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Abstract. In this paper, we will discuss about topological properties of quasi-
pseudometric spaces and properties of linear operators in asymmetric normed spaces. 
The topological properties of quasi-pseudometric spaces will be given consisting of 
open and closed set properties in quasi-pseudometric spaces. The discussion about 
properties of linear operator on asymmetric normed spaces is focus on the uniform 
boundedness principle. The uniform boundedness theorem is proved by utilizing com-
pleteness properties and characteristic of closed sets on quasi-pseudometric spaces. 
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I. INTRODUCTION

Quasi pseudometric is a generalization of a metric. This generalization is achieved by 
weakening two properties that metrics possess [9]. Furthermore, a quasi pseudometric is called 
a quasi metric if it satisfies a specific axiom. Based on the properties of quasi pseudometrics, 
Kelly [9] established the conjugate of quasi pseudometrics and the topology on quasi pseudo-
metric spaces.

Based on the research conducted by Kelly [9] regarding quasi pseudometrics, Duffin et al 
[1] introduced the term asymmetric norm and established the relationship between asymmetric 
norm and quasi pseudometrics. Duffin et al [1] stated that a  space with an asymmetric norm 
(X, p), where X is a vector space equipped with the asymmetric norm p, can be considered as 
a quasi pseudometric space (X, dp), where dp : X × X → [0, ∞), and dp(x, y) = p(y − x), 
for every x, y ∈ X . The topology, properties of convergent sequences, and completeness prop-
erties of quasi pseudometric spaces have been studied by Reilly et al [12], Romaguera [13], 
Wilson [15], and Cobzas [6, 7]. In these studies, further investigation into the relationship be-
tween quasi pseudometrics and quasi metrics has not been explored. Additionally, there hasn’t 
been extensive research on the properties of open and closed sets in quasi pseudometric spaces. 
Therefore, the authors were motivated to conduct research in this area and provide some sup-
porting examples.

The research related to normed asymmetric spaces continues to progress, and one of its de-
velopments involves studying the properties of linear operators in asymmetric normed spaces as 
discussed by Cobzas [6, 2]. Cobzas’ research builds upon the findings of previous studies con-
ducted by Raffi and others [4]. One of the properties of linear operators in asymmetric normed 
spaces described by Cobzas [6] is the uniform boundedness property exhibited by collections 
of pointwise bounded continuous linear operators in asymmetric normed spaces. Furthermore, 
Cobzas [2] and Bouadjila et al [3] revisited the uniform boundedness property of collections
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of continuous linear operators in asymmetric normed spaces by modifying the conditions re-
quired for such collections. In their work, Cobzas provided a proof of the uniform boundedness
property of collections of continuous linear operators in asymmetric normed spaces using the
Zabrejko Lemma introduced by Romaguera [13], while Bouadjila and colleagues utilized the
properties of collections of lower semicontinuous linear operators. Due to the complexity of
the proofs provided, the author has the idea to establish the theorem using an approach that
leverages the properties of completeness and closedness of sets within asymmetric normed
spaces.

Based on the elaboration above, in this paper, the author will establish the relationship
between quasi-pseudometric and quasi-metric, provide topological properties in quasi- pseu-
dometric spaces not covered by Cobzas [6], and offer supporting examples. Additionally, the
author will present a proof of the uniform boundedness theorem for collections of continuous
linear operators in asymmetric normed spaces using a simpler approach than the one employed
by Cobzas [6, 2].

II. PRELIMINARIES

Based on the research conducted by previous scholars, the following are the research find-
ings that are essential for this study.

Definition 2.1 [6, 2, 11, 17] Let X be a non-empty set. A Function d : X × X → [0,∞) is
called quasi-pseudometric on X if

1. d(x, y) ≥ 0 and d(x, x) = 0, for all x, y ∈ X;

2. d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X .

Furthermore, a quasi-pseudometric is called quasi-metric, if for every x, y ∈ X it satisfies

3. d(x, y) = d(y, x) = 0 =⇒ x = y.

A set X equipped with a quasi-pseudometric d is called a quasi-pseudometric space and
is usually denoted as (X, d). Furthermore, if d is a quasi-metric, then (X, d) is referred to
as a quasi-metric space. Moreover, because quasi-pseudometrics is not symmetric, Kelly [9]
introduced the definition of quasi-pseudometric conjugate as follows.

Definition 2.2 [9, 2, 11] Given quasi-pseudometric (X, d). The conjugate of a quasi- pseudo-
metric d is d̄ : X ×X → [0,∞) defined as follow

d̄(x, y) = d(y, x), for every x, y ∈ X.

Based on Definition 2.1 and Definition 2.2, Cobzas [2] wrote that the conjugate of a quasi-
pseudometric is a quasi-pseudometric.

Lemma 2.3 [2] Given quasi-pseudometric (X, d). The conjugate of a quasi-pseudometric d,
denoted as d̄, is a quasi-pseudometric on X . Furthermore, if d is a quasi-metric, then d̄ is a
quasi-metric.
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Based on the definition of quasi-pseudometric and quasi-metric, Madula [11] wrote about
another quasi-pseudometric that can be defined within the space of quasi-pseudometrics.

Lemma 2.4 [11] Let X be a non-empty set equipped with a quasi-pseudometric d : X ×X →
[0,∞). The function ds(x, y) = max{d(x, y), d̄(x, y)}, x, y ∈ X , is a pseudometric on X .
Furthermore, ds is a metric on X if and only if d is a quasi-metric on X .

Given a quasi-pseudometric space (X, d), Romaguera [13] defines that for every x ∈ X
and r > 0, an open ball with center x and radius r is defined as

Bd(x, r) = {y ∈ X : d(x, y) < r}, (1)

meanwhile, a closed ball with center x and radius r is defined as

Bd[x, r] = {y ∈ X : d(x, y) ≤ r}. (2)

Furthermore, based on the definition of open balls, Cobzas [6] provides the definition of open
sets in quasi-pseudometric spaces as given in Definition 2.5.

Definition 2.5 [6] Given a quasi-pseudometric space (X, d) and subset U ⊆ X . The set U ⊆ X
is called an open set in the quasi-pseudometric space (X, d), if for every a ∈ U there exist r > 0
such that

Bd(a, r) ⊆ U.

A set U that satisfies these conditions is called an open set with respect to d. Conversely,
a subset U ⊆ X is called a closed set with respect to d in the quasi-pseudometric space (X, d),
if U c is an open set with respect to d in the quasi-pseudometric space (X, d).

In metric spaces, it is true that closed balls in the metric space are closed sets. This does
not hold in quasi-pseudometric spaces. The following lemma states that closed balls in quasi-
pseudometric spaces are closed sets with respect to the conjugate of the quasi-pseudometric.

Lemma 2.6 [6] Given quasi-pseudometric space (X, d), for any x ∈ X and r > 0, Bd[x, r] =
{y ∈ X : d(x, y) ≤ r} is a closed set with respect to d̄, where d̄ is the conjugate of the
quasi-pseudometric d.

By generalizing the definition of convergent sequences in metric spaces, the following is
the definition of convergence for sequences in quasi-pseudometric spaces.

Definition 2.7 [2] Given a quasi-pseudometric space (X, d). A sequence (xn) ⊆ X is said to
converge-d to x ∈ X , if the sequence (d(x, xn)) in R converges to 0.

The sequence (xn) ⊆ X hat converges-d to x ∈ X is commonly denoted as xn
d−→ x.

Based on Definition 2.7, it is obtained that every sequence (xn) in a quasi-pseudometric space
X is said to converge-d to x ∈ X if and only if the sequence (d(x, xn)) in R converges to 0. In
other words,

xn
d−→ x ⇐⇒ d(x, xn) → 0.
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Furthermore, based on Definition 2.7 and Definition 2.2, a similar definition of convergence
with respect to d̄ can be derived as follows:

xn
d̄−→ x ⇐⇒ d̄(x, xn) → 0 ⇐⇒ d(xn, x) → 0.

To provide an understanding of the convergence of sequences in quasi-pseudometric spaces,
the following are examples of convergent sequences in quasi-pseudometric spaces.

Example 2.8 1. Given a quasi-pseudometric space (X, d) where X = R and d : X ×X →
[0,∞), d(x, y) = max{0, x − y}, for every x, y ∈ X . A sequence (xn) in X where
xn = 1

n
, for every n ∈ N. The sequence (xn) converges-d to 0 ∈ X and converges-d̄ to

0 ∈ X .

2. Given a quasi-pseudometric space (X, p) where X = [0, 1] and p : X ×X → [0,∞),

p(x, y) =

{
0, if x ≤ y

1, if x > y.

Given the sequence (xn) in X , where

xn =
1

n+ 1
, n ∈ N.

The sequence (xn) converges-p to 0 and converges-p̄ to 1.

Based on Example 2.8, it can be concluded that sequences in quasi-pseudometric spaces
can converge-d and converge-d̄ to same or different point. According to the research findings by
Cobzas [6], it is obtained that a sequence in a quasi-pseudometric space (X, d) can converge-d
and converge-d̄ to the same point, if the sequence converges-ds. Sequences in metric spaces
have unique convergence values, whereas sequences in quasi-pseudometric spaces can have
non-unique convergence values. The proof of this statement can be found in the work of Cobzas
[6].

Because quasi-pseudometrics are asymmetric, the definition of Cauchy sequences is dif-
ferentiated into several definitions.

Definition 2.9 [6] Given a quasi-pseudometric space (X, d). A sequence (xn) in (X, d) is called

a. Left K-Cauchy, if for every ϵ > 0, there exist n0 ∈ N such that for every n,m ∈ N,
n0 ≤ n < m,

d(xn, xm) < ϵ.

b. Right K-Cauchy, if for every ϵ > 0, there exist n0 ∈ N such that for every n,m ∈ N,
n0 ≤ n < m,

d(xm, xn) < ϵ.

Furthermore, Cobzas [2, 7] provides definitions of completeness within the pseudometric
space in two definitions.
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Definition 2.10 [2, 7] Given a quasi-pseudometric space (X, d). The quasi-pseudometric space
(X, d) is called

1. Right K-complete with respect to d, if for every right K-Cauchy sequences in X converges-
d in X .

2. Left K-complete with respect to d, if for every left K-Cauchy sequences in X converges-d
in X .

An asymmetric norm is a generalization of normed spaces by weakening the axioms held
by norms. Definition 2.11 provides the definition of an asymmetric norm.

Definition 2.11 [4, 17] Given a vector space X and a function p : X → [0,∞). The function p
is called an asymmetric normed if the following conditions are satisfied.

1. for every x ∈ X , p(x) ≥ 0 and (p(x) = p(−x) = 0 =⇒ x = 0);

2. p(αx) = αp(x), for all x ∈ X and α ≥ 0;

3. p(x+ y) ≤ p(x) + p(y), for every x, y ∈ X .

The set X equipped with an asymmetric norm p is called an asymmetric normed space
and is denoted by (X, p).

Based on Definition 2.11, it is derived that every norm is an asymmetric norm. The fol-
lowing example provides an example of an asymmetric norm in R.

Example 2.12 Given a vektor space R and a function u : R → [0,∞), where u(x) =
max{x, 0}, for every x ∈ R. The function p is asymmetric norm on R.

Furthermore, based on the definition of quasi-pseudometric and asymmetric norm, Kelly
[9] states that within an asymmetric normed space, a quasi-pseudometric can be defined.

Lemma 2.13 Given asymmetric normed space (X, p). The function dp : X × X → [0,∞)
where

dp(x, y) = p(y − x), x, y ∈ X,

is a quasi-metric on X .

The conjugate function of the asymmetric norm p o vector space X is defined as the
function p̄ : X → [0,∞), where

p̄(x) = p(−x), (3)

for every x ∈ X .

III. TOPOLOGY IN QUASI-PSEUDOMETRIC SPACES

In this section, the properties of open and closed sets in quasi-pseudometric spaces will be
discussed. Previously, based on Definition 2.1 outlined in the Introduction section, the follow-
ing consequences were obtained.
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Corollary 3.1 Every quasi-metric is a quasi-pseudometric.

Based on the quasi-pseudometric examples provided by previous researchers, it cannot
be concluded that every quasi-pseudometric is a quasi-metric. Here is an example of a quasi-
pseudometric that is not a quasi-metric.

Example 3.2 Let R[0, 1] be the set of all Riemann integrable functions on [0, 1]. Given a func-
tion d : R[0, 1]×R[0, 1] → [0,∞), where

d(f, g) = max{0,
∫ 1

0

(f(x)− g(x))dx},

for every f, g ∈ R[0, 1]. The function d is a quasi-pseudometric on R[0, 1], but not a quasi-
metric.

Proof. Based on the properties of Riemann integrable functions, it is obtained that for every
f, g ∈ R[0, 1], f − g is Riemann integrable. As a result, for every f, g ∈ R[0, 1], d(f, g) is well
defined.

Next, it will be shown that d is a quasi-pseudometric on R[0, 1]. Let f, g, h ∈ R[0, 1] be
arbitrary. Based on the definition of d, it is obtained that d(f, g) ≥ 0 and d(f, f) = 0.
Based on the properties of integrals, it follows that

d(f, g) = max
{
0,

∫ 1

0

(f(x)− g(x))dx
}

= max{0,
∫ 1

0

(f(x)− h(x) + h(x)− g(x))dx}

≤ max{0,
∫ 1

0

(f(x)− h(x))dx}+max{0,
∫ 1

0

(h(x)− g(x))dx}

= d(f, h) + d(h, g).

Based on these conditions, it is obtained that d is a quasi-pseudometric on R[0, 1].
Furthermore, it will be shown that d is not a quasi-metric. Consider the functions f and g below

f(x) =

{
2 if x = 0;

0 if 0 < x ≤ 1;
and g(x) =

{
1 if x = 0;

0 if 0 < x ≤ 1.

The fuction f and g are Riemann integrable functions on [0, 1], this mean that f, g ∈ R[0, 1].
Note that

f(x)− g(x) =

{
1 if x = 0;

0 if 0 < x ≤ 1;

and

g(x)− f(x) =

{
−1 if x = 0;

0 if 0 < x ≤ 1.

Therefore, it is obtained that∫ 1

0

(f(x)− g(x))dx = 0 and
∫ 1

0

(g(x)− f(x))dx = 0.
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According to the definition of d, it is obtained that d(f, g) = d(g, f) = 0. On the other hand,
f ̸= g. Consequently, it is concluded that d is not a quasi-metric.

Based on the definitions of open and closed sets provided in the Preliminaries, Example
3.3 gives an example of an open set in a quasi-pseudometric space.

Example 3.3 Consider (X, p), a quasi-pseudometric space defined in Example 2.8, a set A =
(1
2
, 1] is an open set in quasi-pseudometric space X .

Proof. Take any a ∈ A, this means that 1
2
< a ≤ 1. Let r = 1

4
. Note that

Bp(a,
1

4
) = {x ∈ X : p(a, x) <

1

4
}

= {x ∈ X : p(a, x) = 0}
= {x ∈ X : a ≤ x}.

Since a > 1
2

and for every x ∈ X , it holds that 0 ≤ x ≤ 1, then for every y ∈ Bp(a,
1
4
), it

is obtained that 1
2
< a ≤ y ≤ 1. This means that y ∈ A. In other words, it is obtained that

Bp(a,
1
4
) ⊆ A. Thus, it is proven that A is an open set in X .

Based on the definitions of open sets and neighborhoods provided in the Preliminaries, a
generalization of the definition of the interior and closure of a set in quasi-pseudometric spaces
can be made, as given in Definition 3.4.

Definition 3.4 Given quasi-pseudometric space (X, d) and not empty set U ⊆ X .

1. A point a ∈ U is called an interior point of the set U if there exists r > 0, such that

Bd(a, r) ⊆ U.

The collection of all interior points of the set U is called the interior U and is denoted by
intd(U).

2. A point a ∈ U is called an closure point of the set U if for every r > 0, it holds that

Bd(a, r) ∩ U ̸= ∅.

The collection of all closure point of the set U is called closure U and is denoted by
cld(U).

Furthermore, in Example 3.5, an example of the interior and closure of a set in a quasi-
pseudometric space is provided.

Example 3.5 Given quasi-pseudometric space (R, d) as defined in Example 2.8. Let A = {x ∈
R : 5 < x < 20}. It is obtained that intd(A) = ∅ and cld(A) = {x ∈ R : x ≤ 20}.

Proof. Assumed that intd(A) ̸= ∅, it means there exist a ∈ A and r > 0 such that

Bd(a, r) ⊆ A.
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Note that

Bd(a, r) = {x ∈ R : d(a, x) < r}
= {x ∈ R : d(a, x) = 0 or 0 < d(a, x) < r}
= {x ∈ R : a ≤ x or 0 < a− x < r}
= {x ∈ R : x > a− r}.

(4)

Since a ∈ A and for any x ∈ R with x > 20, it holds that x > 20 > 20− r > a− r, it follows
that x ∈ Bd(a, r). This means that for every x ∈ R with x > 20, it is contained within Bd(a, r).
As a result, it is obtained that Bd(a, r) ̸⊆ A. A contradiction occurs. Therefore, the assumption
must be denied. Thus, it is proven that intd(A) = ∅.

Next, it will be shown that cld(A) = {x ∈ R : x ≤ 20}.
Take any y ∈ R such that y ≤ 20 and any r > 0. Based on Equation (4), it is obtained that

Bd(y, r) = {x ∈ R : x > y − r}.

Note that for the given r > 0 there are two possibilities: either r ≥ 20 or 0 < r < 20.
For r ≥ 20, let z = 10. Consequently, z ∈ A and

z = 10 > 0 = 20− 20 ≥ y − r.

This means that z ∈ Bd(y, r) ∩ A.
For 0 < r < 20, we choose z = 20−min r, 20− r < 0. Note that

z = 20−min{r, 20− r} > y − r,

which mean z ∈ Bd(y, r) and it is also noted that

10 =
1

2
(20− r) +

1

2
(20− (20− r)) < 2(

1

2
(20−min{r, 20− r})) = z.

Therefore, it is obtained that 10 < z < 20. In other words, it is obtained that z ∈ A. Conse-
quently, it is obtained that z ∈ Bd(y, r) ∩ A.
Based on the results from both of these possibilities, it is obtained that for every r > 0,
Bd(y, r) ∩ A ̸= ∅. That means y ∈ cld(A).
In other words, it is obtained that {x ∈ R : x ≤ 20} ⊆ cld(A).
For the converse, take any y ∈ cld(A), it will be shown that y ∈ x ∈ R : x ≤ 20
Asummed that y ̸∈ {x ∈ R : x ≤ 20}, it means y > 20.
Defined r = 1

2
(y − 20) > 0. Moreover, it is noted that

Bd(y, r) = {x ∈ R : x > y − r}

= {x ∈ R : x > y − 1

2
(y − 20)}

= {x ∈ R : x >
1

2
y + 10}.
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Since y > 20, then for any z ∈ Bd(y, r), it is obtained that

z >
1

2
y + 10 >

1

2
· 20 + 10 = 20.

This means that z ̸∈ A. In other words, it is obtained that Bd(y, r) ⊆ Ac, consequently
Bd(y, r) ∩ A = ∅. A contradiction arises with the fact that y ∈ cld(A). Therefore, the as-
sumption must be rejected.
In other words, it is proven that y ∈ {x ∈ R : x ≤ 20}. Thus, cld(A) ⊆ {x ∈ R : x ≤ 20}.
Since {x ∈ R : x ≤ 20} ⊆ cld(A) and cld(A) ⊆ {x ∈ R : x ≤ 20}, it is obtained that
cld(A) = {x ∈ R : x ≤ 20}.

In metric spaces, a set is closed if it contains all its limit points. This property still holds
for sets in quasi-pseudometric spaces, as stated in Theorem 3.6.

Theorem 3.6 Given quasi-pseudometric space (X, d) and U ⊆ X . The set U is a closed set
with respect to d if and only if cld(U) = U .

Proof. (=⇒). Let U is a closet with respect to d, it means U c in an open with respect to d. It
will be shown that cld(U) = U . Since U ⊆ cld(U), to prove it, it is sufficient to show that
cld(U) ⊆ U . Assumed that cld(U) ̸⊆ U . This means that there exists x ∈ cld(U) but x ̸∈ U .
Since x ∈ U c and U c is an open set with respect to d, there exist r > 0, such that

Bd(x, r) ⊆ U c.

Consequently, it is obtained that Bd(x, r) ∩ U = ∅. This contradicts with the fact that x ∈
cld(U).The assumption must be rejected. In other words, it is obtained that cld(U) ⊆ U .
So, it has been proven that cld(U) = U .

(⇐=). It is known that cld(U) = U . It will be shown that U is a closed set with respect
to d. To prove this, it is equivalent to show that U c is an open set with respect to d. Take any
x ∈ U c, meaning x ̸∈ U . Therefore, based on what is known, it follows that there exists r > 0,
such that Bd(x, r) ∩ U = ∅. As a result, it is obtained that Bd(x, r) ⊆ U c. In other words, it is
proven that U c is an open set with respect to d. Therefore, it is established that U is a closed set
with respect to d.

Example 3.7 Let (R, d) as a quasi-pseudometric space defined in Example 2.8. Given not
empty set W = {x ∈ R : x ≤ 6}, W is a closed set with respect to d.

Proof. Based on the definition of the quasi-pseudometric d, it is obtained that

cld(W ) = {x ∈ R : x ≤ 6}.

As a result, according to Theorem 3.6, it is concluded that W is a closed set with respect to
d.

The property of the interior of a set being an open set still holds in quasi-pseudometric
spaces. This is provided in Theorem 3.8.
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Theorem 3.8 Given a quasi-pseudometric space (X, d) and a set A ⊆ X , intd(A) s an open
set with respect to d.

Proof. Take any a ∈ intd(A). Therefore, there exists a number r > 0 such that Bd(a, r) ⊆ A.
Furthermore, take any y ∈ Bd(a, r), then it follows that d(a, y) < r.
Let r1 = r − d(a, y) > 0 be defined. Take any x ∈ Bd(y, r1). Consequently, it is obtained that

d(a, x) ≤ d(a, y) + d(y, x) ≤ d(a, y) + r1 = d(a, y) + r − d(a, y) = r.

This means that x ∈ Bd(a, r) ⊆ A. Because this applies to any x ∈ Bd(y, r1), it follows
that Bd(y, r1) ⊆ A. In other words, it is obtained that y ∈ intd(A). Furthermore, since y is
any element of Bd(a, r), it follows that Bd(a, r) ⊆ intd(A). Therefore, it is established that
intd(A) is an open set with respect to d.

In Theorem 3.6, the relationship between closed sets and closures has been discussed.
Furthermore, in Theorem 3.9, the relationship between open sets and interiors is presented.

Theorem 3.9 Given a quasi-pseudometric space (X, d) and A ⊆ X . The set A is an open set
with respect to d if and only if intd(A) = A.

Proof. (=⇒). Based on the definition of interior points, it is obtained that intd(A) ⊆ A. Fur-
thermore, take any a ∈ A. Since A is an open set, there exists r > 0 such that Bd(a, r) ⊆ A.
This means that a ∈ intd(A). Therefore, it is obtained that A ⊆ intd(A). Thus, it is proven that
intd(A) = A.

(⇐=). Conversely, it is known that intd(A) = A. Therefore, based on Theorem 3.8, it is
concluded that A is an open set with respect to d.

Example 3.10 Let (R, d), a quasi-pseudometric space as defined in Example 2.8.
Let C = {x ∈ R : x > 5}, C be an open set with respect to d.

Proof. Based on the definition of quasi-pseudometric d, it is obtained that

intd(C) = {x ∈ R : x > 5}.

As a result, according to Theorem 3.9, it is obtained that C is an open set with respect to d.

Furthermore, the following theorem presents the relationship between the convergence of
sequences in quasi-pseudometric spaces and closed sets.

Theorem 3.11 Given quasi-pseudometric space (X, d) and not empty set S ⊆ X .

1. For every (xn) ⊆ S with the property that (xn) converges-d to x, it follows that x ∈
cld(S).

2. The set S is a closed set with respect to d if and only if for every sequences (xn) ⊆ S
where (xn) converges-d to x ∈ X , it implies x ∈ S.
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Proof. 1. Take any sequence (xn) in S with the property that (xn) converges-d to x ∈ X .
As a result, for any r > 0, there exists n0 ∈ N such that for every n ∈ N, n ≥ n0, it holds
that

d(x, xn) < r.

This means that for every n ≥ n0, xn ∈ Bd(x, r). Therefore, it is obtained that Bd(x, r)∩
S ̸= ∅. In other words, it is obtained that x ∈ cld(S).

2. (=⇒). Given that Sis a closed set, it means S = cld(S). Take any sequence (xn) in S
where (xn) converges-d to x ∈ X . According to Point 1, it is obtained that x ∈ cld(S).
Since S = cld(S), it follows that x ∈ S.
(⇐=). Take any x ∈ cld(S). Based on the definition of closure, it is obtained that for
every n ∈ N, the following holds

Bd(x,
1

n
) ∩ S ̸= ∅. (5)

This means that for every n ∈ N, there exist xn ∈ S such that

d(x, xn) <
1

n
. (6)

Define the sequence (xn) inside S that satisfies Condition (6). Based on the definition of
the sequence (xn), it is obtained that (xn) is a sequence inside S that converges-d to x.
According to the given condition, it is established that x ∈ S. Therefore, it is deduced
that cld(S) ⊆ S. In other words, it is concluded that S is a closed set.

Example 3.12 By using Theorem 3.11, it can be shown that the set W given in Example 3.7 is
a closed set with respect to d.

Proof. Take any sequence (xn) inside W with (xn) converges-d to x ∈ R. It will be shown that
x ∈ W . It is known that (xn)is a sequence inside W . Consequently, for every n ∈ N, xn ≤ 6.
Take ϵ > 0, since (xn) converges-d to x, there exists n0 ∈ N such that for every n ∈ N, n ≥ n0,
it holds that

d(x, xn) < ϵ ⇐⇒ max{0, x− xn} < ϵ.

As a result, for every n ≥ n0, it follows that

x− xn < ϵ ⇐⇒ x < xn + ϵ.

Because this holds for any ϵ > 0, it is obtained that x ≤ xn ≤ 6. Thus, it is concluded that
x ∈ W . Consequently, based on Theorem 3.11, it is obtained that W is a closed set with respect
to d.

IV. LINEAR OPERATOR IN ASYMMETRIC NORMED SPACES

In this section, the properties of linear operators in asymmetric normed spaces, which
have not been extensively explored by previous researchers, will be presented. Additionally,
this section will provide an alternative approach to prove the uniform boundedness property
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of continuous linear operators in asymmetric normed spaces by utilizing the completeness and
closedness properties of subsets within the asymmetric normed space.

Based on Lemma 2.13, it is obtained that every asymmetric normed space is a quasi-
pseudometric space. Therefore, the definition of open balls and open sets in quasi-pseudometric
spaces can be applied to asymmetric normed spaces. Furthermore, by replacing the norm with
the asymmetric norm, the following is the definition of continuous linear operators in asym-
metric normed spaces.

Definition 4.1 Given the asymmetric normed spaces (X, p) and (Y, q), and also given the linear
operator A : X → Y . The linear operator A is said to be continuous at the point x0 ∈ X , if
for every ϵ > 0, there exists δ > 0 such that for every x ∈ X , with p(x−x0) < δ, the following
holds

q(Ax− Ax0) < ϵ.

The operator A is said to be a (p, q)-continuous operator on X , if the linear operator A
continuous at every x ∈ X .

In normed spaces, a linear operator is continuous if and only if it is bounded. The proper-
ties of continuous linear operators hold for continuous linear operators in asymmetric normed
spaces, as stated in [4], [6], and [2]. Furthermore, based on the definition of convergent se-
quences and continuous linear operators, Theorem 4.2 presents the relationship between the
continuity of continuous linear operators in asymmetric normed spaces and the convergence of
sequences.

Theorem 4.2 Given the asymmetric normed spaces (X, p) dan (Y, q). The linear operator T :
(X, p) → (Y, q) is a (p, q)-continuous linear operator if and only if for every sequence (xn) in
(X, p) with (xn) converges-p to x ∈ X , it implies that (Txn) converges-q to Tx.

Proof. (=⇒). Take any sequence (xn) in X with the property that (xn) converges-p to x ∈ X .
Take any ϵ > 0. Since T continuous at x, there exists r > 0 such that for every a ∈ X with
p(a− x) < r, it follows

q(Ta− Tx) < ϵ. (7)

Furthermore, since (xn) converges-p to x, there exists n0 ∈ N such that for every n ∈ N,
n ≥ n0, it is obtained that

p(xn − x) < r. (8)

Therefore, based on Condition (7), it is obtained that

q(Txn − Tx) < ϵ.

This means that (Txn) converges-q to Tx.

(⇐=). Assume T is not continuous at x0 ∈ X . Therefore, there exists ϵ0 > 0 such that for
every r > 0, there exists xr ∈ X with p(xr − x0) < r, but

q(Txr − Tx0) ≥ ϵ0. (9)
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As a result, for every n ∈ N, there exists xn ∈ X such that p(xn − x0) <
1
n

, but

q(Txn − Tx0) ≥ ϵ0. (10)

Furthermore, since for every n ∈ N, it holds that p(xn − x0) < 1
n

, it follows that (xn) is a
sequence in X that converges-p to x0. Based on the given conditions, it is obtained that (Txn)
converges-q to Tx. This contradicts Condition (10). Therefore, the assumption must be rejected.
In other words, it is concluded that T is a (p, q)-continuous operator.

Example 4.3 Given a asymmetric normed space (R, u), with u(x) = max{0, x}, for every
x ∈ R. Also given a linear operator T : R → R, defined as

T (x) = 2x,

for every x ∈ R. Using Theorem 4.2, it can be shown that T is a (u, u)-continuous linear
operator.

Proof. Take any sequence (xn) in (R, u) with (xn) converges-u to x. It will be shown that
(Txn) converges-u to Tx = 2x. Take any ϵ > 0. Since (xn) converges-u to x, there exists
n0 ∈ N such that for every n ∈ N, n ≥ n0, it holds that

u(xn − x) = max{0, xn − x} <
ϵ

2
.

As a result, for every n ∈ N with n ≥ n0, it follows that

u(Txn − Tx) = max{0, 2xn − 2x} = 2max{0, xn − x} < 2 · ϵ
2
= ϵ.

So, it is obtained that (Txn) converges-u to Tx. Based on Theorem 4.2, it is concluded that T
is a (u, u)-continuous linear operator.

The collection of continuous linear operators from the asymmetric normed space (X, p)
to the asymmetric normed space (Y, q) is denoted by Lp,q(X, Y ). The collection of continuous
linear operators in asymmetric normed spaces forms a set structure that is closed under addition
and non-negative scalar multiplication. Such a set structure satisfying these properties is called
a cone. The definition of a cone can be studied in [8], [14], and [18].

Furthermore, by generalizing the definition of the collection of continuous linear operators
on normed spaces pointwise, in [2] and [3] the definition for a collection of continuous linear
operators in normed asymmetric spaces is written.

In [2] and [3], the proof of the uniform boundedness theorem for collections of contin-
uous linear operators in asymmetric normed spaces has been presented using two different
approaches. In this paper, the proof of the uniform boundedness theorem will be provided by
utilizing the properties of closed sets within asymmetric normed spaces.

Theorem 4.4 Given asymmetric normed spaces (X, p) and (Y, q). Also, given A ⊆ Lp,q(X, Y ),
a collection of continuous linear operators that are pointwise bounded with respect to both q
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and q̄. If (X, p) is a right K-complete space with respect to p̄, then

sup
T∈A

sup
x∈Bp

q̄(Tx) < ∞,

where Bp = {y ∈ X : p(y) ≤ 1}.

Proof. If X = {θ}, the proof is trivial. It is assumed that X ̸= {θ}. Let A ⊆ Lp,q(X, Y ) be a
collection of continuous linear operators that are pointwise bounded with respect to both q and
q̄. This means that for every x ∈ X , there exists Cx > 0 and Hx > 0 such that

sup
T∈A

q(Tx) < Cx and sup
T∈A

q̄(Tx) < Hx. (11)

First, it will be shown that there exist x0 ∈ X, ρ > 0, and C ′ > 0 such that

q̄(Tx) ≤ C ′,

for every x ∈ Bp(x0, ρ) and for every T ∈ A.
Asumme there are no x0 ∈ X , ρ > 0, and C ′ > 0 such that

q̄(Tx) ≤ C ′,

for every x ∈ Bp(x0, ρ) and for every T ∈ A. This means that, for every x0 ∈ X and ρ > 0,
the set

{q̄(Tx) : x ∈ Bp(x0, ρ), T ∈ A} (12)

is unbounded. Specifically, for x0 = 0 and ρ = 1, it follows that

{q̄(Tx) : x ∈ Bp(0, 1), T ∈ A}

is unbounded. This means there exist x1 ∈ Bp(0, 1) and T1 ∈ A such that

q̄(T1x1) > 1.

Since T1 is continuous, so T1 is continuous at x1. Therefore, there exists h1 > 0 such that for
every x ∈ X with p(x− x1) < h1, it implies

q(T1x− T1x1) < q̄(T1x1)− 1

=⇒ q̄(T1x1 − T1x) < q̄(T1x1)− 1

=⇒ q̄(T1x1)− q̄(T1x) < q̄(T1x1)− 1

=⇒ q̄(T1x) > 1.

Choose ρ1 ∈ R with 0 < ρ1 < min{h1,
1
2
, 1 − p1(x)}, then ρ1 ∈ (0, 1

2
) such that Bp[x1, ρ1] ⊆

Bp(0, 1) and
q̄(T1x) > 1,

for every x ∈ Bp[x1, ρ1].
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Based on Condition (??), it is obtained that the set

{q̄(Tx) : x ∈ Bp(x1, ρ1), T ∈ A}

is unbounded. Hence, there exist x2 ∈ Bp(x1, ρ1) and T2 ∈ A such that

q̄(T2x2) > 2.

Since T2 is continuous, so T2 is continuous at x2. Therefore, there exists h2 > 0 such that for
every x ∈ X with p(x− x2) < h2, it implies

q(T2x− T2x2) < q̄(T2x2)− 2

=⇒ q̄(T2x2 − T2x) < q̄(T2x2)− 2

=⇒ q̄(T2x2)− q̄(T2x) < q̄(T2x2)− 2

=⇒ q̄(T2x) > 2.

Choose ρ2 ∈ R with 0 < ρ2 < min{h2,
1
22
, ρ1 − p1(x2 − x1)}, thenρ2 ∈ (0, 1

22
) such that

Bp[x2, ρ2] ⊆ Bp(x1, ρ1) and
q̄(T2x) > 2,

for every x ∈ Bp[x2, ρ2].
If the process continues inductively, then it will be obtained that

a. the sequence (xn) in X ,

b. the sequence (Tn) in A, and

c. a sequence of real numbers (ρn) satisfying the condition that for every n ∈ N, 0 < ρn <
1
2n

, such that Bp[xn+1, ρn+1] ⊆ Bp(xn, ρn) and

q̄(Tn+1x) > n+ 1,

for every x ∈ Bp(xn+1, ρn+1).

Note that (ρn) is a sequence of real numbers that converges to 0. Therefore, for ϵ > 0, there
exists n0 ∈ N, such that for every natural number n ≥ n0, it holds that

ρn < ϵ.

Furthermore, since Bp[xn+1, ρn+1] ⊆ Bp(xn, ρn), it follows that for every m,n ∈ N, with
n0 ≤ n < m, xm ∈ B(xn, ρn). In other words, it is obtained that

p̄(xn − xm) = p(xm − xn) < ρn < ϵ.

This means that (xn) ⊆ X is a right K-Cauchy sequence with respect to p̄. Since X is a right
K-complete space with respect to p̄, then there exists x ∈ X , such that the sequence (xn)
converges-p̄ to x. Note that for every natural numbers n and m with m ≥ n, it holds that xm ∈
Bp(xn, ρn). This means that for any natural number n, the sequence (xn, xn+1, xn+2, · · · ), is a
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sequence inside Bp(xn, ρn) ⊆ Bp[xn, ρn]. Since the sequence converges-p̄ to x and Bp[xn, ρn]
is a closed set with respect to p̄, it follows that x ∈ Bp[xn, ρn]. As a result,

q̄(Tnx) > n.

This contradicts with the fact that for every x ∈ X , there exists Hx > 0 such that

sup
T∈A

q̄(Tx) < Hx.

Therefore, the assumption must be rejected. In other words, it is proven that there exist x0 ∈
X, ρ > 0, and C ′ > 0 such that

q̄(Tx) ≤ C ′, (13)

for every x ∈ Bp(x0, ρ) and for every T ∈ A.
Next, take any a ∈ Bp[0,

1
2
ρ] and any T ∈ A. Note that

p(x0 + a− x0) = p(a) ≤ 1

2
ρ < ρ.

This means that x0 + a ∈ Bp(x0, ρ). Consequently, based on Condition (13), it follows that
q̄(T (x0 + a)) ≤ C ′, thus satisfying

q̄(Ta) = q̄(T (x0 + a− x0))

= q̄(T (x0 + a)− Tx0)

≤ q̄(T (x0 + a)) + q̄(−Tx0)

= q̄(T (x0 + a)) + q(Tx0)

≤ C ′ + Cx0 .

(14)

Let C = 2ρ−1(C ′+Cx0). For any a ∈ Bp, it follows that 1
2
ρa ∈ Bp[0,

1
2
ρ]. Consequently, based

on Condition (14), it can be concluded that

q̄(Ta) ≤ 2ρ−1(C ′ + Cx0) = C,

for all T ∈ A. Since this condition holds for any a ∈ Bp and for any T ∈ A, it follows that

sup
T∈A

sup
x∈Bp

q̄(Tx) ≤ C < ∞.

V. CONCLUSION

Based on Theorem 3.9, Theorem 3.8, and Lemma 2.6, it is obtained that the topological
properties in normed spaces still hold within quasi-pseudometric spaces. Furthermore, based
on Example 2.8, it is found that a sequence in a quasi-pseudometric space (X, d) can have
the same or different d-convergence values compared to its d̄-convergence values. However, if
the sequence (xn) ⊆ X converges-ds to x ∈ X , hen the sequence will also converges-d and
converges-d̄ to x. Furthermore, based on Corollary 3.1, it is concluded that every quasi-metric
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is a quasi-pseudometric, but the reverse may not necessarily be true. This fact is emphasized by
Example 3.2. Furthermore, based on Theorem 3.6, Theorem 3.8, and Theorem 3.9, it is obtained
that the properties of open sets and closed sets in metric spaces still hold in quasi-pseudometric
spaces. Furthermore, based on Theorem 4.2, it is concluded that the continuity property of lin-
ear operators can preserve the convergence properties of convergent sequences in asymmetric
normed spaces. Based on Theorem 4.4, it is obtained that by utilizing the closedness prop-
erty and completeness in asymmetric normed spaces, the uniform boundedness theorem can be
proven without relying on the Zabrejko Lemma or lower semicontinuity properties of functions.
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