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Abstract. This study provides the mathematical model of the interaction between the 

HIV and CD4+ T cells. This research develops other research by formulating a model 

with the fractional Caputo derivative approach with fractional order α. Based on the 

model, we obtain the equilibrium point and analyze the stability criterion of the 

equilibrium point. Furthermore, we perform the Next Generation Matrix method to 

calculate the basic reproduction number  (𝑅0). Then, we apply the Grunwald-Letnikov

Explicit method to show the numerical result of the model. The result of this study could 

assist for future improvement, especially for fractional modelling.   

Keywords: HIV-Model; Fractional Order; Basic Reproduction Number; Grunwald-

Letnikov Method. 

I. INTRODUCTION

Human Immunodeficiency Virus (HIV) is a virus that infect lymphocyte cells in the human 

body. It decreases the immune system of infected person. A set of symptoms that arise due to 

decreased immunity by HIV infection is called Acquired Immune Deficiency Syndrome 

(AIDS). HIV can be transmitted through the exchange of various body fluids, such as blood, 

breast milk, semen and vaginal fluids to a healthy person. In addition, HIV can also be 

transmitted vertically from a mother to her child during pregnancy and childbirth [1]. 

Until now, HIV-AIDS has not been cured by the consumption of certain drugs. However, 

there is a therapy for people with HIV / AIDS which aims to slow down the replication of the 

virus in the body of an infected person so that it can extend the chance of life and help the body 

to fight viral infections. It is called antiretroviral therapy (ART). In an infected person, the 

virus begins to attack white blood cells or T lymphocyte cells. When infecting T lymphocytes, 

the HIV virus will stick to receptors located in the cell wall of T lymphocytes which are known 

as Cluster of Differentiation 4 (CD4). The attachment of HIV to the T lymphocyte cell receptor 

will give the addition to the HIV genetic code into the part of the infected lymphocyte cell. 

Then, infected T lymphocyte cells will still use themselves when an infection occurs as a form 

of resistance from any infection that occurs in the body so that HIV attached to T lymphocyte 

cells will also replicate. A process that repeats over many years will result in many viruses 

accumulating inside infected cells [2].  
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Currently, one treatment that is quite effective for HIV-infected individuals to reduce the 

virus replication is Highly Active Antiretroviral Therapy (HAART). The HAART method 

involves a combination of the use of Protease Inhibitors (PI) drugs to inhibit the formation of 

proteases and Reverse Transcriptase Inhibitor (RTI) drugs which are responsible for inhibiting 

the reverse transcriptase process. The combination of treatments will later inhibit the process 

of DNA formation from RNA. With the inhibition of the DNA formation process will have an 

impact on the formation of proteins that are also inhibited so that the formation of viruses 

becomes slower [2]–[4].   

A mathematical model is a set of equations or inequalities that describe the behavior of the 

problem under review with various types of assumptions given. One of the most researched 

problems is the mathematical model associated with the spread of disease, including the spread 

of HIV in the population and its interaction with cells in the body. [1], [2], [5]–[8] The 

mathematical model in the study uses a model with a system of differential equations with 

integers order. Research on fractional calculus and fractional differential equations has been 

carried out in several studies related to models of disease spread. [9]–[20]. Mathematical 

models of fractional order are used in modeling the spread of HIV disease. For example, in 

research [9] discusses the model of HIV infection by CD4+ T Lymphocyte cells by considering 

the effect of drug administration in the treatment process. The model presented is a 

mathematical model with fractional order. Researchers use the Legendre Wavelet method to 

determine the solution of a given system. The same goes for research  [10], presented a model 

of HIV dynamics with the fractional order Caputo. This study used data on HIV infection cases 

in Indonesia from 2006-2018. The solution of this system of equations uses Newton's 

polynomial numerical approximation. 

In addition to HIV, fractional order models are also used to examine the dynamics of the 

spread of COVID-19 [11]–[13], [16], [20] . For example, research [11] discusses the 

mathematical model of COVID-19 using the Caputo fractional order. The model considers 

quarantine to reduce COVID-19 infection rates. The data used in the model was taken from 

data on COVID-19 infection cases in West Sulawesi, Indonesia. On research [16], researchers 

use a mathematical model with an integer order which is then reformulated using the definition 

of fractional derivatives of Caputo. This study examines how fractional order is able to explain 

the dynamics of COVID-19 in two different places, namely in Spain and Portugal. This is 

characterized by differences in the results of fractional order estimates obtained for each of 

these countries.  

In this study, the model studied was a mathematical model of the interaction of the HIV 

virus and CD4+ T lymphocyte cells contained in the study [2] by considering fractional 

mathematical models using Caputo derivatives. We can observe how the fractional order affect 

the dynamics of models. In other hand, the background to the use of Caputo derivatives in the 

model studied because it has advantages in the formulation of initial values. The initial value 

of the Caputo fractional order derived system is the same as the model with the integer order, 

so there is no need to define different forms of initial values [21].   

This article consists of several subsections. The first part is an introduction that explains 

the urgency of the study. The second part presents the formulation of the fractional 
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mathematical model to be studied. In the third part, the results and discussion of this study were 

obtained. The fourth section contains numerical simulations taking into account various 

scenarios to see the effect of changes in the values of certain parameters. Numerical simulation 

using Grunwald Letnikov's Explicit method. This method is a fairly simple method and fits 

into a model formulation that uses the definition of a Caputo derivative.  The final section 

contains conclusions and development suggestions from this study. 

II. PRELIMINARIES 

In this section, we recall definitions related to Caputo fractional derivative, sensitivity 

analysis and a useful theorem for stability of fractional differential system needed for the study 

of the main result.  

Definition 1. Caputo Fractional Derivative [22] Suppose 𝛼 > 0, 𝑡 > 0 and 𝑛 ∈ ℕ. Caputo 

Fractional Derivative 𝐷𝑡
𝛼

0
𝐶 ≔

𝑑𝛼

𝑑𝑡𝛼
 with fractional order 𝛼, for function 𝑓(𝑡) is defined by: 

𝐷𝑡
𝛼

0
𝐶 𝑓(𝑡) = {

1

𝛤(𝑛 − 𝛼)
∫ (𝑡 − 𝑥)𝑛−𝛼−1
𝑡

0

𝑓(𝑛)(𝑥) 𝑑𝑥, 𝑛 − 1 < 𝛼 < 𝑛,

𝑓(𝑛)(𝑡),                                                            𝛼 = 𝑛.

 (1) 

 

Theorem 1.  Local Stability of Fractional Differential System [23]–[25] Suppose 

𝐷𝑡
𝛼

𝑎
𝐶 𝒙(𝑡) = 𝑓(𝒙), 0 < 𝛼 ≤ 1, and 𝒙 ∈ ℝ𝑛, is nonlinear fractional differential system. The 

equilibrium point �̅� is solution of 𝑓(𝑥) = 0. The equilibrium point �̅� is said locally asymptotic 

stable if for all eigen values 𝜆(𝑗=0,1,…,𝑛) of Jacobian matrix 𝑨 =
𝜕𝑓

𝜕𝑥
 evaluated at equilibrium 

point �̅� satisfy |𝑎𝑟𝑔 (𝜆𝑗)| >
𝛼𝜋

2
. 

 

Definition 2 [26] The normalized forward sensitivity index of a variable V that depends 

differentiable on a parameter p, is defined as: 

𝐶𝑝
𝑉 =

𝜕𝑉

𝜕𝑝
×
𝑝

𝑉
. (2) 

 

Grunwald-Letnikov (GL) is one of the numerical methods used to solve fractional order 

differential equations both linear and nonlinear fractional differential equations. In this method, 

the derivative used is the definition of the Caputo derivative operator. Suppose a fractional 

differential equation using Caputo's derivative   

𝐷𝐶
𝛼𝑦(𝑡) = 𝑓(𝑦(𝑡)),   𝑦(𝜏0) = 𝑦0   (0 < 𝛼 < 1).  (3) 

Assuming that there is a unique solution 𝑦 = 𝑦(𝜏) at interval [0, 𝑇] with the initial value 

can be homogeneous or nonhomogeneous. Then for discretization is selected grid 0 = 𝜏0 <

𝜏1 < ⋯ < 𝜏𝑁+1 = 𝑇 with 𝜏𝑘+1 − 𝜏𝑘 = ℎ and suppose 𝑦𝑘 is an approximation of exact solution 

𝑦(𝜏𝑘). The approximation by the Grunwald-Letnikov method is then applied to the left  hand 

side of equation (3) where 𝜏𝑛+1 = (𝑛 + 1)ℎ and the right side is approximated by 𝑓(𝑦𝑛), so 

the approximation form of the explicit Grunwald-Letnikov method is [27]  
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𝑦𝑛+1 −∑𝑐𝑣
𝛼

𝑛+1

𝑣=1

𝑦𝑛+1−𝑣 − 𝑟𝑛+1
𝛼 𝑦0 = ℎ

𝛼𝑓(𝑦𝑛), (4) 

with  

𝑟𝑛+1
𝛼 = ℎ𝛼𝑟0

𝛼(𝑡𝑛+1) =
(𝑛 + 1)1−𝛼

Γ(1 − 𝛼)
, 

𝑐𝑣
𝛼 = (1 −

𝛼+1

𝑣
) 𝑐𝑣−1

𝛼 ,        𝑐1
𝛼 = 𝛼.   

III.  THE PROPOSED FRACTIONAL MODEL 

In this study, the mathematical model to be studied is a model formulated by Mutiara, et.al 

[2]. The model is a deterministic model formulated with a system of differential equations 

using integer order. The mathematical model studied consists of three compartments, namely 

the number of susceptible cells infected with HIV (𝑥1),  number of HIV-infected cells (𝑥2) dan 

the amount of HIV virus in the infected person (𝑥3). Deterministic model in [2] is reformulated 

by involving a system of fractional order differential equations as follows 

𝐷𝑡
𝛼

0
𝐶 (𝑥1) = 𝜗 − 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝜇1𝑥1(𝑡), 

𝐷𝑡
𝛼

0
𝐶 (𝑥2) = 𝛽𝑥1(𝑡)𝑥3(𝑡) − 𝜇2𝑥2(𝑡), 

𝐷𝑡
𝛼

0
𝐶 (𝑥3) = (1 − 𝛾)𝑘𝑥2(𝑡) − 𝜇3𝑥3(𝑡) − 𝛽𝑥1(𝑡)𝑥3(𝑡). 

(5) 

Because of a change from integer derivatives on the left side of the equation system in [2] 

to Caputo fractional derivative in Equation (5) result the change of dimension t. Integer 

derivatives with operators 
𝑑

𝑑𝑡
 has 𝑠−1 as its dimension, while the fractional derivative 

𝑑𝛼

𝑑𝑡𝛼
=

𝐷𝑡
𝛼

0
𝐶  has 𝑠−𝛼 dimension, 0 < 𝛼 ≤ 1 [28]. To accommodate dimensional changes in the left 

side of the Equation (5), we define the new parameters as follows: 

𝜗 = �̃�𝛼, 𝛽 = �̃�𝛼, 𝜇1 = 𝜇1̃
𝛼, 𝜇2 = 𝜇2̃

𝛼, 𝑘 = �̃�𝛼, 𝜇3 = 𝜇3̃
𝛼. 

By defining these parameters, the system with integer order and system (5) are dimensionally 

compatible. The dynamics of the interaction of HIV virus with CD4+ T lymphocyte cells can 

be seen in Figure 1. 

 
Figure 1. The interaction of HIV virus and T Lymphocyte cells 

Based on Figure 1, the model on system (5) is divided into three compartments. 𝑥1 represents 

a population of cells that are healthy and susceptible to HIV infection, 𝑥2 represents the 
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population of HIV-infected cells, and 𝑥3 is population of HIV virus in the human body. The 

population of healthy cells will increase due to the presence of healthy cells produced in a 

person's body with rate �̃�. Then it will decrease when healthy cells are infected by the HIV 

virus with an infection rate of  �̃�, so that the healthy cells will move to the HIV-infected cell 

compartment. Healthy cells that experience natural death or damage will also reduce the 

number of healthy cells at a natural death rate of  𝜇1̃.  

HIV-infected cell populations (𝑥2) will increase when the HIV virus successfully infects 

healthy cells and will decrease when HIV-infected cells experience natural death at a rate of  

𝜇2̃. HIV virus population (𝑥3) will increase as infected cells produce new viruses at a rate �̃�. 

To inhibit the growth of virus production, HAART treatment is given which is expressed in 

proportion 𝛾. HIV virus population will decrease when there is a natural death of the HIV virus 

at a rate 𝜇3̃ and infection of healthy cells. 

In this model it is assumed that 𝑥1(0) = 𝑥10, 𝑥2(0) = 𝑥20, 𝑥3(0) = 𝑥30 are the initial value 

for each compartment with 𝑥10, 𝑥20, 𝑥30 ≥ 0. It is assumed that all parameters used in the 

model are positive. 

Table 1. Model Parameters (5) 

Parameters Description 

�̃� The rate of healthy cells produced by the body in a unit of 

time 

�̃� The rate of infection of the HIV virus against healthy cells 

𝝁�̃� Natural death rate of healthy cells 

𝝁�̃� Natural death rate of HIV-infected cells 

𝝁�̃� Natural death rate of the HIV virus 

�̃� The rate of production of HIV virus by infected cells 

𝜸 Proportion of successful HAART treatment treatments 

 

IV. RESULTS 

4.1 The Equilibrium Point of Fractional Model 

An equilibrium point is a point that expresses the state of a system that does not change with 

time. There are two equilibrium points for the system (5), namely the disease-free equilibrium 

point and the endemic equilibrium point. The equilibrium point for the Caputo fractional model 

occurs when [29] 

  

𝐷𝑡
𝛼

0
𝐶 (𝑥1) = 𝐷𝑡

𝛼
0
𝐶 (𝑥2) = 𝐷𝑡

𝛼
0
𝐶 (𝑥3) = 0. (6) 

 

A disease-free equilibrium solution is a state in which disease does not spread within a 

population. This can be interpreted when 𝑥2 = 0. Then from (5), we obtained disease-free 

equilibrium points 
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𝐸0 = (
𝜗

𝜇1
, 0,0). (7) 

In addition to disease-free equilibrium points, there are also endemic equilibrium points. 

The endemic equilibrium point is the state when the disease continues to spread in the 

population. In this case, the condition occurs when  𝑥2 ≠ 0. From (5) an endemic equilibrium 

point is obtained 𝐸1 = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗), where  

𝑥1
∗ =

𝜇2𝜇3

𝛽((1 − 𝛾)𝑘 − 𝜇2)
, (8) 

𝑥2
∗ =

𝛽𝑘𝜗(1 − 𝛾) − 𝛽𝜗𝜇2 − 𝜇1𝜇2𝜇3

𝛽𝜇2((1 − 𝛾)𝑘 − 𝜇2)
, (9) 

𝑥3
∗ =

𝛽𝜗(𝑘(1 − 𝛾) − 𝜇2) − 𝜇1𝜇2𝜇3
𝛽𝜇2𝜇3

. (10) 

 

4.2 Basic Reproduction Number 

 Basic Reproduction number is a threshold for transmission of a disease caused by infected 

individuals (infectious cells) in a population that are all susceptible to infection. In this section, 

the basic reproduction number is calculated using the Next Generation Matrix (NGM) method. 

Suppose Υ is a matrix that expresses the rate at which new infections occurs and Ψ is a matrix 

that expresses the rate of cell displacement. Based on the compartment infected with the virus, 

namely: 𝑥2(𝑡) and 𝑥3(𝑡), we obtained Υ and Ψ as follow:  

Υ = (
𝛽𝑥1𝑥3
0

) (11) 

Ψ = (
𝜇2𝑥2

−(1 − 𝛾)𝑘𝑥2 + 𝜇3𝑥3 + 𝛽𝑥1𝑥3
). (12) 

Next, we obtain 𝐹 as a matrix contains partial derivative from matrix Υ in Equation (11) 

towards 𝑥2 and 𝑥3  

𝐹 =

(

 
 

𝜕Υ1
𝜕𝑥2

𝜕Υ1
𝜕𝑥3

𝜕Υ2
𝜕𝑥2

𝜕Υ2
𝜕𝑥3)

 
 
= (

0 𝛽𝑥1
0 0

). (13) 

In the same way, matrix 𝑉 obtained from partial derivatives of matrix Ψ in Equation (12) 

towards 𝑥2 and 𝑥3 as follow 
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𝑉 =

(

 
 

𝜕Ψ1
𝜕𝑥2

𝜕Ψ1
𝜕𝑥3

𝜕Ψ2
𝜕𝑥2

𝜕Ψ2
𝜕𝑥3)

 
 
= (

𝜇2 0

−(1 − 𝛾)𝑘 𝜇3 + 𝛽𝑥1
). 

(14) 

Further, we obtain matrix 𝑉−1 which is the inverse matrix of the Equation (14). We substitute 

Equation (7) to (13) and (14) so we get 

𝐹 = (0
𝛽𝜗

𝜇1
0 0

). (15) 

𝑉−1 =

(

 
 

1

𝜇2
0

−
(1 − 𝛾)𝑘

𝜇2(𝜇3 +
𝛽𝜗
𝜇1
)

1

𝜇3 +
𝛽𝜗
𝜇1)

 
 
. (16) 

From Equation (15) and (16) we obtain Next Generation Matrix as follows 

𝐹𝑉−1 = (0
𝛽𝜗

𝜇1
0 0

)

(

 
 

1

𝜇2
0

−
(1 − 𝛾)𝑘

𝜇2(𝜇3 +
𝛽𝜗
𝜇1
)

1

𝜇3 +
𝛽𝜗
𝜇1)

 
 
, 

𝐹𝑉−1 = (
𝛽𝑘𝜗(1 − 𝛾)

𝜇2(𝛽𝜗 + 𝜇1𝜇3)

𝛽𝜗

𝛽𝜗 + 𝜇1𝜇3
0 0

). (17) 

The value of 𝑅0 is obtained from the eigen value of (17)  

𝑅0 =
𝛽𝑘𝜗(1 − 𝛾)

𝜇2(𝛽𝜗 + 𝜇1𝜇3)
. (18) 

4.3 Analysis of parameter sensitivity to 𝑹𝟎 

Parameter sensitivity index of 𝑅0 aims to observe how sensitive changes in a parameter 

affect the changes in the basic reproduction number (𝑅0). Parameter sensitivity analysis 

provides an overview of the relationship of a parameter to 𝑅0 value. In this part, sensitivity 

index will be analyzed from two parameters, namely the parameter of the rate of HIV virus 

infection to healthy cells or transmission of healthy cells to be infected (𝛽) and parameters of 

the proportion of treatment HAART (𝛾). 

4.3.1. Sensitivity analysis of parameter 𝜷 to 𝑹𝟎 

Based on Definition 2, sensitivity analysis of parameter 𝛽 to 𝑅0 is obtained as follow 
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𝐶𝛽 
𝑅0 =

𝜕𝑅0
𝜕𝛽

×
𝛽

𝑅0
, 

𝐶𝛽 
𝑅0 =

 𝜇1𝜇3
𝛽𝜗 + 𝜇1𝜇3

≥ 0. (19) 

Assuming all parameter values used in the model are positive, a positive sensitivity index is 

obtained in Equation (19). In other words, the greater the value of the change 𝛽 results an 

increase in the value of the 𝑅0. 

4.3.2. Sensitivity analysis of parameter 𝜸 to 𝑹𝟎 

Based on Definition 2, sensitivity analysis of parameter 𝛾 to 𝑅0 is obtained as follow 

𝐶𝛾 
𝑅0 =

𝜕𝑅0
𝜕𝛾

×
𝛾

𝑅0
, 

𝐶𝛾 
𝑅0 =

−𝛾

1 − 𝛾
≤ 0. (20) 

Based on parameter sensitivity analysis 𝛾 to 𝑅0, assuming all parameter values used in the 

model are positive, a negative sensitivity index is obtained in Equation (20) so that if the value 

of 𝛾 raise then value 𝑅0 will decrease. 

4.4 Stability analysis of Fractional System 

In this section, stability analysis of fractional system of two equilibrium points is given. It 

aims to study the behavior of the system around the equilibrium point. Stability analysis for 

system (5) begins by forming a Jacobi matrix at  𝐸0 as follows.  

𝐽(𝐸0) =

(

 
 
 
 
−𝜇1 0 −

𝛽𝜗

𝜇1

0 −𝜇2
𝛽𝜗

𝜇1

0 (1 − 𝛾)𝑘 −
𝛽𝜗

𝜇1)

 
 
 
 

. (21) 

Theorem 2. The Equation (7) is an equilibrium point that locally asymptotic stable if 𝜇2 >

𝑘(1 − 𝛾) and unstable if 𝜇2 < 𝑘(1 − 𝛾). 

Proof. From matrix Equation (21) is obtained from characteristic equation  

(𝜆 + 𝜇1) (𝜆
2 + (

𝛽𝜗 + 𝜇1𝜇2
𝜇1

) 𝜆 + 𝛽𝜗(𝜇2 − 𝑘(1 − 𝛾))). (22) 

Based on Equation (22), we obtained an eigen value  
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𝜆1 = −𝜇1.  (23) 

Because we have 𝜇1 > 0, it implies 𝜆1 < 0 and |arg (𝜆1)| = 𝜋 . Based on this, it can be 

guaranteed that |arg(𝜆1)| >
𝛼𝜋

2
 for all 0 < 𝛼 ≤ 1. The stability of the equilibrium point will be 

determined by a quadratic polynomial  

𝜆2 + 𝑎1𝜆 + 𝑎2 = 0, (24) 

where 

𝑎1 =
𝛽𝜗 + 𝜇1𝜇2

𝜇1
, 

𝑎2 = 𝛽𝜗(𝜇2 − 𝑘(1 − 𝛾)). 

(25) 

We have all parameters positive that implies 𝑎1 > 0. As a result, Equation (24) has no complex 

roots with positive real values. Based on Preposition 1 (ii) in [25] , Equation (24) must satisfy 

𝑎1𝑎2 > 0. Because 𝑎1 > 0, for 𝑎2 we obtained 

𝛽𝜗(𝜇2 − 𝑘(1 − 𝛾)) > 0. (26) 

For every 𝛼 ∈ (0,1], if 𝜇2 > 𝑘(1 − 𝛾) then 𝑎2 > 0. It implies |arg(𝜆2,3)| >
𝛼𝜋

2
. So that, 𝐸0 is 

locally asymptotic stable. ∎   

 

Jacobi matrix evaluated at endemic equilibrium points 𝐸1 as follows 

𝐽(𝐸1) =

(

 
 
 
 
 

−𝛽𝜗(𝑘(1 − 𝛾) − 𝜇2)

𝜇2𝜇3
0 −

𝜇2𝜇3

((1 − 𝛾)𝑘 − 𝜇2)

𝛽𝜗(𝑘(1 − 𝛾) − 𝜇2) − 𝜇1𝜇2𝜇3
𝜇2𝜇3

−𝜇2
𝜇2𝜇3

((1 − 𝛾)𝑘 − 𝜇2)

−𝛽𝜗(𝑘(1 − 𝛾) − 𝜇2) + 𝜇1𝜇2𝜇3
𝜇2𝜇3

(1 − 𝛾)𝑘 −𝜇3 −
𝜇2𝜇3

((1 − 𝛾)𝑘 − 𝜇2))

 
 
 
 
 

. (27) 

Suppose  

𝛿1 = 𝛽𝜗(𝑘(1 − 𝛾) − 𝜇2), (28) 

𝛿2 =
𝜇2𝜇3

((1 − 𝛾)𝑘 − 𝜇2)
, (29) 

then substitute Equations (28) and (29) into the matrix of Equation (27) so that it is obtained 

𝐽(𝐸1) =

(

 
 
 
 

−𝛿1
𝜇2𝜇3

0 −𝛿2

𝛿1 − 𝜇1𝜇2𝜇3
𝜇2𝜇3

−𝜇2 𝛿2

−𝛿1 + 𝜇1𝜇2𝜇3
𝜇2𝜇3

(1 − 𝛾)𝑘 −𝜇3 − 𝛿2)

 
 
 
 

 

 

(30) 
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From the matrix of Equation (30) obtained characteristic equations 

𝑃(𝜆) = 𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆 + 𝑏3  

𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆 + 𝑏3 = 0, (31) 

 where 

𝑏1 =
𝜇2
2𝜇3 + 𝜇2𝜇3(𝜇3 + 𝛿2) + 𝛿1

𝜇2𝜇3
, 

𝑏2 =
𝜇2
2𝜇3(𝜇3 + 𝛿2) + (𝛿2(𝜇1 − (1 − 𝛾)𝑘)𝜇3 + 𝛿1)𝜇2 + 𝛿1𝜇3

𝜇2𝜇3
, 

𝑏3 = 𝛿1 + 𝛿2𝜇1𝜇2 − 𝛿2𝜇1(1 − 𝛾)𝑘. 

Based on Definition 1 on [25], The discriminant of the polynomial (31) follows 

𝐷(𝑃) = 18𝑏1𝑏2𝑏3 + (𝑏1𝑏2)
2 − 4𝑏3(𝑏1)

3 − 4(𝑏2)
3 − 27(𝑏3)

2. 

Based on Preposition 1 (iii) on [25] , using Routh-Hurwitz stability criteria. 𝐸1 is locally 

asymptotic stable with these following condition 

(i). For 𝐷(𝑃) > 0, if 𝑏1 > 0, 𝑏3 > 0 and 𝑏1𝑏2 − 𝑏3 > 0 then 𝐸1 is locally asymptotic 

stable with order 𝛼 ∈ [0,1). 

(ii).  For 𝐷(𝑃) < 0, if 𝑏1 ≥ 0, 𝑏2 ≥ 0, 𝑏3 > 0 then 𝐸1 is locally asymptotic stable with 

order 𝛼 <
2

3
. 

(iii).  For 𝐷(𝑃) < 0, if 𝑏1 > 0, 𝑏2 > 0 and 𝑏1𝑏2 = 𝑏3 then 𝐸1 is locally asymptotic 

stable with order 𝛼 ∈ [0,1).∎ 

 

V. Numerical Simulation Results 

In this section, a numerical simulation of the System (5) will be presented. Based on 

Grunwald Letnikov's explicit form of Equation (4), the numerical equation form of System (5) 

is  

𝑥1
𝑛+1 = ∑𝑐𝑣

𝛼

𝑛+1

𝑣=1

𝑥1
𝑛+1−𝑣 + 𝑟𝑛+1

𝛼 𝑥1
0 + ℎ𝛼(𝜗 − 𝛽𝑥1

𝑛𝑥3
𝑛 − 𝜇1𝑥1

𝑛), 

𝑥2
𝑛+1 = ∑𝑐𝑣

𝛼

𝑛+1

𝑣=1

𝑥2
𝑛+1−𝑣 + 𝑟𝑛+1

𝛼 𝑥2
0 + ℎ𝛼(𝛽𝑥1

𝑛𝑥3
𝑛 − 𝜇2𝑥2

𝑛), 

𝑥3
𝑛+1 =∑𝑐𝑣

𝛼

𝑛+1

𝑣=1

𝑥3
𝑛+1−𝑣 + 𝑟𝑛+1

𝛼 𝑥3
0 + ℎ𝛼((1 − 𝛾)𝑘𝑥2

𝑛 − 𝜇2𝑥3
𝑛 − 𝛽𝑥1

𝑛𝑥3
𝑛), 

(32) 

 

The model parameter values used in this numerical simulation are as follows 
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Table 2. Parameter and initial values of Model  

Variable/Parameters Descriptions Values Source 

𝒙𝟏(𝟎) Initial Values for healthy cells 107 𝑑𝑚−3 [2] 

𝒙𝟐(𝟎) Initial Value for HIV-infected 

cells 

2 ∙ 105 𝑑𝑚−3 
[2] 

𝒙𝟑(𝟎) Initial Values for HIV virus 105 𝑑𝑚−3 [2] 

𝝑 The rate of production of healthy 

cells in the body in units of time 

106 𝑑𝑎𝑦−1𝑑𝑚−3 
[2] 

𝜷 The rate of infection of the HIV 

virus against healthy cells or the 

transmission of healthy cells 

becoming infected.  

10−8𝑑𝑎𝑦−1𝑑𝑚−3 

[2] 

𝒌 The rate of production of the 

virus by infected cells. 

0.055 𝑑𝑎𝑦−1 Assumed 

𝝁𝟏 Natural death rate of healthy 

cells 

0.01 𝑑𝑎𝑦−1 Assumed 

𝝁𝟐 Natural death rate from infected 

cells 

0.05 𝑑𝑎𝑦−1 Assumed 

𝝁𝟑 Natural death rate from the HIV 

virus 

0.02 𝑑𝑎𝑦−1 Assumed 

𝜸 Proportion of HAART treatment Varied Assumed 

 

 

The simulation was given with HAART pre-treatment and post-HAART treatment conditions 

by considering three fractional orders. We used 200 days interval for this simulation. The 

results of the HAART pre-treatment simulation can be seen in Figure 2. 
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Figure 2. Pre-HAART Model Simulation 𝛾 = 0. 

 

We perform the simulation by the help of MATLAB software. In Figure 2, the simulation 

results show the dynamics for each compartment. The number of healthy cells shows 

differences for different fractional order values. The value 𝛼 = 0.98 showed the greatest 

increase in 200 days of simulation. However, for value 𝛼 = 0,90, the number of healthy cells 

tends to be constant and does not experience a significant increase within 200 days. For the 

compartment of cells infected with the HIV virus, the results of all three fractional order values 

showed almost a similar increase. It can be seen that infected cells of order 𝛼 = 0.98 have 

accelerated in number starting at around day 70. HIV virus compartments for three different 

fractional orders showed decreased numbers. However, the decline did not reach zero cases. 

The amount of HIV virus can be observed to be constant throughout the simulation interval. 

This is also due to the absence of HAART treatment in the simulated model. The reproduction 

number value in this simulation is for 𝛼 = 0.90 ⇒ 𝑅0 = 1.0583; 𝛼 = 0.95 ⇒ 𝑅0 =

1.0688; 𝛼 = 0.98 ⇒ 𝑅0 = 1.0747. 
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Figure 3. Model Simulation with HAART 𝛾 = 0.2. 

 

Figure 3 provides simulation results with HAART treatment with proportion values 𝛾 =

0.2. Based on the simulations conducted, the existence of HAART treatment has an impact on 

the dynamics of the number of HIV-infected cells. During the 200 days of simulation, the 

number of infected cells decreased for each fractional order. The number of infected cells is 

below 105 𝑑𝑚−3 . For healthy cells, the number of healthy cells produced of fractional order 

𝛼 = 0.95 become the highest compared to the other two fractional orders. The amount of HIV 

virus over the 200 days decreased, with the most significant decrease occurring during the first 

20 days of the simulation. 

Figure 4 provides simulation results with HAART treatment with proportion values 𝛾 =

0.4. During the 200 days of simulation, the number of infected cells decreased for each 

fractional order. The number of infected cells is below  

0.5 ∙ 105 𝑑𝑚−3. For healthy cells, the dynamics of the number of healthy cells are not much 

different from previous simulations. The amount of HIV virus for 200 days has decreased faster 

than the 𝛾 = 0.2. Based on the graph, the number of HIV viruses is almost 0. 
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Figure 4. Model Simulation with HAART 𝛾 = 0.4 

 

Figure 5 is the result of a simulation of a combination of two parameters, namely: 𝛽 and 𝛾 

towards the value of 𝑅0 by assuming the other parameters are constant according to Table (1). 

Based on Figure 5 the conditions that produce 𝑅0 > 1 occurs when the proportion of treatment 

tends to be at a lower level as shown in the brown section. These areas are a combination of 

values of the proportion of HAART treatment below 10% and the value of HIV infection rate 

above 2 ∙ 10−8. If an increase in the proportion of HAART treatment is carried out, then the 

value of 𝑅0 will tend to be below 1. Indirectly, the simulation results in Figure 5 show that 

changes in the proportion value of HAART treatment tend to have more influence on 𝑅0 

compared to the parameters of the rate of HIV infection of healthy cells. 

 
Figure 5. Plot value combinations 𝛽 − 𝛾 against the 𝑅0 value. 
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VI. Conclusions 

In this study, a fractional model of the interaction of the HIV virus with T Lymphocyte 

Cells was developed. Based on the sensitivity analysis of two parameters to the base 

reproduction number (𝑅0), The infection rate parameter has a directly proportional relationship 

with 𝑅0. The parameters that represent HAART treatment are inversely proportional to 𝑅0. The 

results of numerical simulations that considered three fractional orders showed a difference in 

the number of infected cells between models that did not receive HAART treatment and models 

that used HAART treatment. With HAART treatment in the form of drug combination 

administration Protease Inhibitors (PI) and Reverse Transcriptase Inhibitor (RTI) effect on 

inhibition of the DNA formation process which has implications for the inhibition of protein 

formation thereby slowing down the amount of HIV virus production. The slowdown results 

in the slower formation of the number of HIV-infected cells. For further research, the parameter 

that describes the HAART treatment is still a constant value parameter, so that in the future it 

can be considered as a time-dependent parameter so that it can be expanded towards models 

with optimal control.  
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