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Abstract. Let G = (V, E) be a simple graph. L(2, 1)−labeling defined as a function
f : V (G) → N0 such that, x and y are two adjacent vertices in V. If x and y are two 
adjacent vertices in V (G), then |f(y) − f(x)| ≥ 2 and if the distance between x and
y is 2, then |f(y) − f(x)| ≥ 1. The L(2, 1)-labeling number of G, called λ2,1(G), is 
the smallest number m of G. In this paper, we will further discuss the L(2, 1)-labeling
of mongolian tent, lobster, triangular snake, and kayak paddle. We establish a lower 
and upper bound and then calculate the precise value of λ2,1 of mongolian tent, lobster, 
triangular snake, and kayak paddle.
Keywords: L(2,1)-Labeling, mongolian tent, lobster, triangular snake, kayak paddle.

I. INTRODUCTION

Graph theory is widely applied in everyday life. One of them was to solve the problem of 
assigning FM station frequencies in the early 20th century. This problem occurs because more 
and more stations are requesting a frequency so it becomes difficult to determine a frequency 
without having a new station interrupting the broadcasts from other stations nearby. Problem-
atic channel assignment is the technical problem of assigning channels (nonnegative integers) 
to each FM radio station within a given station group such that there is no inter-station inter-
ference and the tuned channel range is minimized. The level of interference between two FM 
radio stations correlates with the geographic location of the stations. The closer the stations, the 
stronger the interference, so the difference between the assigned channels should be greater.

Graphs defined here are finite, undirected, simple, and connected. The notion of L(2, 1)-labeling 
is described by Griggs and Yeh [1]. Griggs and Yeh define the L(2, 1)-labeling of G as a func-
tion f that maps every x, y ∈ V to the whole number such that |f(y) − f(x)| ≥ 2 if x and y 
are adjacent to each other and |f(y) − f(x)| ≥ 1 if x and y have the distance 2 [1]. Moreover, 
they examine λ2,1 on graphs of paths, cycles, cubes, wheels, trees, stars. In this research, we 
determine the minimum span value of λ2,1 of mongolian tent, lobster, triangular snake, and 
kayak paddle graph.

As for previous studies related to this L(2, 1) labeling are Improved upper bound on the L(2, 1)− 
labeling of Cartesian sum of graphs [2], L(2, 1)−Labeling In The Context Of Some Graph Op-
erations [3], L(2, 1)−labeling of direct product of paths and cycles [4], L(2, 1)−labeling of
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interval graphs [5], L(2, 1) Labeling of Lollipop and Pendulum Graphs [6], L(2, 1)−Labeling
of the Strong Product of Paths and Cycles [7], The L(2, 1)−Labeling Problem on Graphs
[8],L(2, 1)−labellings for direct products of a triangle and a cycle [9], On the L(2, 1)−labelling
of block graphs [10], The L(2, 1)−Labeling and Operations of Graphs [11], The L(2, 1)−labeling
of K1,n−free graphs and its applications [12]. In order to do so, we use the following definition
and known results.

Definition 1 Let G = (V,E) be a simple graph. L(2, 1)−labeling defined as f : V (G) −→ N0

such that, whenever x and y are two adjacent vertices in V (G), then |f(x) − f(y)| ≥ 2, and
whenever the distance between x and y is 2, then |f(x)− f(y)| ≥ 1.

Proposition 1 [1] Let Pn be a path with n vertices. Then (i) λ2,1(P2) = 2, (ii) λ2,1(P3) =
λ2,1(P4) = 3, and (iii) λ2,1(Pn) = 4, for n ≥ 5.

Proposition 2 [1] Let Cn be a cycle with n ≥ 3 vertices. Then λ2,1(Cn) = 4.

Proposition 3 [1] Let K1,n be a star with n+ 1 vertices. Then λ2,1(K1,n) = n+ 1.

Lemma 1 [13] If H is a subgraph of G, then λ2,1(H) ≤ λ2,1(G).

II. RESULTS AND DISCUSSION

In this section, the L(2,1)-labeling of four types of graphs are discussed, i. e., mongolian
tent, lobster, triangular snake, and kayak paddle graph.

2.1. The L(2, 1) Labeling of Mongolian Tent

Definition 1 The mongolian tent Mm,n is the graph obtained from the grid graph of path with
m vertices and path with odd n vertices by adding an extra vertex above the graph and joining
every other vertex of the top row to the additional vertex.

Theorem 1 Let m,n ≥ 2 be positive integers and n is odd. If Mm,n be the mongolian tent
graph, then

λ2,1(Mm,n) =

{
6, n = 3,

7, n ≥ 5.

Proof. Let V (Mm,n) = {u0} ∪ {u11, u12, u13, ..., u1m} ∪ {u21, u22, u23, ..., u2m} ∪ ...
∪{un1, un2, un3, ..., unm} and E(Mm,n) = {u0uij | i ∈ [1, n], i is odd, j ∈ [1,m]}∪{uijuij+1| i ∈
[1, n], j ∈ [1,m]} ∪ {uijui+1j| i ∈ [1, n], j ∈ [1,m]}.

• Case I: for n = 3
Suppose that λ2,1(Mm,n) ≤ 5. Since Mm,n for n = 3 contains M2,3 where M2,3 contains
three cycles that are connected to each other in figure 1. The first and second cycle can
be labeled by 0, 1, 2, 3, 4, 5, but on the third cycle there is a vertex with no label, by
pigeonhole principle. So that, λ2,1(Mm,n) ≥ λ2,1(Mm,n) = 6. Contradiction. Next, from
figure 1 shows that Mm,n for n = 3 can be labeled with no more label more than 6.
Therefore, λ2,1(Mm,n) ≤ 6, for n = 3.
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Figure 1. Mongolian Tent graph for n = 3

• Case II: for n ≥ 5
Since Mm,n for n ≥ 5 contains M2,5 where M2,5 contains six cycles that are connected
to each other in figure 2. Five cycles can be labeled by 0, 1, 2, 3, 4, 5, 6 but on the other
cycle there is a vertex with no label, by pigeonhole principle. So that, λ2,1(Mm,n) ≥
λ2,1(Mm,n) = 7. Contradiction. Next, from figure 2 shows that Mm,n for n ≥ 5 can be
labeled with no more label more than 7. Thus, λ2,1(Mm,n) ≤ 7.

Figure 2. Mongolian Tent graph for n ≥ 5

We can see that from the figure 2 that the fix label for the leftmost vertex is 1, and for the
vertices on every rows on the figure 2 have the pattern such as the first row (bottom) has the
labels 4, 6, 0, 2, ..., 4, 6, 0, 2.
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2.2. The L(2, 1) Labeling of Lobster Graph

Definition 2 The lobster graph L(n, q, r) is a tree graph contains the property that the removal
of leaf nodes leaves a caterpillar graph.

Theorem 2 Let n, q, r ≥ 2 be positive integers. If L(n, q, r) be the lobster graph, then

λ2,1(L(n, q, r)) =



r + 3, n = 2, q = 2, 3, r ≥ 2

or n = 2, q ≥ 4, r ≥ q,

or n ≥ 3, q = 2, r ≥ 2,

or n = 3, q ≥ 2, r ≥ q + 1,

q + 2, n = 2, q ≥ 4, r ∈ [2, q − 1],

n+ 3, n ≥ 3, q ≥ 3, r ∈ [2, q].

Proof. Let V (L(n, q, r)) = {v1, v2, ..., vn}∪{v11, v21, ..., v
q
1}∪{v1n, v2n, ..., vqn}...∪{v111 , v121 , ..., v1r1 }∪

...∪{vq1n , vq2n , ..., vqrn } and E(L(n, q, r)) = {vivji |i ∈ [1, n], j ∈ [1, q]}∪ {vji v
jk
i |i ∈ [1, n], j ∈

[1, q], k ∈ [1, r]}.

• Case I: for n = 2, q = 2, r ≥ 2,
Suppose that λ2,1(L(n, q, r)) ≤ r + 2. Since L(n, q, r) contains P5 with r − 1 vertices
that adjacent to the leaf of path so that the possible labels are 0, 1, 2, 3, ..., r+2. But there
will be at least a pair of vertices that has no label by pigeonhole principle. Contradiction.
Thus, λ2,1(L(n, q, r)) ≥ r + 3. Claim if n = 2, q = 2, r ≥ 2, then λ2,1(L(n, q, r)) =
r + 3. Next, defined a labelling function f of L(n, q, r) as follows.

f(v1) = 0, f(v2) = 4,

f(vji ) =

{
j + 1, i = 1, j ∈ [1, 2],

j, i = 2, j ∈ [1, 2].
f(vjki ) =



k + 3, i = 1, j = 1, k ∈ [1, r],

or i = 1, j = 2, k ∈ [2, r],

or i = 2, j = 1, k ∈ [2, r],

or i = 2, j = 2, k ∈ [2, r],

1, i = 1, j = 2, k = 1,

3, i = 2, j = 1, k = 1,

0, i = 2, j = 2, k = 1.

• Case II: for n = 2, q = 3, r ≥ 2,
Since L(n, q, r) for n = 2, q = 3, r ≥ 2 contains L(n, q, r) for n = 2, q = 2, r ≥ 2.
Thus, λ2,1L(n, q, r) for n = 2, q = 2, r ≥ 2 ≥ λ2,1L(n, q, r) for n = 2, q = 3, r ≥
2 = r + 3. Claim if n = 2, q = 3, r ≥ 2, then λ2,1(L(n, q, r)) = r + 3. Next, defined a
labelling function f of L(n, q, r) as follows.

f(vi) =

{
0, i = 1,

5, i = 2,
f(vji ) =

{
j + 1, i = 1, j ∈ [1, 3],

j, i = 2, j ∈ [1, 3].
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f(vjki ) =



k + 3, i = 1, j = 1, k ∈ [1, r],

or i = 1, j = 2, k ∈ [2, r],

or i = 1, j = 3, k ∈ [3, r],

k, i = 1, j = 2, k = 1,

or i = 1, j = 3, k ∈ [1, 2],

k + 2, i = 2, j = 1, k ∈ [1, r],

or i = 2, j = 2, k ∈ [2, r],

or i = 2, j = 3, k ∈ [3, r],

k − 1, i = 2, j = 2, k = 1,

or i = 2, j = 3, k ∈ [1, 2].

• Case III: for n = 2, q ≥ 4, r ≥ q,
Since L(n, q, r) for n = 2, q ≥ 4, r ≥ q contains L(n, q, r) for n = 2, q = 2, r ≥ 2.
Thus, λ2,1L(n, q, r) for n = 2, q = 2, r ≥ 2 ≥ λ2,1L(n, q, r) for n = 2, q ≥ 4, r ≥
q = r + 3. Claim if n = 2, q ≥ 4, r ≥ q, then λ2,1(L(n, q, r)) = r + 3. Next, defined a
labelling function f of L(n, q, r) as follows.

f(vi) =

{
0, i = 1,

r + 3, i = 2.
f(vji ) =

{
j + 1, i = 1, j ∈ [1, q],

j, i = 2, j ∈ [1, q].

f(vjki ) =



k + 3, i = 1, j = 1, k ∈ [1, r],

or i = 1, j = 2, k ∈ [2, r],

or i = 1, j ≥ 3, k ∈ [j, r],

j, i = 1, j = 2, k = 1,

or i = 1, j ≥ 3, k ∈ [1, j − 1],

k + 2, i = 2, j = 1, k ∈ [1, r],

or i = 2, j = 2, k ∈ [2, r],

or i = 2, j ≥ 3, k ∈ [j, r],

j − 1, i = 2, j = 2, k = 1,

or i = 2, j ≥ 3, k ∈ [1, j − 1].

• Case IV: for n ≥ 3, q = 2, r ≥ 2,
Since L(n, q, r) for n ≥ 3, q = 2, r ≥ 2 contains L(n, q, r) for n = 2, q = 2, r ≥ 2.
Thus, λ2,1L(n, q, r) for n = 2, q = 2, r ≥ 2 ≥ λ2,1L(n, q, r) for n ≥ 3, q = 2, r ≥
2 = r + 3. Claim if n ≥ 3, q = 2, r ≥ 2, then λ2,1(L(n, q, r)) = r + 3. Next, defined a

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 7 NO. 1 (JUN 2024) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v6i2.18228 49 p-ISSN: 2621-6019 e-ISSN: 2621-6035



labelling function f of L(n, q, r) as follows.

f(vi) =



2, i ≡ 1 mod 5,

0, i ≡ 2 mod 5,

3, i ≡ 3 mod 5,

1, i ≡ 4 mod 5,

4, i ≡ 0 mod 5.

f(vji ) =


j + 3, i ≡ 1, 2, 3, 4 mod 5, j ∈ [1, 2],

or i ≡ 0 mod 5, j = 2,

0, i ≡ 0 mod 5, j = 1.

f(vjki ) =



k − 1, i ≡ 1 mod 5, j ∈ [1, 2], k ∈ [1, 2],

or i ≡ 2 mod 5, j = 1, k ∈ [1, 3],

or i ≡ 3 mod 5, j ∈ [1, 2], k ∈ [1, 3],

or i ≡ 4 mod 5, j ∈ [1, 2], k = 1,

or i ≡ 0 mod 5, j = 2, k ∈ [1, 3],

k, i ≡ 1 mod 5, j = 1, k = 3,

or i ≡ 1 mod 5, j = 2, k ∈ [3, 4],

or i ≡ 2 mod 5, j = 1, k ∈ [1, 3],

or i ≡ 2 mod 5, j = 2, k ∈ [1, 4],

or i ≡ 3 mod 5, j = 2, k = 4,

or i ≡ 4 mod 5, j = 1, k ∈ [2, 3],

or i ≡ 4 mod 5, j = 2, k ∈ [2, 4],

k + 3, i ≡ 1, 2, 3, 4 mod 5, j = 1, k ≥ 4,

or i ≡ 1, 2, 3, 4 mod 5, j = 2, k ≥ 5,

k + 1, i ≡ 0 mod 5, j = 1, k ∈ [1, 2],

k + 2, i ≡ 0 mod 5, j = 1, k ≥ 3,

k + 4, i ≡ 0 mod 5, j = 2, k ≥ 4.

Therefore, λ2,1(L(n, q, r)) ≤ r + 3.

• Case V: for n = 3, q ≥ 2, r ≥ q + 1,
Since L(n, q, r) for n = 3, q ≥ 2, r ≥ q+1 contains L(n, q, r) for n = 2, q = 2, r ≥ 2.
Thus, λ2,1L(n, q, r) for n = 2, q = 2, r ≥ 2 ≥ λ2,1L(n, q, r) for n = 3, q ≥ 2, r ≥
q + 1 = r + 3. Claim if n = 3, q ≥ 2, r ≥ q + 1, then λ2,1(L(n, q, r)) = r + 3. Next,
defined a labelling function f of L(n, q, r) as follows.

f(vi) =


2, i = 1,

0, i = 2,

q + 3, i = 3.

f(vji ) =


q + 3, i = 1, j ∈ [1, q],

q + 2, i = 2, j ∈ [1, q],

q, i = 3, j ∈ [1, q].
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f(vjki ) =


k − 1, i = 1, j ∈ [1, q], k ∈

[
1, q+3

2

]
,

k + 3, i = 1, j ∈ [1, q], k ∈
[
q+3
2

+ 1, r

]
• Case VI: for n = 2, q ≥ 4, r ∈ [2, q − 1],

f(vi) =

{
0, i = 1,

r + 3, i = 2.
f(vji ) =

{
j + 1, i = 1, j ∈ [1, q],

j, i = 2, j ∈ [1, q].

f(vjki ) =



k + 3, i = 1, j = 1, k ∈ [1, r],

or i = 1, j = 2, k ∈ [2, r],

or i = 1, j ≥ 3, k ∈ [j, r],

j, i = 1, j = 2, k = 1,

or i = 1, j ≥ 3, k ∈ [1, j − 1],

k + 2, i = 2, j = 1, k ∈ [1, r],

or i = 2, j = 2, k ∈ [2, r],

or i = 2, j ≥ 3, k ∈ [j, r],

j − 1, i = 2, j = 2, k = 1,

or i = 2, j ≥ 3, k ∈ [1, j − 1].

Therefore, λ2,1(L(n, q, r)) ≤ q + 2.

• Case VII: for n ≥ 3, q ≥ 3, r ∈ [2, q],
Suppose that λ2,1(L(n, q, r)) ≤ n + 2. Since L(n, q, r) contains K1,q+2 where q + 2 >
n+2, then there will be at least a vertex of L(n, q, r) has no label by pigeonhole principle.
Thus, λ2,1(L(n, q, r)) ≥ n+3. Claim if n ≥ 3, q ≥ 3, r ∈ [2, q], then λ2,1(L(n, q, r)) =
n+ 3. Next, defined a labelling function f of L(n, q, r) as follows.

f(vi) =



2, i ≡ 1 mod 5,

0, i ≡ 2 mod 5,

3, i ≡ 3 mod 5,

1, i ≡ 4 mod 5,

4, i ≡ 0 mod 5.

f(vji ) =


j + 3, i ≡ 1, 2, 3, 4 mod 5, j ∈ [1, 2],

or i ≡ 0 mod 5, j = 2,

0, i ≡ 0 mod 5, j = 1.
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f(vjki ) =



k − 1, i ≡ 1 mod 5, j ∈ [1, q], k ∈ [1, q + 2],

or i ≡ 4 mod 5, j ∈ [1, q], k = 1,

or i ≡ 3 mod 5, j ∈ [1, q], k ∈ [1, q + 2],

or i ≡ 0 mod 5, j ∈ [2, q], k ∈ [1, q + 2],

k + 3, i ≡ 1, 2, 3, 4 mod 5, j ∈ [1, q], k ∈ [q + 3, r],

or i ≡ 0 mod 5, j = 1, k ≥ 4,

or i ≡ 0 mod 5, j ∈ [2, q], k ∈ [q + 3, r],

k, i ≡ 2 mod 5, j ∈ [1, q], k ∈ [1, q + 2],

or i ≡ 4 mod 5, j ∈ [1, q], k ∈ [2, q + 2],

k + 1, i ≡ 0 mod 5, j = 1, k ∈ [1, 2],

k + 2, i ≡ 0 mod 5, j = 1, k = 3,

From the proof of Theorem 2, we can imply that the more vertex that adjacent to more vertices
so the more upper bound limit increases of λ2,1 of lobster graph.

2.3. The L(2, 1) Labeling of Triangular Snake Graph

The triangular snake graph Bm is the graph on m vertices with m odd defined by starting
with the Pm−1 and adding edges (2s− 1, 2s+ 1) for s ∈ [1,m− 1].

Theorem 3 Let m ≥ 5 be positive integers and m is odd. If TSm be the triangular snake graph,
then

λ2,1(TSm) =

{
5, m = 5,

6, m ≥ 7.

Proof. Let V (TSm) = {v1, v2, ..., vm} ∪ {v12, v23, ..., vm−1m} and E(TSm) = {v1vi+1|i ∈
[1,m]} ∪ {vivii+1|i ∈ [1,m]}.

• Case I: for m = 5,
Since TSm for m = 5 contains K1,4, then by Lemma 1.1, λ2,1(TSm) ≤ λ2,1(K1,4) = 5.
Claim if m = 5, then λ2,1(TSm) = 5. Next, defined a labeling function f of TSm as
follows.

f(v1) = 4, f(v2) = 0, f(v3) = 3.

f(v12) = 2, f(v23) = 5.

• Case II: for m ≥ 7,
Suppose that λ2,1(TSm) ≤ 5. Since TSm for m ≥ 7 contains three cycles, then the first
and second cycle can be labeled by 0, 2, 3, 4, 5. So that, there will be at least a vertex on
the third cycle has no label by the definition of L(2, 1). Thus, λ2,1(TSm) ≥ 6. Claim if
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m ≥ 7, then λ2,1(TSm) = 6. Next, defined a labeling function f of TSm as follows.

f(vi) =


4, i = 1,

0, i ≡ 2 mod 3,

3, i ≡ 0 mod 3,

6, i ≡ 1 mod 3, i ≥ 4.

f(vjk) =


2, i ≡ 1 mod 3, j ≡ 2 mod 3,

5, i ≡ 2 mod 3, j ≡ 0 mod 3,

1, i ≡ 0 mod 3, j ≡ 1 mod 3.

Therefore, λ2,1(TSm) ≤ 6, for m ≥ 7.

From the following proof, it is clear that the triangular snake graph for m = 5 can be labeled by
the labels of star graph with five vertices. Otherwise, the label of one of vertices of triangular
snake graph need to be increase by 1, such that the labels of triangular snake graph fit the
definition of L(2, 1).

2.4. The L(2, 1) Labeling of Kayak Paddle Graph

Definition 3 The kayak paddle KP (p, q, l) is the graph obtained by joining two cycles with p
vertices and q vertices by a path of length l.

Theorem 4 Let p, q ≥ 3 and l ≥ 2 be positive integers. If KP (p, q, l) be the kayak paddle
graph, then

λ2,1(KP (p, q, l)) =



4, for p, q ≡ 0 mod 3, l ≡ 4 mod 5,

or p ≡ 0 mod 3, q, l ≡ 1 mod 3,

or p, l ≡ 1 mod 3, q ≡ 0 mod 3,

or p, q ≡ 1 mod 3, l ≡ 3 mod 5,

5, for p, q ≡ 0 mod 3, l ≡ 1, 2, 3, 0 mod 5,

or p ≡ 0 mod 3, q ≡ 1 mod 3, l ≡ 2, 3, 4, 0 mod 5,

or p ≡ 0, 1 mod 3, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5,

or p ≡ 1 mod 3, q ≡ 0 mod 3, l ≡ 2, 3, 4, 0 mod 5,

or p, q ≡ 1 mod 3, l ≡ 1, 2, 4, 0, mod 5,

or p ≡ 2 mod 3, q ≡ 1, 2, 0 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5.

Proof. Let V (KP (p, q, l)) = {u1, u2, ..., up} ∪ {v1, v2, ..., vl} ∪ {w1, w2, ..., wq}, where u1 =
v1, w1 = vq and E(KPp,q,l) = {uzuz+1 | z ∈ [1, p− 1]} ∪ {upu1} ∪ {vzvz+1 | z ∈ [1, l− 1]} ∪
{wzwz+1|z ∈ [1, q − 1]} ∪ {wqw1}.

• Case I: for λ2,1(KP (p, q, l)) = 4
Suppose that λ2,1(KP (p, q, l)) = 3. Since KP (p, q, l) contains Cp then by Lemma 1.1,
we wil get λ2,1(KP (p, q, l)) ≥ λ2,1(Cp) = 4. Contradiction. Thus, λ2,1(KP (p, q, l)) ≥
4. To prove that λ2,1(KP (p, q, l)) = 4, we define the labeling function f of KP (p, q, l)
and we divided into four subcases as follows.

– For p, q ≡ 0 mod 3, l ≡ 4 mod 5
For the first cycle, we give the labels 0, 2, 4, ..., 0, 2, 4. Then we obtain the function

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 7 NO. 1 (JUN 2024) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v6i2.18228 53 p-ISSN: 2621-6019 e-ISSN: 2621-6035



for the first cycle as f(uz) = 0 if z ≡ 1 mod 3, f(uz) = 2 if z ≡ 2 mod 3, and
f(uz) = 4 if z ≡ 0 mod 3. Next, for the path, we give the labels 0, 3, 1, 4, 2, ...,
0, 3, 1, 4, 2 that we obtain the function for the path as f(vz) = 0, if z ≡ 1 mod 5,
f(vz) = 3, if z ≡ 2 mod 5, f(vz) = 1, if z ≡ 3 mod 5, f(vz) = 4, if z ≡ 4
mod 5, and f(vz) = 2, if z ≡ 0 mod 5. Finally, for the second cycle, we give
the labels 4, 2, 0, ..., 4, 2, 0 . Then we obtain the function for the second cycle as
f(wz) = 4 if z ≡ 1 mod 3, f(wz) = 2 if z ≡ 2 mod 3, and f(wz) = 0 if z ≡ 0
mod 3.

– For p ≡ 0 mod 3, q, l ≡ 1 mod 3
For the first cycle, we give the labels 0, 2, 4, ..., 0, 2, 4. Then we obtain the function
for the first cycle as f(uz) = 0 if z ≡ 1 mod 3, f(uz) = 2 if z ≡ 2 mod 3, and
f(uz) = 4 if z ≡ 0 mod 3. Next, for the path, we give the labels 0, 3, 1, 4, 2, ...,
0, 3, 1, 4, 2 that we obtain the function for the path as f(vz) = 0, if z ≡ 1 mod 5,
f(vz) = 3, if z ≡ 2 mod 5, f(vz) = 1, if z ≡ 3 mod 5, f(vz) = 4, if z ≡ 4
mod 5, and f(vz) = 2, if z ≡ 0 mod 5. Finally, for the second cycle, we give the
labels 0, 4, 1, 3, 0, 4, 2, ..., 0, 4, 2. Then we obtain the function for the second cycle
as f(wz) = 0 if z = 1 or z ≡ 2 mod 3, f(wz) = 4 if z = 2 or z ≡ 1 mod 3,
f(wz) = 1 if z = 3, f(wz) = 3 if z = 4, and f(wz) = 2 if z ≡ 0 mod 3.

– For p, l ≡ 1 mod 3, q ≡ 0 mod 3
For the first cycle, we give the labels 0, 4, 1, 3, 0, 4, 2, ..., 0, 4, 2. Then we obtain
the function for the first cycle as f(uz) = 0 if z = 1 or z ≡ 2 mod 3, f(uz) = 4
if z = 2 or z ≡ 1 mod 3, f(uz) = 1 if z = 3, f(uz) = 3 if z = 4, and f(uz) = 2
if z ≡ 0 mod 3. Next, for the path, we give the labels 0, 3, 1, 4, 2, ..., 0, 3, 1, 4, 2
that we obtain the function for the path as f(vz) = 0, if z ≡ 1 mod 5, f(vz) = 3,
if z ≡ 2 mod 5, f(vz) = 1, if z ≡ 3 mod 5, f(vz) = 4, if z ≡ 4 mod 5, and
f(vz) = 2, if z ≡ 0 mod 5. Finally, for the second cycle, we give the labels 0, 2, 4,
..., 0, 2, 4. Then we obtain the function for the second cycle as f(wz) = 0 if z ≡ 1
mod 3, f(wz) = 2 if z ≡ 2 mod 3, and f(wz) = 4 if z ≡ 0 mod 3.

– For p, q ≡ 1 mod 3, l ≡ 3 mod 5
For the first cycle, we give the labels 0, 3, 1, 4, 0, 2, ..., 4, 0, 2. Then we obtain the
function for the first cycle as f(uz) = 0 if z = 1 or z ≡ 2 mod 3, f(uz) = 3 if
z = 2, f(uz) = 1 if z = 3, f(uz) = 4 if z = 4 or z ≡ 1 mod 3, and f(uz) = 2
if z ≡ 0 mod 3. Next, for the path, we give the labels 0, 2, 4, 1, 3, ..., 0, 2, 4, 1, 3
that we obtain the function for the path as f(vz) = 0, if z ≡ 1 mod 5, f(vz) = 2,
if z ≡ 2 mod 5, f(vz) = 4, if z ≡ 3 mod 5, f(vz) = 1, if z ≡ 4 mod 5, and
f(vz) = 3, if z ≡ 0 mod 5. Finally, for the second cycle, we give the labels 4, 1,
3, 0, 2, 4, ..., 0, 2, 4. Then we obtain the function for the second cycle as f(wz) = 4
if z = 1 or z ≡ 0 mod 3, f(wz) = 1 if z = 2, f(wz) = 3 if z = 3, f(wz) = 0 if
z = 4 or z ≡ 1 mod 3, and f(wz) = 2 if z ≡ 2 mod 3.

f in the definition above is L(2, 1)-labeling of KP (p, q, l) for p, q ≡ 0 mod 3, l ≡ 4
mod 3, p ≡ 0 mod 3, q, l ≡ 1 mod 3, p, l ≡ 1 mod 3, q ≡ 0 mod 3, or p, q ≡ 1
mod 3, l ≡ 3 mod 3. Therefore, λ2,1(KP (p, q, l)) ≤ 4.
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• Case II: for λ2,1(KP (p, q, l)) = 5
Suppose that λ2,1(KP (p, q, l)) = 4, then the possible labels are 0, 1, 2, 3, and 4. Since
KP (p, q, l) contains a path of l length so we can label the path as 0, 3, 1, 4, 2, 0, 3,
1, 4, 2, ... . For p, q ≡ 0 mod 3, so the label of endvertex of path is 0, 3, 1, or 2.
Since each endvertices of path are adjacent with two cycle, then there will be at least
a pair of vertices on KP (p, q, l) has the same label by the pigeonhole principle. So it
does not satisfy the definition of L(2, 1)-labeling. The similar proof holds for p ≡ 0
mod 3, q ≡ 1 mod 3, l ≡ 2, 3, 4, 0 mod 5, p ≡ 0 mod 3, q ≡ 2 mod 3, l ≡
1, 2, 3, 4, 0 mod 5, p ≡ 1 mod 3, q ≡ 0 mod 3, l ≡ 2, 3, 4, 0 mod 5, p, q ≡
1 mod 3, l ≡ 1, 2, 4, 0 mod 5, p ≡ 1 mod 3, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0
mod 5, p ≡ 2 mod 3, q ≡ 0 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5, p ≡ 2 mod 3, q ≡ 1
mod 3, l ≡ 1, 2, 3, 4, 0 mod 5, p, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5, contradic-
tion. Thus, λ2,1(KP (p, q, l)) ≥ 5. To show that λ2,1(KP (p, q, l)) = 5, we define the
labeling function f of KP (p, q, l) as follows.

– For p, q ≡ 0 mod 3, l ≡ 1, 2, 3, 0 mod 5
For the first cycle, we give the labels 0, 2, 4, ..., 0, 2, 4. Then we obtain the function
for the first cycle as f(uz) = 0 if z ≡ 1 mod 3, f(uz) = 2 if z ≡ 2 mod 3,
and f(uz) = 4 if z ≡ 0 mod 3. Next, for the path, we define the labeling function
f(vz) = 0, if z ≡ 1 mod 5, or z = l for l ≡ 1 mod 5, f(vz) = 3 if z ≡ 2 mod 5
or z = l − 1 for l ≡ 1 mod 5, f(vz) = 1 if z ≡ 3 mod 5, f(vz) = 4 if z ≡ 4
mod 5, f(vz) = 2 if z ≡ 0 mod 5, and f(vz) = 5 if z = l−2 for l ≡ 1 mod 5 or
z = l− 1 for l ≡ 0 mod 5. Finally, for the second cycle, we have four cases based
on the length l of the path. For l ≡ 1 mod 5, we give the labels 0, 2, 4, ..., 0, 2, 4.
For l ≡ 2 mod 5, we give the labels 3, 5, 1, ..., 3, 5, 1. For l ≡ 3 mod 5, we give
the labels 5, 2, 0, ..., 5, 2, 0. For l ≡ 0 mod 5, we give the labels 2, 4, 0, ..., 2, 4, 0.

– For p ≡ 0 mod 3, q ≡ 1 mod 3, l ≡ 2, 3, 4, 0 mod 5
For the first cycle, we give the labels 0, 2, 4, ..., 0, 2, 4. Then we obtain the function
for the first cycle as f(uz) = 0 if z ≡ 1 mod 3, f(uz) = 2 if z ≡ 2 mod 3,
and f(uz) = 4 if z ≡ 0 mod 3. Next, for the path, we define the labeling function
f(vz) = 0 if z ≡ 1 mod 5 or z = l for l ≡ 0 mod 5, f(vz) = 3 if z ≡ 2 mod 5
or z = l − 1 for l ≡ 4 mod 5, f(vz) = 1 if z ≡ 3 mod 5, f(vz) = 4 if z ≡ 4
mod 5, f(vz) = 2 if z ≡ 0 mod 5, and f(vz) = 5 if z = l− 1 for l ≡ 2, 0 mod 5
or z = l − 2 for l ≡ 4 mod 5. Finally, for the second cycle, we have four cases
based on the length l of the path. For l ≡ 2 mod 5, we give the labels 3, 1, 4, 0, 2,
4, ..., 0, 2, 4. For l ≡ 3 mod 5, we give the labels 1, 4, 0, 5, 2, 0, 4, ..., 2, 0, 4. For
l ≡ 4 mod 5, we give the labels 4, 1, 3, 0, 2, 4, 0, ..., 2, 4, 0. For l ≡ 0 mod 5,
we give the labels 0, 4, 1, 3, 0, 2, 4, ..., 0, 2, 4.

– For p ≡ 0 mod 3, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5
For the first cycle, we give the labels 0, 2, 4, ..., 0, 2, 4. Then we obtain the function
for the first cycle as f(uz) = 0 if z ≡ 1 mod 3, f(uz) = 2 if z ≡ 2 mod 3,
and f(uz) = 4 if z ≡ 0 mod 3. Next, for the path, we define the labeling function
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f(vz) = 0 if z ≡ 1 mod 5 or z = l − 1 for l ≡ 4 mod 5, f(vz) = 3 if z ≡ 2
mod 5 or z = l − 1 for l ≡ 3 mod 5 or z = l − 2 for l ≡ 1mod5, f(vz) = 1
if z ≡ 3 mod 5, f(vz) = 4 if z ≡ 4 mod 5, f(vz) = 2 if z ≡ 0 mod 5, and
f(vz) = 5 if z = l−3 for l ≡ 4 mod 5 or z = l−1 for l ≡ 0, 1, 2 mod 5. Finally,
for the second cycle, we have four cases based on the length l of the path. For l ≡ 1
mod 5, we give the labels 0, 3, 1, 4, 2, 0, 4, 2, ..., 0, 4, 2. For l ≡ 2 mod 5, we
give the labels 3, 0, 2, 4, 0, 2, 4, ..., 0, 2, 4, 1. For l ≡ 3 mod 5, we give the labels
1, 4, 2, 0, 4, 2, 0, ..., 4, 2, 0, 3. For l ≡ 4 mod 5, we give the labels 4, 1, 3, 0, 2,
4, 0, 2, ..., 4, 0, 2. For l ≡ 0 mod 5, we give the labels 2, 0, 3, 1, 4, 2, 0, 4, ..., 2, 0, 4.

– For p ≡ 1 mod 3, q ≡ 0 mod 3, l ≡ 2, 3, 4, 0 mod 5 The labeling function f
for p ≡ 1 mod 3, q ≡ 0 mod 3, l ≡ 2, 3, 4, 0 mod 5 is isomorphic with the
labeling function f for p ≡ 0 mod 3, q ≡ 1 mod 3, l ≡ 2, 3, 4, 0 mod 5

– For p, q ≡ 1 mod 3, l ≡ 1, 2, 4, 0 mod 5
For the first cycle, we give the labels 0, 3, 1, 4, 0, 2, 4, ..., 0, 2, 4. Next, for the
path, we define the labeling function f(vz) = 0 if z ≡ 1 mod 5 or z = l for l ≡ 2
mod 5, f(vz) = 2 if z ≡ 2 mod 5, f(vz) = 4 if z ≡ 3 mod 5, f(vz) = 1 if z ≡ 4
mod 5 or z = l − 1 for l ≡ 2 mod 5, f(vz) = 5 if z = l − 1 for l ≡ 4 mod 5 or
f(vz) = l − 2 for l ≡ 2 mod 5. Finally, for the second cycle, we have five cases
based on the length l of the path. For l ≡ 1 mod 5, we give the label 0, 4, 1, 3, 0,
2, 4, ..., 0, 2, 4. For l ≡ 2 mod 5, we give the labels 3, 0, 4, 2, ..., 0, 4, 2, 1. For
l ≡ 3 mod 5, we give the labels 4, 1, 3, 0, 2, 4, ..., 0, 2, 4. For l ≡ 4 mod 5, we
give the labels 1, 4, 0, 2, 4, 0, 2, ..., 4, 0, 2. For l ≡ 0 mod 5, we give the labels 3,
0, 2, 4, 0, 2, ..., 4, 0, 2.

– For p ≡ 2 mod 3, q ≡ 0 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5 The labeling function f
for p ≡ 2 mod 3, q ≡ 0 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5 is isomorphic with the
labeling function f for p ≡ 0 mod 3, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5

– For p ≡ 2 mod 3, q ≡ 1 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5 The labeling function f
for p ≡ 2 mod 3, q ≡ 1 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5 is isomorphic with the
labeling function f for p ≡ 1 mod 3, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5

– For p ≡ 2 mod 3, q ≡ 2 mod 3, l ≡ 1, 2, 3, 4, 0 mod 5 For the first cycle, we
give the labels 2, 0, 3, 1, 4, 2, 0, 4, 2, ..., 0, 4, 2. Next, for the path, we give the
labels 2, 5, 3, 1, 4, ..., 2, 5, 3, 1, 4. Finally, for the second cycle, we have five cases
based on the length l of the path. For l ≡ 1 mod 5, we give the labels 2, 0, 3, 1, 4,
2, 0, 4, ..., 2, 0, 4. For l ≡ 2 mod 5, we give the labels 5, 2, 0, ..., 5, 2, 0, 3, 1. For
l ≡ 3 mod 5, we give the labels 3, 0, 2, 4, ..., 0, 2, 4, 1. For l ≡ 4 mod 5, we give
the labels 1, 4, 2, 0, ..., 4, 2, 0, 3. For l ≡ 0 mod 5, we give the labels 4, 2, 0, ..., 4,
2, 0, 3, 1.

From the proof, we can imply that we can use the labeling of subgraph, such as, path subgraph
of kayak paddle graph can be labeled as same as the label of path with same vertices, the same
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way holds for the cycle subgraph. If we found the same label that does not fit with the definition
of L(2, 1), then add up the labels by 1. On the proof, we found that with some cases need add
up the labels, so for some cases λ2,1 of kayak paddle is 5.

III. CONCLUSIONS

In this paper, we examined the exact value of the L(2,1)-labeling of mongolian tent, lob-
ster, triangular snake, and kayak paddle graph. For some graph, we can get the L(2, 1)−labeling
number of G from the already precise value of biggest connected subgraph of G.
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