. Furthermore, in Figure 8 the 

infected subpopulation (𝐼) with a proportion of 𝛿 = 0,8 decreased until 250 days to point 0 

and produced a basic reproduction number (𝑅0) of 0,976866469 which means that Covid-19 

has not spread or is disease free. In Figure 9 the infected subpopulation (𝐼) with the 

proportion 𝛿 = 0,5 experienced an increase until 3000 days of 0,206 and produced a basic 

reproduction number of 1,332109546 which means that Covid-19 is spreading or endemic in 

a certain area, then in Figure 10 the infected subpopulation (𝐼) with a proportion of 𝛿 = 0,3 

increased until 1200 days of 0,4 and produced a basic reproduction number of 1,846849514 

which means that Covid-19 is spreading or endemic in a certain area. Thus, it can be 

concluded that if the proportion of the Susceptible (𝑆) subpopulation that is vaccinated (𝛿) 

increases, then the disease cannot spread quickly. 

V. CONCLUSION 

The mathematical model for the spread of Covid-19 involving the first to third doses of 

vaccination can be arranged in a system of non-linear differential equations. The disease-free 

equilibrium point of the Covid-19 spread model involving the first to third doses of 

vaccination is 𝐾1 = (
Π

(𝛿𝜔1+𝜇)
,

𝛿𝜔1Π

(𝛿𝜔1+𝜇)(𝜔2+𝜇)
,

𝛿𝜔1ω2Π

(𝛿𝜔1+𝜇)(𝜔2+𝜇)(𝜔3+𝜇)
,

𝛿𝜔1ω2ω3Π

(𝛿𝜔1+𝜇)(𝜔2+𝜇)(𝜔3+𝜇)𝜇
, 

0,0). Meanwhile, the endemic equilibrium point of the model is 𝑇𝐾2 = (𝑠∗, 𝑣1
∗, 𝑣2

∗, 𝑣3
∗, 𝑒∗, 𝑖∗). 

The basic reproduction number of the model has been formed in this study is 
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. Based on the numerical simulation results it is 

known that if the condition is 𝑅0 < 1 hen Covid-19 cannot spread or is free from the disease, 

whereas if the condition is 𝑅0 > 1, then Covid-19 can spread or become endemic in a certain 

area. In addition, the disease cannot spread quickly if the proportion of the Susceptible (𝑆) 

subpopulation that is vaccinated (𝛿) is increased. 
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