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Abstract. In this paper, we introduce the definition of generalized non-braid graph of
a given ring. Let R be a ring and let k be a natural number. By generalized braider of
R we mean the set Bk(R) := {x ∈ R | ∀y ∈ R, (xyx)k = (yxy)k}. The generalized
non-braid graph of R, denoted by Gk(ΥR), is a simple undirected graph with vertex set
R\Bk(R) and two distinct vertices x and y are adjacent if and only if (xyx)k ̸= (yxy)k.
In particular, we investigate some properties of generalized non-braid graph Gk(ΥZn)
of the ring Zn.
Keywords: Graph, Ring, Non-Braid.

I. INTRODUCTION

Study involving algebraic structure and graph theory introduced by Cayley [1] has led to
many fascinating results and questions. There are many research papers on assigning a graph to
a ring or a group and investigation of algebraic properties of the associated graph. For example,
Abdollahi, et. al. [2] introduced the definition of non-commuting graph of a group, see also [3,
4, 5, 6, 7]. As generalization of non-commuting graph of a group, Erfanian, et.al [8] introduced
the definition of generalization of the non-commuting graph of a group via a normal subgroup.
Erfanian, et. al [9] introduced the definition of non-commuting graph of a ring, see also [10, 11].

Motivated by the concept of non-commuting graph of a ring, Cahyati, et.al [12] defined
non-braid graph of ring and explored some properties on completeness and connectedness of
non-braid graph of Zn. In [12] it is also introduced a braider of ring R, denoted by B(R), as
the set of all x ∈ R where xyx = yxy for all y ∈ R. The non-braid graph of R, denoted by
ΥR, is defined as a simple graph with a vertex set R\B(R) and two distinct vertices x and y
are adjacent if and only if xyx ̸= yxy. In this paper we generalize B(R) into Bk(R), that is
the set of all x ∈ R where (xyx)k = (yxy)k for all y ∈ R and call Bk(R) as the generalized
braider of ring R. Then the generalized non-braid graphs of R, denoted by Gk(ΥR), is defined
as a simple undirected graph with a vertex set R\Bk(R) and two distinct vertices x and y are
adjacent if and only if (xyx)k ̸= (yxy)k. In this paper we present some basic properties of
generalized non-braid graph of any ring. Particularly, we give some properties of generalized
non-braid graph of ring Zn including some sufficient conditions for the graph to be multipartite
graph.

II. RESULTS

For this section, we give the following definition.
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Definition 1 Let R be a finite ring and let k be a natural number. Let

Bk(R) = {x ∈ R | ∀y ∈ R, (xyx)k = (yxy)k}.

We call Bk(R) as the generalized braider of R. The generalized non-braid graphs of R, denoted
by Gk(ΥR), is a simple undirected graph with a vertex set R\Bk(R) and two distinct vertices
x and y are adjacent, denoted by x ∼ y, if and only if (xyx)k ̸= (yxy)k.

Example 1 Let Z7 be a ring. For k = 4, the generalized braider of Z7 is B4(Z7) = {0} and we
have,

x y (xyx)4 (yxy)4 Adjacency
1 2 2 4 1 ∼ 2

1 3 4 2 1 ∼ 3

1 4 4 2 1 ∼ 4

1 5 2 4 1 ∼ 5

1 6 1 1 1 ̸∼ 6

2 3 2 4 2 ∼ 3

2 4 2 4 2 ∼ 4

2 5 1 1 2 ̸∼ 5

2 6 4 2 2 ∼ 6

3 4 1 1 3 ̸∼ 4

3 5 4 2 3 ∼ 5

3 6 2 4 3 ∼ 6

4 5 4 2 4 ∼ 5

4 6 2 4 4 ∼ 6

5 6 4 2 5 ∼ 6

Table 1. Adjacency of elements in Z7\B4(Z7).

From Table 1. we have V (G4(ΥZ7)) = Z7\B4(Z7) = {1, 2, 3, 4, 5, 6} and set of all edges
in graph G4(ΥZ7) is

{(1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 6), (3, 5), (3, 6), (4, 5), (4, 6), (5, 6)}.

Figure 1. is graph G4(ΥZ7).

Let k ≥ 2 be a natural number and let fk be a function from R \ Bk(R) to R defined by
fk(x) = xk, for all x ∈ R. Let f−1

k (y) for arbitrary y be the set {x ∈ R|f(x) = y}, i.e f−1
k (y)

is the preimage set of y respect to fk. Let I(R) be the set of all idempotent elements of R, i.e.
I = {x ∈ R|r2 = r}. Let also U(R) be the set of all unit elements of R, and Rk = {xk|x ∈ R}.
By definition of fk, it follows that fk(R \Bk(R)) ⊆ Rk.

Remark 1 The only idempotent elements of any integral domain R are 0 and 1.
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Figure 1. Graph G4(ΥZ7
)

Lemma 1 Let R be a commutative ring with identity element 1. If 1 ∈ Bk(R), then Rk ⊆ I(R).

Proof. Let xk ∈ Rk be arbitrary. Since 1 ∈ Bk(R), then

xk = (1x1)k = (x1x)k = (x2)k = (xk)2.

So, xk ∈ I(R). Hence, Rk ⊆ I(R).

Example 2 Consider ring Z6. Clearly, B2(Z6) = {0, 1, 2, 3, 4, 5}. Moreover, 1 ∈ B2(Z6) and
Z2

6 = {1, 3, 4} ⊆ I(Z6) = {1, 3, 4}.

Theorem 1 For arbitrary commutative ring R with identity element it follows that the graph
Gk(ΥR) is a null graph if and only if Rk ⊆ I(R).

Proof. (⇒) Since Gk(ΥR) is null graph, then for any x ∈ R\Bk(R), (1x1)k = (x1x)k. There-
fore 1 ∈ Bk(R). By Lemma 1, Rk ⊆ I(R).

(⇐) Let x, y ∈ V (Gk(ΥR)) be arbitrary. We have xk, yk ∈ Rk ⊆ I(R). Moreover,
(xk)2 = xk and (yk)2 = yk. Note that

(xyx)k = xkykxk = (xk)2yk = xkyk = xk(yk)2 = ykxkyk = (yxy)k.

Hence, x ≁ y and therefore Gk(ΥR) is a null graph.

Example 3 Let Z7 be a ring. We get Z4
7 = {0, 1, 2, 4} and I7 = {0, 1}. Since Z4

7 ⊈ I7,
then G4(ΥZ7) is not null graph. For all x ∈ Z7, (0x0)4 = (x0x)4. Hence 0 ∈ B4(Z7). The
generalized non-braid graph of Z7 is illustrated by Figure 1.

Lemma 2 Let R be a commutative ring with identity element 1. Arbitrary vertex x ∈ R\Bk(R)
is adjacent to 1 if and only if xk is not an idempotent element.

Proof. It is clear that x is adjacent to 1 if only if

(x1x)k ̸= (1x1)k ⇐⇒ (x2)k ̸= xk ⇐⇒ (xk)2 ̸= xk.

The following result is a direct consequence of Lemma 2.
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Corollary 1 Let R be any commutative ring with identity element 1. Let S be the set

S = {x ∈ R \Bk(R)|xk ̸∈ I(R)} ∪ {1}.

Then the subgraph of Gk(ΥR) induced by S has diameter that is at most 2 and moreover
contains a star as its subgraph.

Example 4 Consider commutative ring Z6. We have V (Z6 \ B3(Z6)) = {1, 2, 4, 5} and the
idempotent elements of Z6 are 1, 3, 4 and 2

3
= 2, 5

3
= 5. Since 23 and 5

3 both are not idempo-
tent elements, by Lemma 2 we have 2 ∼ 1 and 5 ∼ 1 as we can see at Figure 2.

1 2

5 4

Figure 2. Graph G3(ΥZ6
).

Lemma 3 Let R be a commutative ring with identity element and k ≥ 2 be a natural number.
Let x ∈ Bk(R). If a ∈ f−1

k (x), then a ∈ Bk(R).

Proof. Let a ∈ f−1
k (x), i.e. fk(a) = ak = x. Since x ∈ Bk(R), then each y ∈ R satisfies

xyx = yxy. Hence for any y ∈ fk(R \ Bk(R)) we obtain xyx = yxy. It follows that for all
b ∈ f−1

k (y),

xyx = yxy

akbkak = bkakbk

(aba)k = (bab)k

implying a ∈ Bk(R).

Theorem 2 Let R be a commutative ring and a ∈ fk(R\Bk(R)). If x, y ∈ f−1
k (a), then x ≁ y.

Proof. Let x, y ∈ f−1
k (a). Then f(x) = xk = a and f(y) = yk = a. Note that

a3 = a3

xkykxk = ykxkyk

(xyx)k = (yxy)k.

It means, x ≁ y.

From [12] we know that every two unit elements are adjacent in the non-braid graph of a
ring. For generalized non-braid graph we have the following.
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Theorem 3 Let R be a commutative ring with identity element. If a, b ∈ fk(R \ Bk(R)) are
two distinct unit elements of R, then for any x ∈ f−1

k (a) and y ∈ f−1
k (b) where x, y /∈ Bk(R)

it follows that x is adjacent to y.

Proof. Let x ∈ f−1
k (a) and y ∈ f−1

k (b) be arbitrary element where x, y /∈ Bk(R). Then we
have fk(x) = xk = a and fk(y) = yk = b. Since a and b are distinct unit elements, then

aba ̸= bab

xkykxk ̸= ykxkyk

(xyx)k ̸= (yxy)k.

Thus x ∼ y.

Theorem 4 Let R be a finite commutative ring with identity element. If

a1, . . . , am ∈ fk(R\Bk(R))

are distinct unit element of R and |f−1
k (ai) \ Bk(R)| = ri for i ∈ {1, 2, . . . ,m}, then the

induced subgraph of Gk(ΥR) by ∪f−1
k (xi) \Bk(R), i ∈ {1, 2, . . . ,m} is a complete m-partite

graph Kr1,...,rm .

Proof. It is clear that for i ̸= j, i, j ∈ {1, 2, . . . ,m}, we get f−1
k (xi) ∩ f−1

k (xj) = ∅. By
Theorem 2, all elements in f−1

k (ai) are not adjacent. By Theorem II., for all i ̸= j, for all
x ∈ f−1

k (xi), and for all b ∈ f−1
k (xj), it follows that a ∼ b. Hence, the induced subgraph of

Gk(ΥR) by ∪f−1
k (xi) \Bk(R), i ∈ {1, 2, . . . ,m} is a complete m-partite graph Kr1,...,rm .

2.1. Generalized non-braid graph of ring Zn

In this section, we discuss the generalized non-braid graphs of ring Zn. Let In be the set
of all idempotent elements of Zn and Un be the set of all unit elements of Zn.

Lemma 4 If k = l(n − 1) for some l ∈ N and n is a prime number, then Zk
n = {0, 1}. In

particular, if x ̸= 0, then xk = 1.

Proof. It is obvious that {0, 1} ⊆ Zk
n. Let xk ∈ Zk

n. If x = 0, then xk = 0 ∈ {0, 1}. If
x ̸= 0, by Fermat Little Theorem, it follows that xn−1 = 1 mod n, i.e. xn−1 = 1. Hence,
xk = (xn−1)l = 1. Hence, Zk

n ⊆ {0, 1}.

Example 5 Let n = 5 and l = 1, then we have k = l(n − 1) = 1(5 − 1) = 4. Note that for
nonzero element in Z5 we have 1

4
= 2

4
= 3

4
= 4

4
= 1. It means Z4

5 = {0, 1}.

The three following Propositions show some properties on generalized braider of ring Zn

whenever n is a prime number.

Proposition 1 If n is a prime number, then

Bk(Zn) =

{
Zn, k = l(n− 1)

{0}, otherwise
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for some l ∈ N.

Proof. The assertion is true for n = 2. For n ≥ 3 we will see two cases:

1. Case k = l(n− 1), for some l ∈ N.
It is obvious that Bk(Zn) ⊆ Zn. Let x ∈ Zn. If x = 0, then it is obvious that 0 ∈ Bk(Zn).
If x ̸= 0, then by Lemma 4 it follows that xk = 1. For any y ∈ Zn, by Lemma 4, yk = 1
if y ̸= 0. If y = 0, then (xyx)k = 0 = (yxy)k. If y ̸= 0, then

(xyx)k = xkykxk = 1 = ykxkyk = (yxy)k.

So, x ∈ Bk(Zn). Hence, Bk(Zn) = Zn.

2. Case k ̸= l(n− 1) for all l ∈ N.
Let x ∈ Bk(Zn). Assume that x ̸= 0. If xk ̸= 1, then clearly xk is not an idempotent
element. Otherwise, we have a contradiction. Note that for 1 ∈ Zn we have

(x1x)k ̸= (1x1)k

meaning x /∈ Bk(Zn), a contradiction. If xk = 1 then xk is idempotent element, and
therefore x = 1. Let yk be any element in Zk

n that is not idempotent. It follows that

yk ̸= y2k ⇐⇒ (1y1)k ̸= (y1y)k.

Hence, x /∈ Bk(Zn) and again we have a contradiction. Therefore we conclude that
Bk(Zn) = {0}.

Example 6 Let n = 7 and l = 3, then we have k = l(n − 1) = 3(7 − 1) = 18. For any
x, y ∈ Z7 where x ̸= 0 and y ̸= 0 we have x18 = y18 = 1. It follows that (xyx)18 = (yxy)18.
Hence B18(Z7) = Z7.

As a corollary, we have

Corollary 2 For any prime number n and for any natural number k, if k = l(n − 1) for some
natural number l then the graph Gk(ΥR) is an empty graph.

Example 7 Note that B18(Z7) = Z7. It means Gk(ΥR) = ∅.

Lemma 5 If n = 2p for a prime number p ≥ 3, then Zk
n ⊆ In for all k in the form k = l(p− 1)

for some l ∈ N.

Proof. Let xk ∈ Zk
n be arbitrary. Since p is prime, then by Fermat Little Theorem, xp−1 = 1

mod p. Hence, there exist s ∈ Z such that xp−1 = ps + 1 and we have 2xp−1 = 2ps + 2
implying 2xp−1 = 2 if and only if 2(xp−1 − 1) = 0. Therefore xp−1 − 1 = 0 or xp−1 − 1 = p.
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If xp−1 − 1 = 0, then

xp−1 = 1

xp = x

x2p−p = x

x2p−pxp−2 = x xp−2

x2p−2 = xp−1

(xp−1)2 = xp−1.

If xp−1 − 1 = p, then

xp−1 = p+ 1

(xp−1)2 = (p+ 1)2

= p2 + 2p+ 1

= p2 + 1.

If p ≥ 3 is prime number, then p− 1 is even number. It means p−1
2

∈ Z. Note that

p2 =
p− 1

2
2p+ p.

Therefore, p2 = p. Hence (xp−1)2 = p + 1 = xp−1. and thus (xl(p−1))2 = xl(p−1). Therefore,
xk ∈ In.

Proposition 2 If n = 2p, for a prime number p ≥ 3, then Bk(Zn) = Zn for any k = l(p − 1)
for some l ∈ N.

Proof. It is obvious that Bk(Zn) ⊆ Zn. Let x ∈ Zn. By Lemma 5, xk is idempotent element.
Let y ∈ Zn be arbitrary. By Lemma 5, yk is also idempotent element. Since every two idempo-
tent elements are not adjacent, then x is not adjacent to y. Hence, x ∈ Bk(Zn).

Example 8 Let p = 5 and l = 2, then k = l(p−1) = 2(5−1) = 8 and n = 2p = 10. Note that
for any x, y ∈ Z10, x

k and yk are idempotent elements. Therefore, we have B8(Z10) = Z10.

In the following lemmas, we give some properties on adjacency particularly for ring Zn

Lemma 6 Let x, y ∈ V (Gk(ΥZn)). If n|xy, then the vertices x and y are not adjacent.

Proof. Since n|xy, there is a ∈ Zn such that xy = na. Note that xy = yx = 0, so

(xyx)k = (0x)k = 0 = (0)k = (0y)k = (xyy)k = (yxy)k.

So, the vertices x and y are not adjacent.

Lemma 7 Let x, y, z ∈ V (Gk(ΥZn)). If xy = 0 and z = x + y, then vertices x and y are not
adjacent to vertex z.

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 5 NO. 2 (NOV 2022) 

Available online at www.jfma.math.fsm.undip.ac.id

p-ISSN: 2621-6019 e-ISSN: 2621-6035https://doi.org/10.14710/jfma.v5i2.14152 198



Proof. Let x, y, z ∈ V (Gk(ΥZn)), where xy = 0 and z = x+ y. Note that

(xzx)k = (x(x+ y)x)k = ((x2 + xy)x)k = ((x2 + 0)x)k = (x2x)k = (x3)k

and

(zxz)k = ((x+ y)x(x+ y))k = ((x+ y)(x2 + xy))k

= ((x+ y)(x2 + 0))k

= ((x+ y)(x2))k

= ((x3 + x2y)k

= (x3 + xxy)k

= (x3 + x0)k

= (x3)k.

Thus, (xzx)k = (zxz)k. In similar way, it can be proved that (yzy)k = (zyz)k Hence,
vertex y is not adjacent to vertex z. Therefore x and y are not adjacent to vertex z.

Proposition 3 Let x, z ∈ V (Gk(ΥZ2m)) where m is an odd number. If z = x +m, then vertex
z is not adjacent to vertex x.

Proof. Let x, z ∈ V (Gk(ΥZ2m)) where z = x + m. To show that vertex z is not adjacent to
vertex x, we consider the following two cases.
Case 1. For x = 2a where a ∈ Z, we have (xm)k = 0, and by Lemma 7, z is not adjacent to
vertex x
Case 2. For x = 2a+ 1 where a ∈ Z. Note that

(zxz)k = ((x+m)x(x+m))k

= ((x+m)(x2 + xm))k

= ((x+m)(x2 + 2a+ 1m))k

= ((x+m)(x2 +m))k

= (x3 + xm+ x2m+m2)k

= (x3 + 2a+ 1m+ x2m+m2)k

= (x3 +m+ x2m+m2)k

= (x3 + x2m)k

= ((x2 + xm)x)k

= (x(x+m)x)k

= (xzx)k.

From Case 1 and Case 2, we conclude that vertex z is not adjacent to vertex x
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III. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

We have obtained some results on the generalized non-braid graph, such as some condi-
tions for vertices to be adjacent, and necessary and sufficient condition for the graph to be a
null graph. But however the structure of the graph in general is not yet obtained. This will be
an interesting object for further research in the future.
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