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Abstract. Power sum is one of the interesting topics in number theory where its 
application in other sciences is known to be wide. This paper intends to stipulate new 
remarks on an explicit polynomial solution to power sums. Additionally, it investigates 
the general solution under odd and even numbers of terms and discusses some examples. 
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I. INTRODUCTION

In number theory, a lot of mathematicians are intrigued by finding an explicit solution to 
power sums [1] [2] [3] [4] [5] [6]. Power sum is a sum of 𝑛𝑛 consecutive natural numbers that 
is raised to the power of 𝑝𝑝 ∈ ℤ+ [6]. In particular, this can be written as 

1𝑝𝑝 + 2𝑝𝑝+. . . +𝑛𝑛𝑝𝑝 = �𝑖𝑖𝑝𝑝
𝑛𝑛

𝑖𝑖=1

(1) 

Now, if the first term of the sequence is arbitrarily chosen to have a power sum of 𝑡𝑡 terms, then 
it can be written as follows 

𝜆𝜆𝑝𝑝 + (𝜆𝜆 + 1)𝑝𝑝 + (𝜆𝜆 + 2)𝑝𝑝+. . . +(𝜆𝜆 + 𝑡𝑡 − 1)𝑝𝑝 = � 𝑖𝑖𝑝𝑝
𝜆𝜆+𝑡𝑡−1

𝑖𝑖=𝜆𝜆

(2) 

where 𝜆𝜆 and 𝑝𝑝 are natural numbers. Evidently, there are many mathematical results have been 
published in the literature that deals with the solution of power sums via different methods [7] 
[8] [9].  Inspired by the existing and fascinating results, this paper intends to construct a new
polynomial solution that solves a power sum explicitly.

In fact, this paper is motivated by the paper of Casinillo [10], whose work is focusing on 
alternating power sums. Hence, an identical method in [10] was used to obtain some new 
remarks in finding the solution of power sums. Firstly, we consider the different mathematical 
forms of power sums adapted from [10]. Here it is. Let 𝜆𝜆 and 𝑝𝑝 be natural numbers. If 𝑡𝑡 = 2𝑥𝑥 −
1 (𝑥𝑥 ∈ ℤ+), then 

𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � 𝑗𝑗𝑝𝑝
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

= 𝜆𝜆𝑝𝑝 + (𝜆𝜆 + 1)𝑝𝑝 + ⋯+ (𝜆𝜆 + 2𝑥𝑥 − 2)𝑝𝑝              (3) 

 and for 𝑡𝑡 = 2𝑥𝑥 (𝑥𝑥 ∈ ℤ+), we have 

𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � 𝑗𝑗𝑝𝑝
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

= 𝜆𝜆𝑝𝑝 + (𝜆𝜆 + 1)𝑝𝑝 + ⋯+ (𝜆𝜆 + 2𝑥𝑥 − 1)𝑝𝑝             (4) 

In this study, the superscripts 𝑜𝑜 and 𝑒𝑒 in the power sum notation above represent an odd and 
even number of terms of the series, respectively. Next, we need the following notations. First, 
we let 𝑃𝑃𝑛𝑛(𝑥𝑥) ∈ ℤ[𝑥𝑥] be a polynomial in 𝑥𝑥 of degree 𝑛𝑛 ∈ ℤ+. Secondly, we let 𝑓𝑓𝑗𝑗(𝜆𝜆) ∈ ℤ[𝜆𝜆] be 
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a polynomial in 𝜆𝜆 of degree 𝑗𝑗 ∈ ℤ+. In that case, the study focus on solving for a polynomial 
of the form 𝑃𝑃𝑝𝑝(𝑥𝑥) = ∑ 𝑓𝑓𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗𝑝𝑝

𝑗𝑗=0 = 𝑓𝑓𝑝𝑝(𝜆𝜆)𝑥𝑥𝑝𝑝 + 𝑓𝑓𝑝𝑝−1(𝜆𝜆)𝑥𝑥𝑝𝑝−1+. . . +𝑓𝑓1(𝜆𝜆)𝑥𝑥 + 𝑓𝑓0(𝜆𝜆) where 
𝑓𝑓𝑗𝑗(𝜆𝜆) ∈ ℤ[𝜆𝜆] and 𝑗𝑗 ∈ {0, 1, 2, . . . ,𝑝𝑝}, i.e., 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = 𝑃𝑃𝑝𝑝𝑜𝑜(𝑥𝑥) and 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = 𝑃𝑃𝑝𝑝𝑒𝑒(𝑥𝑥). Some 
illustrations and simulations were also discussed. 

II. RESULTS

The following Theorem 2.1 is quick from equation (3) that shows a power sum with odd 
terms has a polynomial solution as a function of two natural numbers 𝜆𝜆 and 𝑥𝑥. 

Theorem 2.1. Let 𝜆𝜆, 𝑥𝑥, and 𝑝𝑝 be natural numbers. If 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = ∑ 𝑗𝑗𝑝𝑝𝜆𝜆+2𝑥𝑥−2
𝑗𝑗=𝜆𝜆  and 𝑥𝑥 = 𝑡𝑡+1

2
 ≤

p + 1and 𝑡𝑡 ≡ 1(𝑚𝑚𝑜𝑜𝑚𝑚 2), then 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) = ∑ 𝑐𝑐𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗=0   where 𝑐𝑐𝑗𝑗(𝜆𝜆) ∈ ℤ[𝜆𝜆]. 

Proof. To prove Theorem 2.1. we need to simulate equation (3) with 𝑥𝑥 = 1, 2, . . . ,𝑝𝑝, 𝑝𝑝 + 1. In 
that case, we obtain the following: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 1,𝑝𝑝) = ∑ 𝑐𝑐𝑗𝑗(𝜆𝜆)1𝑗𝑗 = 𝜆𝜆𝑝𝑝𝑝𝑝

𝑗𝑗=0

𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 2,𝑝𝑝) = ∑ 𝑐𝑐𝑗𝑗(𝜆𝜆)2𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝2
𝑗𝑗=0

𝑝𝑝
𝑗𝑗=0

𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 3,𝑝𝑝) = ∑ 𝑐𝑐𝑗𝑗(𝜆𝜆)3𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝4
𝑗𝑗=0

𝑝𝑝
𝑗𝑗=0

. . .

. . .

. . .
𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑝𝑝 + 1,𝑝𝑝) = ∑ 𝑐𝑐𝑗𝑗(𝜆𝜆)(𝑝𝑝 + 1)𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝2𝑝𝑝

𝑗𝑗=0
𝑝𝑝
𝑗𝑗=0

              (5) 

It is worth noting that the unknowns 𝑐𝑐0(𝜆𝜆), 𝑐𝑐1(𝜆𝜆), 𝑐𝑐2(𝜆𝜆),…, 𝑐𝑐𝑝𝑝(𝜆𝜆), and the equations are equal 
in number. Plus, there is no linear dependence between the pairwise equations in (5), hence, 
we conclude the system of equations in (5) has a unique solution. On the face of it, we obtain 
the following solutions 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑐𝑐0(𝜆𝜆) = 𝑃𝑃0(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑐𝑐1(𝜆𝜆) = 𝑃𝑃1(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑐𝑐2(𝜆𝜆) = 𝑃𝑃2(𝜆𝜆) ∈ ℤ[𝜆𝜆]

.

.

.
𝑐𝑐𝑝𝑝(𝜆𝜆) = 𝑃𝑃𝑝𝑝(𝜆𝜆) ∈ ℤ[𝜆𝜆]

  (6) 

where 𝑝𝑝, 𝜆𝜆 ∈ ℤ+. It is worthy to note that the maximum simulation is 𝑥𝑥 = 𝑝𝑝 + 1, hence, the 
polynomial is only valid for 1 ≤ 𝑥𝑥 ≤ 𝑝𝑝 + 1. This completes the proof.                

To make this clear, some examples were presented for the following values 𝑝𝑝 = 1, 2, 3. 

Illustration 2.1. Considering that 𝑝𝑝 = 1 and 𝑡𝑡 is an odd positive integer, then, we have the 
following equation 
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𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 1) = � 𝑗𝑗
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

= (2𝜆𝜆 + 3)𝑥𝑥 − (𝜆𝜆 + 3)   (7) 

where 1 ≤ 𝑥𝑥 ≤ 2. 
To solve equation (7), we let 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 1) = 𝑐𝑐1(𝜆𝜆)𝑥𝑥 + 𝑐𝑐2(𝜆𝜆), where 𝑐𝑐1(𝜆𝜆) ∈ ℤ[𝜆𝜆] and 𝑐𝑐2(𝜆𝜆) ∈
ℤ[𝜆𝜆]. By Theorem 2.2, we simulate 𝑥𝑥 from 1 to 2 and obtain the following system of equation 

�

𝑐𝑐1(𝜆𝜆) + 𝑐𝑐2(𝜆𝜆) = 𝜆𝜆

2𝑐𝑐1(𝜆𝜆) + 𝑐𝑐2(𝜆𝜆) = �𝑗𝑗
𝜆𝜆+2

𝑗𝑗=𝜆𝜆

 

In that case, we get the following  

�
𝑐𝑐1(𝜆𝜆) = 2𝜆𝜆 + 3
𝑐𝑐2(𝜆𝜆) = −𝜆𝜆 − 3 

Hence, equation (7) is obtained and valid for 1 ≤ 𝑥𝑥 ≤ 2. 

Example 1. Solving for S3o(5, 2, 1). Applying equation (7), we get 

 𝑆𝑆3𝑜𝑜(5, 2, 1) = �𝑗𝑗 = 18.
7

𝑗𝑗=5

 

Illustration 2.2. Considering that 𝑝𝑝 = 2 and 𝑡𝑡 is an odd natural number, then, we have  

       𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 2) = � 𝑗𝑗2
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆
= (4𝜆𝜆 + 10)𝑥𝑥2 + (2𝜆𝜆2 − 6𝜆𝜆 − 25)𝑥𝑥 + (−𝜆𝜆2 + 2𝜆𝜆 + 15)            (8)   

where 1 ≤ 𝑥𝑥 ≤3.  

In solving equation (8), we assume 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 2) = 𝑐𝑐1(𝜆𝜆)𝑥𝑥2 + 𝑐𝑐2(𝜆𝜆)𝑥𝑥 + 𝑐𝑐3(𝜆𝜆), where 
𝑐𝑐1(𝜆𝜆), 𝑐𝑐2(𝜆𝜆), 𝑐𝑐3(𝜆𝜆) ∈ ℤ[𝜆𝜆]. In view of Theorem 2.2, we simulate 𝑥𝑥 from 1 to 3 and obtain the 
following  

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑐𝑐1(𝜆𝜆) + 𝑐𝑐2(𝜆𝜆) +  𝑐𝑐3(𝜆𝜆) = 𝜆𝜆2

4𝑐𝑐1(𝜆𝜆) + 2𝑐𝑐2(𝜆𝜆) + 𝑐𝑐3(𝜆𝜆) = �𝑗𝑗2
𝜆𝜆+2

𝑗𝑗=𝜆𝜆

9𝑐𝑐1(𝜆𝜆) + 3𝑐𝑐2(𝜆𝜆) + 𝑐𝑐3(𝜆𝜆) = �𝑗𝑗2
𝜆𝜆+4

𝑗𝑗=𝜆𝜆
So, we get the following solution 

�
𝑐𝑐1(𝜆𝜆) = 4𝜆𝜆 + 10

𝑐𝑐2(𝜆𝜆) = 2𝜆𝜆2 − 6𝜆𝜆 − 25
𝑐𝑐3(𝜆𝜆) = −𝜆𝜆2 + 2𝜆𝜆 + 15

 

Hence, equation (8) holds and is valid for 1 ≤ 𝑥𝑥 ≤3. 

Example 2. Solving for  S5o(2, 3, 2). Applying equation (8), we get 
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 𝑆𝑆5𝑜𝑜(2, 3, 2) = �𝑗𝑗2 = 90.
6

𝑗𝑗=2

 

Illustration 2.3. Considering that 𝑝𝑝 = 3 and 𝑡𝑡 be an odd natural number, then, we obtain 

       𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 3) = � 𝑗𝑗3
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆
= (8𝜆𝜆 + 28)𝑥𝑥3 + (6𝜆𝜆2 − 18𝜆𝜆 − 127)𝑥𝑥2 + (2𝜆𝜆3 − 9𝜆𝜆2 + 13𝜆𝜆 + 194)𝑥𝑥
+ (−𝜆𝜆3 + 3𝜆𝜆2 − 3𝜆𝜆 − 95)                                                                           (9) 

where 1 ≤ 𝑥𝑥 ≤4. Again, to solve for equation (9),  let 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 3) = 𝑐𝑐1(𝜆𝜆)𝑥𝑥3 + 𝑐𝑐2(𝜆𝜆)𝑥𝑥2 +
𝑐𝑐3(𝜆𝜆)𝑥𝑥 + 𝑐𝑐4(𝜆𝜆), where 𝑐𝑐1(𝜆𝜆), 𝑐𝑐2(𝜆𝜆), 𝑐𝑐3(𝜆𝜆), 𝑐𝑐4(𝜆𝜆) ∈ ℤ[𝜆𝜆]. So, by Theorem 2.2, simulate for the 
following values 𝑥𝑥 = 1, 2, 3, 4,  and we have 

⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧ 𝑐𝑐1(𝜆𝜆) + 𝑐𝑐2(𝜆𝜆) +  𝑐𝑐3(𝜆𝜆) + 𝑐𝑐4(𝜆𝜆) = 𝜆𝜆3

8𝑐𝑐1(𝜆𝜆) + 4𝑐𝑐2(𝜆𝜆) + 2𝑐𝑐3(𝜆𝜆) + 𝑐𝑐4(𝜆𝜆) = �𝑗𝑗3
𝜆𝜆+2

𝑗𝑗=𝜆𝜆

27𝑐𝑐1(𝜆𝜆) + 9𝑐𝑐2(𝜆𝜆) + 3𝑐𝑐3(𝜆𝜆) + 𝑐𝑐4(𝜆𝜆) = �𝑗𝑗3
𝜆𝜆+4

𝑗𝑗=𝜆𝜆

64𝑐𝑐1(𝜆𝜆) + 16𝑐𝑐2(𝜆𝜆) + 4𝑐𝑐3(𝜆𝜆) + 𝑐𝑐4(𝜆𝜆) = �𝑗𝑗3
𝜆𝜆+6

𝑗𝑗=𝜆𝜆

In that case, we obtain the following solution 

⎩
⎨

⎧
𝑐𝑐1(𝜆𝜆) = 8𝜆𝜆 + 28

𝑐𝑐2(𝜆𝜆) = 6𝜆𝜆2 − 18𝜆𝜆 − 127
𝑐𝑐3(𝜆𝜆) = 2𝜆𝜆3 − 9𝜆𝜆2 + 13𝜆𝜆 + 194
𝑐𝑐4(𝜆𝜆) = −𝜆𝜆3 + 3𝜆𝜆2 − 3𝜆𝜆 − 95

 

Thus, equation (9) is obtained and it is valid for 1 ≤ 𝑥𝑥 ≤4. 

Example 3. Solving for S7o(5, 4, 3). Applying equation (9), we have 

 𝑆𝑆7𝑜𝑜(5, 4, 3) = �𝑗𝑗3 = 53 + 63 + 73 + 83 + 93
11

𝑗𝑗=5

+ 103 + 113

= [8(5) + 28](4)3 + [6(5)2 − 18(5) − 127](4)2 + [2(5)3 − 9(5)2
+ 13(5) + 194](4) + [−(5)3 + 3(5)2 − 3(5) − 95]

     = 4256. 

Secondly, the following result is also quick from equation (4). 
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Theorem 2.2. Let 𝜆𝜆, 𝑥𝑥, and 𝑝𝑝 be natural numbers. If 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = ∑ 𝑗𝑗𝑝𝑝𝜆𝜆+2𝑥𝑥−1
𝑗𝑗=𝜆𝜆  and 𝑥𝑥 = 𝑡𝑡

2
≤

𝑝𝑝 + 1 and 𝑡𝑡 ≡ 0(𝑚𝑚𝑜𝑜𝑚𝑚 2), then 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = ∑ 𝑚𝑚𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗𝑝𝑝
𝑗𝑗=0   where 𝑚𝑚𝑗𝑗(𝜆𝜆) ∈ ℤ[𝜆𝜆]. 

Proof. To prove the above Theorem 2.2, we simulate 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) for the following values of 
𝑥𝑥 = 1, 2, . . . ,𝑝𝑝,𝑝𝑝 + 1. Then, we get 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 1,𝑝𝑝) = ∑ 𝑚𝑚𝑗𝑗(𝜆𝜆)1𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝1

𝑗𝑗=0
𝑝𝑝
𝑗𝑗=0

𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 2,𝑝𝑝) = ∑ 𝑚𝑚𝑗𝑗(𝜆𝜆)2𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝3
𝑗𝑗=0

𝑝𝑝
𝑗𝑗=0

𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 3,𝑝𝑝) = ∑ 𝑚𝑚𝑗𝑗(𝜆𝜆)3𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝5
𝑗𝑗=0

𝑝𝑝
𝑗𝑗=0

. . .

. . .

. . .
𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆,𝑝𝑝 + 1, 𝑝𝑝) = ∑ 𝑚𝑚𝑗𝑗(𝜆𝜆)(𝑝𝑝 + 1)𝑗𝑗 = ∑ (𝜆𝜆 + 𝑗𝑗)𝑝𝑝2𝑝𝑝+1

𝑗𝑗=0
𝑝𝑝
𝑗𝑗=0

(10) 

The number of unknowns and the number of equations is equal in the system of equation (10) 
that has no linear dependence subsist. Hence, it has a unique solution. Solving the system, we 
get 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑚𝑚0(𝜆𝜆) = 𝑃𝑃0(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑚𝑚1(𝜆𝜆) = 𝑃𝑃1(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑚𝑚2(𝜆𝜆) = 𝑃𝑃2(𝜆𝜆) ∈ ℤ[𝜆𝜆]

.

.

.
𝑚𝑚𝑝𝑝(𝜆𝜆) = 𝑃𝑃𝑝𝑝(𝜆𝜆) ∈ ℤ[𝜆𝜆]

(11) 

where 𝑝𝑝, 𝜆𝜆 ∈ ℤ+. Again, we have to note that the simulation is from 𝑥𝑥 = 1 to  𝑥𝑥 = 𝑝𝑝 + 1, 
thus, the polynomial 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = ∑ 𝑚𝑚𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗𝑝𝑝

𝑗𝑗=0  only works for 1 ≤ 𝑥𝑥 ≤ 𝑝𝑝 + 1. And this 
completes the proof.        

Some illustrations and examples (for 𝑝𝑝 = 1, 2, 3) are provided below to exemplify the above 
Theorem. 

Illustration 2.4. Considering that 𝑝𝑝 = 1 and 𝑡𝑡 is an even natural number, then, we have 

𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 1) = � 𝑗𝑗
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

= (2𝜆𝜆 + 5)𝑥𝑥 − 4 (12) 

where 1 ≤ 𝑥𝑥 ≤ 2.In solving equation (12), we let 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 1) = 𝑚𝑚1(𝜆𝜆)𝑥𝑥 + 𝑚𝑚2(𝜆𝜆), where 
𝑚𝑚1(𝜆𝜆) ∈ ℤ[𝜆𝜆] and 𝑚𝑚2(𝜆𝜆) ∈ ℤ[𝜆𝜆]. In view of Theorem 2.2, simulate 𝑥𝑥 from 1 to 2 and we obtain 
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⎩
⎪
⎨

⎪
⎧ 𝑚𝑚1(𝜆𝜆) + 𝑚𝑚2(𝜆𝜆) = �𝑗𝑗

𝜆𝜆+1

𝑗𝑗=𝜆𝜆

2𝑚𝑚1(𝜆𝜆) + 𝑚𝑚2(𝜆𝜆) = �𝑗𝑗
𝜆𝜆+3

𝑗𝑗=𝜆𝜆

Clearly, we get 

�
𝑚𝑚1(𝜆𝜆) = 2𝜆𝜆 + 5
𝑚𝑚2(𝜆𝜆) = −4  

Hence, we obtain equation (12) that is valid for 1 ≤ 𝑥𝑥 ≤ 2. 

Example 4. Solving for S4e(2, 2, 1). Applying equation (12), we get 

 𝑆𝑆4𝑒𝑒(2, 2, 1) = �𝑗𝑗 = 14.
5

𝑗𝑗=2

 

Illustration 2.5. Considering that 𝑝𝑝 = 2 and 𝑡𝑡 is an even positive integer, then, we get   

    𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 2) = � 𝑗𝑗2 = (4𝜆𝜆 + 14)𝑥𝑥2 + (2𝜆𝜆2 − 2𝜆𝜆 − 29)𝑥𝑥 + 16
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

                    (13)   

where 1 ≤ 𝑥𝑥 ≤3. To solve equation (13) above, assume that 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 2) = 𝑚𝑚1(𝜆𝜆)𝑥𝑥2 +
𝑚𝑚2(𝜆𝜆)𝑥𝑥 + 𝑚𝑚3(𝜆𝜆), where 𝑚𝑚1(𝜆𝜆),𝑚𝑚2(𝜆𝜆),𝑚𝑚3(𝜆𝜆) ∈ ℤ[𝜆𝜆]. So, by Theorem 2.2, we simulate 
𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 2) for the following values of variable 𝑥𝑥 = 1, 2, 3, and obtain   

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑚𝑚1(𝜆𝜆) + 𝑚𝑚2(𝜆𝜆) +  𝑚𝑚3(𝜆𝜆) = �𝑗𝑗2

𝜆𝜆+1

𝑗𝑗=𝜆𝜆

4𝑚𝑚1(𝜆𝜆) + 2𝑚𝑚2(𝜆𝜆) + 𝑚𝑚3(𝜆𝜆) = �𝑗𝑗2
𝜆𝜆+3

𝑗𝑗=𝜆𝜆

9𝑚𝑚1(𝜆𝜆) + 3𝑚𝑚2(𝜆𝜆) + 𝑚𝑚3(𝜆𝜆) = �𝑗𝑗2
𝜆𝜆+5

𝑗𝑗=𝜆𝜆

 

In that case, we get 

�
𝑚𝑚1(𝜆𝜆) = 4𝜆𝜆 + 14

𝑚𝑚2(𝜆𝜆) = 2𝜆𝜆2 − 2𝜆𝜆 − 29
𝑚𝑚3(𝜆𝜆) = 16

 

Hence, it is clear that equation (13) holds and works for 1 ≤ 𝑥𝑥 ≤3. 

Example 5. Solving for  S4e(2, 2, 2). Applying equation (13), we have 
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 𝑆𝑆4𝑒𝑒(2, 2, 2) = �𝑗𝑗2 = 22 + 32 + 42 + 52
5

𝑗𝑗=2

 

= [4(2) + 14](2)2 + [2(2)2 − 2(2) − 29](2) + 16 
    = 54. 

Illustration 2.6. Consider 𝑝𝑝 = 3 and 𝑡𝑡 is an even positive integer, then, we get 

       𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 3) = � 𝑗𝑗3
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆
= (8𝜆𝜆 + 36)𝑥𝑥3 + (6𝜆𝜆2 − 6𝜆𝜆 − 139)𝑥𝑥2 + (2𝜆𝜆3 − 3𝜆𝜆2 + 𝜆𝜆 + 200)𝑥𝑥
− 96                (14)   

where 1 ≤ 𝑥𝑥 ≤4. To solve for equation (14),  assume that 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 3) = 𝑚𝑚1(𝜆𝜆)𝑥𝑥3 + 𝑚𝑚2(𝜆𝜆)𝑥𝑥2 +
𝑚𝑚3(𝜆𝜆)𝑥𝑥 + 𝑚𝑚4(𝜆𝜆), where 𝑚𝑚1(𝜆𝜆),𝑚𝑚2(𝜆𝜆),𝑚𝑚3(𝜆𝜆),𝑚𝑚4(𝜆𝜆) ∈ ℤ[𝜆𝜆]. In the position of Theorem 2.2, we 
simulate 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 3) for  𝑥𝑥 = 1, 2, 3, 4,  and we obtain the following system of equation 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧ 𝑚𝑚1(𝜆𝜆) + 𝑚𝑚2(𝜆𝜆) +  𝑚𝑚3(𝜆𝜆) + 𝑚𝑚4(𝜆𝜆) = �𝑗𝑗3

𝜆𝜆+1

𝑗𝑗=𝜆𝜆

8𝑚𝑚1(𝜆𝜆) + 4𝑚𝑚2(𝜆𝜆) + 2𝑚𝑚3(𝜆𝜆) + 𝑚𝑚4(𝜆𝜆) = �𝑗𝑗3
𝜆𝜆+3

𝑗𝑗=𝜆𝜆

27𝑚𝑚1(𝜆𝜆) + 9𝑚𝑚2(𝜆𝜆) + 3𝑚𝑚3(𝜆𝜆) + 𝑚𝑚4(𝜆𝜆) = �𝑗𝑗3
𝜆𝜆+5

𝑗𝑗=𝜆𝜆

64𝑚𝑚1(𝜆𝜆) + 16𝑚𝑚2(𝜆𝜆) + 4𝑚𝑚3(𝜆𝜆) + 𝑚𝑚4(𝜆𝜆) = �𝑗𝑗3
𝜆𝜆+7

𝑗𝑗=𝜆𝜆

By elimination, we get the following solution 

⎩
⎨

⎧
𝑚𝑚1(𝜆𝜆) = 8𝜆𝜆 + 36

𝑚𝑚2(𝜆𝜆) = 6𝜆𝜆2 − 6𝜆𝜆 − 139
𝑚𝑚3(𝜆𝜆) = 2𝜆𝜆3 − 3𝜆𝜆2 + 𝜆𝜆 + 200

𝑚𝑚4(𝜆𝜆) = −96

 

Hence, equation (14) holds and is valid for 1 ≤ 𝑥𝑥 ≤4. 

Example 6. Consider  S8e(5, 4, 3). Then, applying equation (14), we have 

 𝑆𝑆8𝑒𝑒(5, 4, 3) = �𝑗𝑗3
12

𝑗𝑗=5

= 5984. 
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III. CONCLUSION

In this paper, a new polynomial using the simulation method has been developed for 
power sums' solution, that is,  𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝), and 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) where 𝜆𝜆, 𝑥𝑥, 𝑝𝑝 ∈ ℤ+ and works for 1 ≤
𝑥𝑥 ≤ 𝑝𝑝 + 1. Conclusively, as 𝑝𝑝 increases, then the number of terms also increases, i.e., 𝑝𝑝 → ∞ 
implies 𝑥𝑥, 𝑡𝑡 → ∞, and 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) → ∞ and 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) → ∞. Moreover, for all values of 
𝜆𝜆, 𝑥𝑥,𝑝𝑝 ∈ ℤ+, we have 𝑆𝑆𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝)< 𝑆𝑆𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝). As for future research, one may consider 
evaluating the mathematical characteristics (in view of calculus) of the developed polynomial 
solution for power sums to assess the efficacy of this current paper. 
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