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Abstract. This article exposes the combinatorial formula that determines the path 

domination number in a grid graph and discusses some of its properties. Seven properties 

are derived regarding the path domination number of grid graphs. Furthermore, some 

additional properties as direct consequences of the derived main properties are also 

discussed. 
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I. INTRODUCTION

Domination in graphs is a wide and interesting topic in graph theory [1], [2]. In fact, a lot of 

discrete mathematicians have devoted themselves to discovering new results in the domination 

number in graphs [3], [4], [5], [6], [7], [8]. Over the years, various parameters of domination 

numbers in graphs have been published in the literature. One of these parameters is called path 

domination of undirected graphs [9], [10]. Here, this article aims to investigate the path 

domination number of a particular graph known as a two-dimensional grid. This research is 

inspired by the study by Casinillo [11] which deals with combinatorial properties of domination 

numbers in triangular grid graphs. Hence, the main focus of this study is to give a closer look 

at the combinatorial properties of path domination in lattice or grid graphs. To understand 

clearly the concepts of path domination, we need some definitions of terms concerning the 

properties of graphs as presented below [9], [10], [12].  

Here, we let  𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be an undirected graph as a function of vertex set 𝑉(𝐺) 
and edge set 𝐸(𝐺). The order and size of graph 𝐺 are the cardinality |𝑉(𝐺)| of 𝑉(𝐺) and 

cardinality |𝐸(𝐺)| of 𝐸(𝐺), respectively. An open neighborhood of a vertex 𝑢 ∈ 𝐺  is the set 

𝑁𝐺(𝑢) =  𝑁(𝑢) = {𝑣 ∈ 𝑉 (𝐺): 𝑢𝑣 ∈ 𝐸(𝐺)}. On the other hand, the closed neighborhood of a

vertex 𝑢 ∈ 𝐺 is the set 𝑁𝐺[𝑢] =  𝑁[𝑢] = {𝑢}⋃𝑁(𝑢). Let 𝑆 ⊆ 𝑉 (𝐺). Then, the open

neighborhood of set 𝑆 is 𝑁𝐺(𝑆) =  𝑁(𝑆) = ⋃𝑢∈𝑆 𝑁𝐺(𝑢). Additionally, the closed

neighborhood of set 𝑆 is the set 𝑁𝐺[𝑆]  =  𝑁[𝑆]  =  𝑆⋃𝑁(𝑆). A path of order 𝑛 ≥ 2 is a graph

of a finite sequence of edges that joins a sequence of vertices, that is, if a path has order 𝑛 ≥3, 

then two vertices are of degree 1, and the other 𝑛 − 2 vertices of degree 2. A path graph is 

denoted by 𝑃𝑛 with order 𝑛 and size 𝑛 − 1. Hence, if 𝑛 = 1, then graph 𝑃1 is a trivial path. A

rectangular grid graph is an 𝑚× 𝑛 lattice graph that is a Cartesian product of two paths 𝑃𝑚 and

𝑃𝑛 denoted by 𝑃𝑚𝑃𝑛 [13], [14]. In particular, Figure 1 below shows the graph of 𝑃4𝑃7.
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Figure 1. Graph 𝑃4𝑃7. 

 

Let 𝐺 = 𝑃𝑚𝑃𝑛 be a grid graph where 𝑚 > 𝑛 ≥ 4. Let 𝐷 ⊆ 𝑉(𝐺). Then 𝐷 is a dominating 

set of graph 𝐺 if for all 𝑢 ∈ 𝑉(𝐺)\𝐷, ∃𝑣 ∈ 𝐷 such that 𝑢𝑣 ∈ 𝐸(𝐺), that is, 𝑁[𝐷] = 𝑉(𝐺). A 

domination number of 𝐺,  denoted by 𝛾(𝐺), is the minimum cardinality of dominating set 𝐷. 

A dominating set 𝐷𝑘𝑝 ⊆ 𝑉(𝐺) is called a k-path dominating set of a graph 𝐺 if the subgraph 

〈𝐷𝑘𝑝〉 induced by 𝐷𝑘𝑝 is a set of 𝑘 paths. A k-path domination number of 𝐺, denoted by 

𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺), is the minimum cardinality of 𝑘 paths dominating set 𝐷𝑘𝑝. Figure 2 shows an 

example of k-path dominating set for graph 𝐺 = 𝑃7𝑃4 where the k-path domination number 

(𝑘 = 3) is 𝛾3−𝑝𝑎𝑡ℎ(𝐺) = 12. 

 

 
Figure 2. The 3-path domination in graph 𝑃7𝑃4. 

 

In general, the k-path dominating set configuration is horizontal if 𝑚 > 𝑛 and vertical if 

𝑚 < 𝑛 and not placed at the first and last paths of graph 𝐺 (see Figure 2). Moreover, A 

dominating set 𝐷𝑝 ⊆ 𝑉(𝐺) is called a path dominating set of a graph 𝐺 if the subgraph 〈𝐷𝑝〉 

induced by 𝐷𝑝 is a set of the path. A path domination number of 𝐺,  denoted by 𝛾𝑝𝑎𝑡ℎ(𝐺), is 

the minimum cardinality of path dominating set 𝐷𝑝. Below is an example of a path dominating 

set for graph 𝐺 = 𝑃7𝑃4 where the path domination number is 𝛾𝑝𝑎𝑡ℎ(𝐺) = 14. 
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Figure 3. The path domination in graph 𝑃7𝑃4. 

 

The distance 𝑑𝐺(𝑢, 𝑣) between two the vertices 𝑢 and 𝑣 in 𝐺 is defined as the length of the 

shortest path between 𝑢 and 𝑣.  The degree of a vertex 𝑣 ∈ 𝑉(𝐺) is the number of incident 

edges and it is denoted by 𝑑𝑒𝑔𝐺(𝑣). For more details on definitions in graph theory, the readers 

may refer to [15]. Hence, in this article, we expose new formula that determines the path 

domination number in graph 𝐺 = 𝑃𝑚𝑃𝑛 and we present some of its combinatorial properties. 

II. RESULTS AND DISCUSSION 

First, we present the following Remark as very useful in constructing our results. The remark 

is well-known that determines the domination number of a path graph for any order 𝑛 ∈ ℕ. 

 

Remark 2.1. [17], [18] Let 𝐻 = 𝑃𝑚 be a path of order 𝑚 ∈ ℕ. Then, 

 

𝛾(𝐻) =

{
 
 

 
 
𝑚

3
            𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

𝑚 + 2

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

𝑚 + 1

3
     𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)

 

 

The Lemma below presents the combinatorial formula for finding the k-path domination 

number of the grid graph with the dimension 𝑚 > 𝑛 ≥ 4. 

 

Lemma 2.2. Let 𝐺 = 𝑃𝑚𝑃𝑛 be a grid graph where 𝑚 > 𝑛 ≥ 4. Then,  

 

https://doi.org/10.14710/jfma.v6i1.16608

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 6 NO. 1 (JUN 2023) 

Available online at www.jfma.math.fsm.undip.ac.id

p-ISSN: 2621-6019 e-ISSN: 2621-603520



 

 

 

 

 

 

 

 

𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) =

{
 
 

 
 
𝑚𝑛

3
              𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

𝑚𝑛 + 2𝑛

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

𝑚𝑛 + 𝑛

3
       𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)

 

 

Proof: Suppose that 𝐺 = 𝑃𝑚𝑃𝑛 and 𝑚 > 𝑛 ≥ 4. Let 𝐻 = 𝑃𝑚. Then, it clearly follows that 

𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘, where 𝑘 = 𝛾(𝐻) by Remark 1. Hence, the hypothesis follows and 

completes the proof.                                                                       

 

It is worth noting that if the restriction is 𝑛 > 𝑚 ≥ 4, then we can just simply change 𝑚 to 

𝑛 in Lemma 2.2. Our next result shows the formula for determining the path domination 

number of the grid graph. 

 

Theorem 2.3. Let 𝐺 = 𝑃𝑚𝑃𝑛 be a grid graph where 𝑚 > 𝑛 ≥ 4. Then,  

 

𝛾𝑝𝑎𝑡ℎ(𝐺) =

{
 
 

 
 
𝑚𝑛 − 2𝑚 + 6

3
               𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

𝑚𝑛 + 2𝑛 + 2𝑚 − 8

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

𝑚𝑛 + 𝑛 + 2𝑚 − 7

3
     𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)

 

 

Proof: Let 𝐺 = 𝑃𝑚𝑃𝑛 where 𝑚 > 𝑛 ≥ 4 and let 𝐻 = 𝑃𝑚. Then, consider the following cases: 

Case 1. Suppose that 𝑚 ≡ 0(𝑚𝑜𝑑 3). Hence, by Lemma 2.2, we get 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘, where 

𝑘 = 𝛾(𝐻). Note that in graph 𝐻, every dominating set  𝑢 ∈ 𝐷,𝑁(𝑢) = {𝑥, 𝑦} where 𝑥, 𝑦 ∈
𝐻\𝐷. Hence, there is only one configuration for dominating set in G. Now, the distance of each 

𝑘 = 𝛾(𝐻) path in G is 2, then it follows that 𝛾𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘 + 2(𝑘 − 1). Hence, by Remark 1,  

case 1 holds. 

Case 2. Secondly, we suppose that 𝑚 ≡ 1(𝑚𝑜𝑑 3). Then, by Lemma 2.2, we also get 

𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘, where 𝑘 = 𝛾(𝐻). It follows that there are 𝑘 − 2 dominating paths where 

their distance is equal to 2 and 3 of the dominating paths have a distance of 1. Note that this 

configuration is unique to have a minimum path dominating set in graph 𝐺. Thus, it is clear 

that 𝛾𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘 + 2(𝑘 − 3) + 2. Hence, by Remark 1,  case 2 also holds. 

Case 3. Lastly, we suppose that 𝑚 ≡ 0(𝑚𝑜𝑑 3). By Lemma 2.2, we obtain 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘, 

where 𝑘 = 𝛾(𝐻). Then, there are 𝑘 − 1 dominating paths with a distance equal to 2, and 2 of 

the dominating paths have a distance of 1. Again, this configuration is unique to have a 

minimum path dominating set in 𝐺. So, it follows that 𝛾𝑝𝑎𝑡ℎ(𝐺) = 𝑛𝑘 + 2(𝑘 − 2) + 1. By 

Remark 1,  case 3 holds.  

Combining the 3 cases completes the proof.                                                         

 

Suppose we let 𝐺 = 𝑃𝑚𝑃𝑛 be a grid graph and 𝑚 > 𝑛 ≥ 4. Then, the following results 

below are immediate from Theorem 2.3. 

 

Corollary 2.4. The difference 𝛾𝑝𝑎𝑡ℎ(𝐺) − 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) can be made arbitrarily large. 
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Proof: Let 𝑘 ∈ ℕ. Suppose that 𝛾𝑝𝑎𝑡ℎ(𝐺) − 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑘 where 𝑘 = 𝑓(𝑚, 𝑛) for all 𝑚 >

𝑛 ≥ 4. Then, increasing the values of 𝑚 and 𝑛, the hypothesis follows.            

 

Corollary 2.5. Let 𝑚 ≥ 2 and  𝑛 = 2 or 3. Then, 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) =  𝛾𝑝𝑎𝑡ℎ(𝐺) = 𝑚 where 𝑘 = 1. 

 

Proof:  Suppose that 𝐺 = 𝑃𝑚𝑃𝑛 where 𝑚 ≥ 2 and  𝑛 = 2 or 3. Then, it is clear that for 𝑛 =
2, it is either the first or second path with order 𝑚 is the dominating vertex set of graph 𝐺. 

Now, if 𝑛 = 3, then it follows that the middle path of order 𝑚 is the dominating vertex set. 

Hence, the hypothesis follows.                                                      

  

Remark 2.6. If 𝑘 ≥ 1, then  𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) ≤  𝛾𝑝𝑎𝑡ℎ(𝐺). 

 

Proof: Quick from Theorem 2.3.                                               

 

Remark 2.7. If 𝑚 = 𝑛 ≥ 4, then 

  

𝛾𝑝𝑎𝑡ℎ(𝐺) =

{
  
 

  
 
𝑚2 − 2𝑚 + 6

3
      𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

𝑚2 + 4𝑚 − 8

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

𝑚2 + 3𝑚 − 7

3
     𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)

 

 

Proof: Quick from Theorem 2.3.                                 

 

It is worth noting that 𝑚 can be replaced by 𝑛 in Remark 2.7. Let 𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) and 𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) 

be the number of ways of putting a k-path dominating set and path dominating set in graph 

𝐺, respectively. For the readers, the number of ways of putting the dominating set in the path 

and cycle graph can be read in [18]. Then, the following result is quick from Remark 2.1 and 

Theorem 2.3. 

 

Lemma 2.8. Let 𝐺 = 𝑃𝑚𝑃𝑛 be a grid graph where 𝑚 > 𝑛 ≥ 4. Then,  

 

𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) ≤ 𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑁𝛾(𝑃𝑚) 

 

Proof: Suppose that 𝐺 = 𝑃𝑚𝑃𝑛 be a grid graph where 𝑚 > 𝑛 ≥ 4. Then, by Remark 2.1, it 

is immediately that 𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 𝑁𝛾(𝑃𝑚). It is worth noting that dominating set must be 

minimum, i.e., optimum. Thus, 𝑘 dominating paths should not be placed at the endpoints in 

graph 𝐺 to maintain the minimal distance. Hence, in view of Theorem 2.3, it suffices to show 

that 𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) ≤ 𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺). This completes the proof.                                                                                                    

 

 

The next result is a direct consequence of Lemma 2.2 above. This shows the formula for 

determining how many configurations can be made to form a path dominating set in graph 𝐺 =
𝑃𝑚𝑃𝑛. 
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Theorem 2.9. Let 𝐺 = 𝑃𝑚𝑃𝑛. If 𝑚 > 𝑛 ≥ 4, then 

 

𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) = {
2         𝑖𝑓 𝑚 ≡ 𝑟(𝑚𝑜𝑑 3)

4         𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)
 

where 𝑟 ∈ {0, 1}. 
 

Proof: Let 𝐺 = 𝑃𝑚𝑃𝑛. Suppose that 𝑚 > 𝑛 ≥ 4. Then, we consider the following cases: 

Case 1. It is worth noting that if 𝑚 ≡ 0(𝑚𝑜𝑑 3), then by Lemma 2.8, it follows that 

𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 1. Since there are two possible ways to connect the 𝑘-path in 𝐺, then 

𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) = 2𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 2. 

Case 2.  For 𝑚 ≡ 1(𝑚𝑜𝑑 3), there is also 1 way to put 𝑘-path dominating set without 

dominating the vertex in the first and last path position in graph 𝐺. Hence, it follows the same 

argument from Case 1. 

Case 3. Let 𝑚 ≡ 2(𝑚𝑜𝑑 3). Then, there are 2 configurations of 𝑘-path dominating set in graph 

𝐺 without dominating vertex in the first and last path position, that is, 𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 2. Since 

there are also two ways to connect the 𝑘-path dominating set, thus, 𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) =

2𝑁𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) = 4. 

Combining the 3 cases completes the proof.                                                                             

 

The following remarks are a direct consequence of Theorem 2.9 above. 

 

Remark 2.10. If 𝑚 ≥ 2 and 𝑛 = 3, the 𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) = 1. 

 

Remark 2.11. If 𝑚 ≥ 4 and 𝑛 = 2, the 𝑁𝛾𝑝𝑎𝑡ℎ(𝐺) = 2. 

 

Let �̅� be the number of ways (shortest routes) in getting from 𝑣1 to 𝑣𝑛, where 𝑣1, 𝑣𝑛 ∈ 𝐷𝑝, 

and deg(𝑣1) = 𝑑𝑒𝑔(𝑣𝑛) = 1. Hence, the following results below are immediate. 

 

Theorem 2.12. Let 𝐺 = 𝑃𝑚𝑃𝑛  where 𝑚 > 𝑛 ≥ 4. If 𝛾(𝑃𝑚) ≡ 0(𝑚𝑜𝑑 2) ≥ 3, then 

 

�̅� = (
𝑚 + 𝑛 − 4
𝑚 − 3

) = (
𝑚 + 𝑛 − 4
𝑛 − 1

)  and  𝑑𝐺(𝑣1, 𝑣𝑛) = 𝑚 + 𝑛 − 4 

 

where 𝑣1, 𝑣2 ∈ 𝐷𝑝 and 𝑑𝑒𝑔(𝑣1) = 𝑑𝑒𝑔(𝑣𝑛) = 1. 

 

Proof: Let 𝐺 = 𝑃𝑚𝑃𝑛 where 𝑚 > 𝑛 ≥ 4. Suppose that 𝛾(𝑃𝑚) ≡ 0(𝑚𝑜𝑑 2) ≥ 3, then we let 

𝐴 be the set of all shortest routes from 𝑣1 to 𝑣𝑛 where 𝑣1, 𝑣2 ∈ 𝐷𝑝, and deg(𝑣1) = 𝑑𝑒𝑔(𝑣𝑛) =

1. Then, it follows that 𝑑𝐺(𝑣1, 𝑣𝑛) = (𝑚 − 3) + (𝑛 − 1) = 𝑚 + 𝑛 − 4. Next, we construct a 

binary sequence to represent the shortest route. So, we let "0" denote a vertical segment and 

"1" denote a vertical segment in graph 𝐺. In that case, every route from 𝑣1 to 𝑣𝑛 can be 

represented by a binary sequence of length 𝑚 + 𝑛 − 4. Thus, we can establish a mapping 𝜑 

from 𝐴 to set 𝐵 of all binary sequences of length 𝑚 + 𝑛 − 4, that is, 𝜑: 𝐴 → 𝐵. On the face of 

it, it is clear that 𝜑 is one-to-one and onto, hence 𝜑 is bijective. By the Bijection Principle (BP), 
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it follows that �̅� = |𝐴| = |𝐵| = (
𝑚 + 𝑛 − 4
𝑚 − 3

) = (
𝑚 + 𝑛 − 4
𝑛 − 1

). This completes the proof.                                                                                                                                    

 

 

Let 𝐷𝑝
3 ⊂ 𝐷𝑝 be a subset of path dominating sets with degree 3 and let 𝐷𝑝

4 ⊂ 𝐷𝑝 be a 

subset of path dominating set with degree 4, that is, 𝐷𝑝
3 ∪ 𝐷𝑝

4 = 𝐷𝑝 and 𝐷𝑝
3 ∩ 𝐷𝑝

4 = ∅. Hence, 

the following results are quick from Theorem 2.3. 

 

Theorem 2.13. Let 𝐺 = 𝑃𝑚𝑃𝑛  . If 𝑚 > 𝑛 ≥ 4, then 

 

|𝐷𝑝
3| =

{
 
 

 
 
4𝑚 − 3

3
      𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

4𝑚 − 4

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

4𝑚 − 5

3
     𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)

 

and  

 

|𝐷𝑝
4| =

{
 
 

 
 
𝑚𝑛 − 2𝑚

3
                      𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

𝑚𝑛 + 2𝑛 − 2𝑚 − 4

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

𝑚𝑛 + 𝑛 − 2𝑚 − 2

3
     𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3).

 

 

Proof: By Theorem 2.3, it follows directly that 𝐷𝑝 = 𝐷𝑝
3 ∪ 𝐷𝑝

4. Hence, |𝐷𝑝
3| = |𝐷𝑝\𝐷𝑝

4| and 

|𝐷𝑝
4| = |𝐷𝑝\𝐷𝑝

3|. Thus, the hypothesis follows.          

 

Corollary 2.14. Let 𝐺 = 𝑃𝑚𝑃𝑛 . If 𝑚 > 𝑛 ≥ 4, then 

 

[𝑁(𝐷𝑝
3) ∩ 𝑁(𝐷𝑝

4)]\𝐷𝑝 ⊂ 𝑉(𝐺)\𝐷 

 

Proof: Suppose that 𝐺 = 𝑃𝑚𝑃𝑛  where 𝑚 > 𝑛 ≥ 4. Then, it follows that [𝑁(𝐷𝑝
3) ∩

𝑁(𝐷𝑝
4)]\𝐷𝑝 ≠ ∅. Since [𝑁(𝐷𝑝

3) ∩ 𝑁(𝐷𝑝
4)] ⊂ 𝑉(𝐺), then the hypothesis follows.         

 

Remark 2.15. Let 𝐺 = 𝑃𝑚𝑃𝑛 . If 𝑚 > 𝑛 ≥ 4, then 

 

|𝑁(𝐷𝑝
3) ∩ 𝑁(𝐷𝑝

4)| =

{
 
 

 
 
2𝑚 − 6

3
        𝑖𝑓 𝑚 ≡ 0(𝑚𝑜𝑑 3)

2𝑚 − 8

3
     𝑖𝑓 𝑚 ≡ 1(𝑚𝑜𝑑 3)

2𝑚 − 7

3
     𝑖𝑓 𝑚 ≡ 2(𝑚𝑜𝑑 3)
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III. CONCLUSION 

This article introduced new results involving a combinatorial formula that counts the k-path 

and path dominating set of grid graph 𝐺 = 𝑃𝑚𝑃𝑛 where 𝑚 > 𝑛 ≥ 4 denoted by 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) 

and 𝛾𝑝𝑎𝑡ℎ(𝐺) = |𝐷𝑝|, respectively. The difference between 𝛾𝑘−𝑝𝑎𝑡ℎ(𝐺) and 𝛾𝑝𝑎𝑡ℎ(𝐺) = |𝐷𝑝| 

can be made arbitrarily large in relation to the dimension of grid graph 𝐺. Furthermore, the 

number of the configuration of path dominating set in 𝐺 is 2 when 𝑚 ≡ 𝑟(𝑚𝑜𝑑 3) where 𝑟 ∈
{0, 1} or 4 when 𝑚 ≡ 2(𝑚𝑜𝑑 3). For future research, it is interesting to investigate the 

derangement of path dominating sets in grid graphs. 
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