

# **GENERALIZED NON-BRAID GRAPHS OF RINGS**

Era Setya Cahyati<sup>1\*</sup>, Rambu Maya Imung Maharani<sup>2</sup>, Sri Nurhayati<sup>3</sup>, Yeni Susanti<sup>4</sup>

<sup>1,2,3,4</sup> Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia Email: <sup>1</sup>era.setya.cahyati@mail.ugm.ac.id, <sup>2</sup>rambu.imung95@mail.ugm.ac.id, <sup>3</sup>srinurhayati.sn77@mail.ugm.ac.id, <sup>4</sup>yeni\_math@ugm.ac.id \*Corresponding author

Abstract. In this paper, we introduce the definition of generalized non-braid graph of a given ring. Let R be a ring and let k be a natural number. By generalized braider of R we mean the set  $B^k(R) := \{x \in R \mid \forall y \in R, (xyx)^k = (yxy)^k\}$ . The generalized non-braid graph of R, denoted by  $G_k(\Upsilon_R)$ , is a simple undirected graph with vertex set  $R \setminus B^k(R)$  and two distinct vertices x and y are adjacent if and only if  $(xyx)^k \neq (yxy)^k$ . In particular, we investigate some properties of generalized non-braid graph  $G_k(\Upsilon_{\mathbb{Z}_n})$ of the ring  $\mathbb{Z}_n$ .

Keywords: Graph, Ring, Non-Braid.

#### I. INTRODUCTION

Study involving algebraic structure and graph theory introduced by Cayley [1] has led to many fascinating results and questions. There are many research papers on assigning a graph to a ring or a group and investigation of algebraic properties of the associated graph. For example, Abdollahi, et. al. [2] introduced the definition of non-commuting graph of a group, see also [3, 4, 5, 6, 7]. As generalization of non-commuting graph of a group via a normal subgroup. Erfanian, et. al [9] introduced the definition of non-commuting graph of a group via a normal subgroup.

Motivated by the concept of non-commuting graph of a ring, Cahyati, et.al [12] defined non-braid graph of ring and explored some properties on completeness and connectedness of non-braid graph of  $\mathbb{Z}_n$ . In [12] it is also introduced a braider of ring R, denoted by B(R), as the set of all  $x \in R$  where xyx = yxy for all  $y \in R$ . The non-braid graph of R, denoted by  $\Upsilon_R$ , is defined as a simple graph with a vertex set  $R \setminus B(R)$  and two distinct vertices x and yare adjacent if and only if  $xyx \neq yxy$ . In this paper we generalize B(R) into  $B^k(R)$ , that is the set of all  $x \in R$  where  $(xyx)^k = (yxy)^k$  for all  $y \in R$  and call  $B^k(R)$  as the generalized braider of ring R. Then the generalized non-braid graphs of R, denoted by  $G_k(\Upsilon_R)$ , is defined as a simple undirected graph with a vertex set  $R \setminus B^k(R)$  and two distinct vertices x and y are adjacent if and only if  $(xyx)^k \neq (yxy)^k$ . In this paper we present some basic properties of generalized non-braid graph of any ring. Particularly, we give some properties of generalized non-braid graph of ring  $\mathbb{Z}_n$  including some sufficient conditions for the graph to be multipartite graph.

#### **II. RESULTS**

For this section, we give the following definition.



**Definition 1** Let R be a finite ring and let k be a natural number. Let

 $B^{k}(R) = \{ x \in R \mid \forall y \in R, \ (xyx)^{k} = (yxy)^{k} \}.$ 

We call  $B^k(R)$  as the generalized braider of R. The generalized non-braid graphs of R, denoted by  $G_k(\Upsilon_R)$ , is a simple undirected graph with a vertex set  $R \setminus B^k(R)$  and two distinct vertices x and y are adjacent, denoted by  $x \sim y$ , if and only if  $(xyx)^k \neq (yxy)^k$ .

**Example 1** Let  $\mathbb{Z}_7$  be a ring. For k = 4, the generalized braider of  $\mathbb{Z}_7$  is  $B^4(\mathbb{Z}_7) = \{\overline{0}\}$  and we have,

| $\overline{x}$ | $\overline{y}$ | $(\overline{xyx})^4$ | $(\overline{yxy})^4$ | Adjacency                            |
|----------------|----------------|----------------------|----------------------|--------------------------------------|
| 1              | $\overline{2}$ | $\overline{2}$       | $\overline{4}$       | $\overline{1} \sim \overline{2}$     |
| 1              | $\overline{3}$ | $\overline{4}$       | $\overline{2}$       | $\overline{1} \sim \overline{3}$     |
| 1              | $\overline{4}$ | $\overline{4}$       | $\overline{2}$       | $\overline{1} \sim \overline{4}$     |
| 1              | $\overline{5}$ | $\overline{2}$       | $\overline{4}$       | $\overline{1}\sim\overline{5}$       |
| 1              | $\overline{6}$ | ī                    | ī                    | $\overline{1} \not\sim \overline{6}$ |
| $\overline{2}$ | $\overline{3}$ | $\overline{2}$       | 4                    | $\overline{2} \sim \overline{3}$     |
| $\overline{2}$ | $\overline{4}$ | $\overline{2}$       | $\overline{4}$       | $\overline{2} \sim \overline{4}$     |
| $\overline{2}$ | $\overline{5}$ | 1                    | Ī                    | $\overline{2} \not\sim \overline{5}$ |
| $\overline{2}$ | $\overline{6}$ | 4                    | $\overline{2}$       | $\overline{2} \sim \overline{6}$     |
| 3              | $\overline{4}$ | 1                    | ī                    | $\overline{3} \not\sim \overline{4}$ |
| 3              | $\overline{5}$ | $\overline{4}$       | $\overline{2}$       | $\overline{3} \sim \overline{5}$     |
| $\overline{3}$ | $\overline{6}$ | $\overline{2}$       | $\overline{4}$       | $\overline{3} \sim \overline{6}$     |
| $\overline{4}$ | $\overline{5}$ | 4                    | $\overline{2}$       | $\overline{4} \sim \overline{5}$     |
| $\overline{4}$ | $\overline{6}$ | $\overline{2}$       | $\overline{4}$       | $\overline{4} \sim \overline{6}$     |
| $\overline{5}$ | $\overline{6}$ | $\overline{4}$       | $\overline{2}$       | $\overline{5} \sim \overline{6}$     |

**Table 1.** Adjacency of elements in  $\mathbb{Z}_7 \setminus B^4(\mathbb{Z}_7)$ .

From Table 1. we have  $V(G_4(\Upsilon_{\mathbb{Z}_7})) = \mathbb{Z}_7 \setminus B^4(\mathbb{Z}_7) = \{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$  and set of all edges in graph  $G_4(\Upsilon_{\mathbb{Z}_7})$  is

 $\{(\overline{1},\overline{2}),(\overline{1},\overline{3}),(\overline{1},\overline{4}),(\overline{1},\overline{5}),(\overline{2},\overline{3}),(\overline{2},\overline{4}),(\overline{2},\overline{6}),(\overline{3},\overline{5}),(\overline{3},\overline{6}),(\overline{4},\overline{5}),(\overline{4},\overline{6}),(\overline{5},\overline{6})\}.$ 

Figure 1. is graph  $G_4(\Upsilon_{\mathbb{Z}_7})$ .

Let  $k \ge 2$  be a natural number and let  $f_k$  be a function from  $R \setminus B^k(R)$  to R defined by  $f_k(x) = x^k$ , for all  $x \in R$ . Let  $f_k^{-1}(y)$  for arbitrary y be the set  $\{x \in R | f(x) = y\}$ , i.e  $f_k^{-1}(y)$  is the preimage set of y respect to  $f_k$ . Let I(R) be the set of all idempotent elements of R, i.e.  $I = \{x \in R | r^2 = r\}$ . Let also U(R) be the set of all unit elements of R, and  $R^k = \{x^k | x \in R\}$ . By definition of  $f_k$ , it follows that  $f_k(R \setminus B^k(R)) \subseteq R^k$ .

**Remark 1** The only idempotent elements of any integral domain R are 0 and 1.





**Figure 1.** Graph  $G_4(\Upsilon_{\mathbb{Z}_7})$ 

**Lemma 1** Let R be a commutative ring with identity element 1. If  $1 \in B^k(R)$ , then  $R^k \subseteq I(R)$ .

*Proof.* Let  $x^k \in \mathbb{R}^k$  be arbitrary. Since  $1 \in B^k(\mathbb{R})$ , then

$$x^{k} = (1x1)^{k} = (x1x)^{k} = (x^{2})^{k} = (x^{k})^{2}.$$

So,  $x^k \in I(R)$ . Hence,  $R^k \subseteq I(R)$ .

**Example 2** Consider ring  $\mathbb{Z}_6$ . Clearly,  $B^2(\mathbb{Z}_6) = \{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$ . Moreover,  $\overline{1} \in B^2(\mathbb{Z}_6)$  and  $\mathbb{Z}_6^2 = \{\overline{1}, \overline{3}, \overline{4}\} \subseteq I(\mathbb{Z}_6) = \{\overline{1}, \overline{3}, \overline{4}\}$ .

**Theorem 1** For arbitrary commutative ring R with identity element it follows that the graph  $G_k(\Upsilon_R)$  is a null graph if and only if  $R^k \subseteq I(R)$ .

*Proof.* ( $\Rightarrow$ ) Since  $G_k(\Upsilon_R)$  is null graph, then for any  $x \in R \setminus B^k(R)$ ,  $(1x1)^k = (x1x)^k$ . Therefore  $1 \in B^k(R)$ . By Lemma 1,  $R^k \subseteq I(R)$ .

 $(\Leftarrow)$  Let  $x, y \in V(G_k(\Upsilon_R))$  be arbitrary. We have  $x^k, y^k \in R^k \subseteq I(R)$ . Moreover,  $(x^k)^2 = x^k$  and  $(y^k)^2 = y^k$ . Note that

$$(xyx)^{k} = x^{k}y^{k}x^{k} = (x^{k})^{2}y^{k} = x^{k}y^{k} = x^{k}(y^{k})^{2} = y^{k}x^{k}y^{k} = (yxy)^{k}.$$

Hence,  $x \nsim y$  and therefore  $G_k(\Upsilon_R)$  is a null graph.

**Example 3** Let  $\mathbb{Z}_7$  be a ring. We get  $\mathbb{Z}_7^4 = \{\overline{0}, \overline{1}, \overline{2}, \overline{4}\}$  and  $I_7 = \{\overline{0}, \overline{1}\}$ . Since  $\mathbb{Z}_7^4 \notin I_7$ , then  $G_4(\Upsilon_{\mathbb{Z}_7})$  is not null graph. For all  $\overline{x} \in \mathbb{Z}_7$ ,  $(\overline{0}\overline{x}\overline{0})^4 = (\overline{x}\overline{0}\overline{x})^4$ . Hence  $\overline{0} \in B^4(\mathbb{Z}_7)$ . The generalized non-braid graph of  $\mathbb{Z}_7$  is illustrated by Figure 1.

**Lemma 2** Let R be a commutative ring with identity element 1. Arbitrary vertex  $x \in R \setminus B^k(R)$  is adjacent to 1 if and only if  $x^k$  is not an idempotent element.

*Proof.* It is clear that x is adjacent to 1 if only if

$$(x1x)^k \neq (1x1)^k \iff (x^2)^k \neq x^k \iff (x^k)^2 \neq x^k.$$

The following result is a direct consequence of Lemma 2.



**Corollary 1** Let *R* be any commutative ring with identity element 1. Let *S* be the set

$$S = \{ x \in R \setminus B^k(R) | x^k \notin I(R) \} \cup \{1\}.$$

Then the subgraph of  $G_k(\Upsilon_R)$  induced by S has diameter that is at most 2 and moreover contains a star as its subgraph.

**Example 4** Consider commutative ring  $\mathbb{Z}_6$ . We have  $V(\mathbb{Z}_6 \setminus B^3(\mathbb{Z}_6)) = \{\overline{1}, \overline{2}, \overline{4}, \overline{5}\}$  and the idempotent elements of  $\mathbb{Z}_6$  are  $\overline{1}, \overline{3}, \overline{4}$  and  $\overline{2}^3 = \overline{2}, \overline{5}^3 = \overline{5}$ . Since  $\overline{2}^3$  and  $\overline{5}^3$  both are not idempotent elements, by Lemma 2 we have  $\overline{2} \sim \overline{1}$  and  $\overline{5} \sim \overline{1}$  as we can see at Figure 2.



**Figure 2.** Graph  $G_3(\Upsilon_{\mathbb{Z}_6})$ .

**Lemma 3** Let R be a commutative ring with identity element and  $k \ge 2$  be a natural number. Let  $x \in B^k(R)$ . If  $a \in f_k^{-1}(x)$ , then  $a \in B^k(R)$ .

*Proof.* Let  $a \in f_k^{-1}(x)$ , i.e.  $f_k(a) = a^k = x$ . Since  $x \in B^k(R)$ , then each  $y \in R$  satisfies xyx = yxy. Hence for any  $y \in f_k(R \setminus B^k(R))$  we obtain xyx = yxy. It follows that for all  $b \in f_k^{-1}(y)$ ,

$$\begin{aligned} xyx &= yxy\\ a^k b^k a^k &= b^k a^k b^k\\ (aba)^k &= (bab)^k \end{aligned}$$

implying  $a \in B^k(R)$ .

**Theorem 2** Let R be a commutative ring and  $a \in f_k(R \setminus B^k(R))$ . If  $x, y \in f_k^{-1}(a)$ , then  $x \nsim y$ .

*Proof.* Let  $x, y \in f_k^{-1}(a)$ . Then  $f(x) = x^k = a$  and  $f(y) = y^k = a$ . Note that

$$a^{3} = a^{3}$$
$$x^{k}y^{k}x^{k} = y^{k}x^{k}y^{k}$$
$$(xyx)^{k} = (yxy)^{k}$$

It means,  $x \nsim y$ .

From [12] we know that every two unit elements are adjacent in the non-braid graph of a ring. For generalized non-braid graph we have the following.



**Theorem 3** Let R be a commutative ring with identity element. If  $a, b \in f_k(R \setminus B^k(R))$  are two distinct unit elements of R, then for any  $x \in f_k^{-1}(a)$  and  $y \in f_k^{-1}(b)$  where  $x, y \notin B^k(R)$  it follows that x is adjacent to y.

*Proof.* Let  $x \in f_k^{-1}(a)$  and  $y \in f_k^{-1}(b)$  be arbitrary element where  $x, y \notin B^k(R)$ . Then we have  $f_k(x) = x^k = a$  and  $f_k(y) = y^k = b$ . Since a and b are distinct unit elements, then

$$aba \neq bab$$
$$x^{k}y^{k}x^{k} \neq y^{k}x^{k}y^{k}$$
$$(xyx)^{k} \neq (yxy)^{k}.$$

Thus  $x \sim y$ .

**Theorem 4** Let R be a finite commutative ring with identity element. If

$$a_1,\ldots,a_m \in f_k(R \setminus B^k(R))$$

are distinct unit element of R and  $|f_k^{-1}(a_i) \setminus B^k(R)| = r_i$  for  $i \in \{1, 2, ..., m\}$ , then the induced subgraph of  $G_k(\Upsilon_R)$  by  $\cup f_k^{-1}(x_i) \setminus B^k(R)$ ,  $i \in \{1, 2, ..., m\}$  is a complete *m*-partite graph  $K_{r_1,...,r_m}$ .

*Proof.* It is clear that for  $i \neq j, i, j \in \{1, 2, ..., m\}$ , we get  $f_k^{-1}(x_i) \cap f_k^{-1}(x_j) = \emptyset$ . By Theorem 2, all elements in  $f_k^{-1}(a_i)$  are not adjacent. By Theorem II., for all  $i \neq j$ , for all  $x \in f_k^{-1}(x_i)$ , and for all  $b \in f_k^{-1}(x_j)$ , it follows that  $a \sim b$ . Hence, the induced subgraph of  $G_k(\Upsilon_R)$  by  $\cup f_k^{-1}(x_i) \setminus B^k(R)$ ,  $i \in \{1, 2, ..., m\}$  is a complete *m*-partite graph  $K_{r_1,...,r_m}$ .  $\Box$ 

#### **2.1.** Generalized non-braid graph of ring $\mathbb{Z}_n$

In this section, we discuss the generalized non-braid graphs of ring  $\mathbb{Z}_n$ . Let  $I_n$  be the set of all idempotent elements of  $\mathbb{Z}_n$  and  $U_n$  be the set of all unit elements of  $\mathbb{Z}_n$ .

**Lemma 4** If k = l(n-1) for some  $l \in \mathbb{N}$  and n is a prime number, then  $\mathbb{Z}_n^k = \{\overline{0}, \overline{1}\}$ . In particular, if  $\overline{x} \neq \overline{0}$ , then  $\overline{x}^k = \overline{1}$ .

*Proof.* It is obvious that  $\{\overline{0},\overline{1}\} \subseteq \mathbb{Z}_n^k$ . Let  $\overline{x}^k \in \mathbb{Z}_n^k$ . If  $\overline{x} = \overline{0}$ , then  $\overline{x}^k = \overline{0} \in \{\overline{0},\overline{1}\}$ . If  $x \neq \overline{0}$ , by Fermat Little Theorem, it follows that  $x^{n-1} = 1 \mod n$ , i.e.  $\overline{x}^{n-1} = \overline{1}$ . Hence,  $\overline{x}^k = (\overline{x}^{n-1})^l = \overline{1}$ . Hence,  $\mathbb{Z}_n^k \subseteq \{\overline{0},\overline{1}\}$ .

**Example 5** Let n = 5 and l = 1, then we have k = l(n-1) = 1(5-1) = 4. Note that for nonzero element in  $\mathbb{Z}_5$  we have  $\overline{1}^4 = \overline{2}^4 = \overline{3}^4 = \overline{4}^4 = \overline{1}$ . It means  $\mathbb{Z}_5^4 = \{\overline{0}, \overline{1}\}$ .

The three following Propositions show some properties on generalized braider of ring  $\mathbb{Z}_n$  whenever n is a prime number.

**Proposition 1** If n is a prime number, then

$$B^{k}(\mathbb{Z}_{n}) = \begin{cases} \mathbb{Z}_{n}, & k = l(n-1)\\ \{\overline{0}\}, & otherwise \end{cases}$$



for some  $l \in \mathbb{N}$ .

*Proof.* The assertion is true for n = 2. For  $n \ge 3$  we will see two cases:

Case k = l(n − 1), for some l ∈ N.
 It is obvious that B<sup>k</sup>(Z<sub>n</sub>) ⊆ Z<sub>n</sub>. Let x̄ ∈ Z<sub>n</sub>. If x̄ = 0, then it is obvious that 0 ∈ B<sup>k</sup>(Z<sub>n</sub>).
 If x̄ ≠ 0, then by Lemma 4 it follows that x̄<sup>k</sup> = 1. For any ȳ ∈ Z<sub>n</sub>, by Lemma 4, ȳ<sup>k</sup> = 1
 if ȳ ≠ 0. If ȳ = 0, then (xyx)<sup>k</sup> = 0 = (yxy)<sup>k</sup>. If ȳ ≠ 0, then

$$(\overline{xyx})^k = \overline{x}^k \overline{y}^k \overline{x}^k = \overline{1} = \overline{y}^k \overline{x}^k \overline{y}^k = (\overline{yxy})^k$$

So,  $\overline{x} \in B^k(\mathbb{Z}_n)$ . Hence,  $B^k(\mathbb{Z}_n) = \mathbb{Z}_n$ .

2. Case  $k \neq l(n-1)$  for all  $l \in \mathbb{N}$ .

Let  $\overline{x} \in B^k(\mathbb{Z}_n)$ . Assume that  $\overline{x} \neq \overline{0}$ . If  $\overline{x}^k \neq \overline{1}$ , then clearly  $\overline{x}^k$  is not an idempotent element. Otherwise, we have a contradiction. Note that for  $\overline{1} \in \mathbb{Z}_n$  we have

$$(\overline{x}\overline{1}\overline{x})^k \neq (\overline{1}\overline{x}\overline{1})^k$$

meaning  $\overline{x} \notin B^k(\mathbb{Z}_n)$ , a contradiction. If  $\overline{x}^k = 1$  then  $\overline{x}^k$  is idempotent element, and therefore  $\overline{x} = \overline{1}$ . Let  $\overline{y}^k$  be any element in  $\mathbb{Z}_n^k$  that is not idempotent. It follows that

$$\overline{y}^k \neq \overline{y}^{2k} \iff (\overline{1y1})^k \neq (\overline{y1y})^k.$$

Hence,  $\overline{x} \notin B^k(\mathbb{Z}_n)$  and again we have a contradiction. Therefore we conclude that  $B^k(\mathbb{Z}_n) = \{\overline{0}\}.$ 

**Example 6** Let n = 7 and l = 3, then we have k = l(n - 1) = 3(7 - 1) = 18. For any  $\overline{x}, \overline{y} \in \mathbb{Z}_7$  where  $\overline{x} \neq 0$  and  $\overline{y} \neq 0$  we have  $\overline{x}^{18} = \overline{y}^{18} = \overline{1}$ . It follows that  $(\overline{xyx})^{18} = (\overline{yxy})^{18}$ . Hence  $B^{18}(\mathbb{Z}_7) = \mathbb{Z}_7$ .

As a corollary, we have

**Corollary 2** For any prime number n and for any natural number k, if k = l(n - 1) for some natural number l then the graph  $G_k(\Upsilon_R)$  is an empty graph.

**Example 7** Note that  $B^{18}(\mathbb{Z}_7) = \mathbb{Z}_7$ . It means  $G_k(\Upsilon_R) = \emptyset$ .

**Lemma 5** If n = 2p for a prime number  $p \ge 3$ , then  $\mathbb{Z}_n^k \subseteq I_n$  for all k in the form k = l(p-1) for some  $l \in \mathbb{N}$ .

*Proof.* Let  $\overline{x}^k \in \mathbb{Z}_n^k$  be arbitrary. Since p is prime, then by Fermat Little Theorem,  $x^{p-1} = 1 \mod p$ . Hence, there exist  $s \in \mathbb{Z}$  such that  $x^{p-1} = ps + 1$  and we have  $2x^{p-1} = 2ps + 2 \mod \overline{2x^{p-1}} = \overline{2}$  if and only if  $\overline{2}(\overline{x}^{p-1} - \overline{1}) = \overline{0}$ . Therefore  $\overline{x}^{p-1} - \overline{1} = \overline{0}$  or  $\overline{x}^{p-1} - \overline{1} = \overline{p}$ .



If  $\overline{x}^{p-1} - \overline{1} = \overline{0}$ , then

$$\overline{x}^{p-1} = \overline{1}$$

$$\overline{x}^p = \overline{x}$$

$$\overline{x}^{2p-p} = \overline{x}$$

$$\overline{x}^{2p-p} \overline{x}^{p-2} = \overline{x} \ \overline{x}^{p-2}$$

$$\overline{x}^{2p-2} = \overline{x}^{p-1}$$

$$(\overline{x}^{p-1})^2 = \overline{x}^{p-1}.$$

If  $\overline{x}^{p-1} - \overline{1} = \overline{p}$ , then

$$\overline{x}^{p-1} = \overline{p} + \overline{1}$$
$$(\overline{x}^{p-1})^2 = (\overline{p} + \overline{1})^2$$
$$= \overline{p}^2 + 2\overline{p} + \overline{1}$$
$$= \overline{p}^2 + \overline{1}.$$

If  $p \ge 3$  is prime number, then p-1 is even number. It means  $\frac{p-1}{2} \in \mathbb{Z}$ . Note that

$$p^2 = \frac{p-1}{2} \, 2p + p.$$

Therefore,  $\overline{p}^2 = \overline{p}$ . Hence  $(\overline{x}^{p-1})^2 = \overline{p} + \overline{1} = \overline{x}^{p-1}$ . and thus  $(x^{l(p-1)})^2 = x^{l(p-1)}$ . Therefore,  $x^k \in I_n$ .

**Proposition 2** If n = 2p, for a prime number  $p \ge 3$ , then  $B^k(\mathbb{Z}_n) = \mathbb{Z}_n$  for any k = l(p-1) for some  $l \in \mathbb{N}$ .

*Proof.* It is obvious that  $B^k(\mathbb{Z}_n) \subseteq \mathbb{Z}_n$ . Let  $\overline{x} \in \mathbb{Z}_n$ . By Lemma 5,  $\overline{x}^k$  is idempotent element. Let  $\overline{y} \in \mathbb{Z}_n$  be arbitrary. By Lemma 5,  $\overline{y}^k$  is also idempotent element. Since every two idempotent elements are not adjacent, then  $\overline{x}$  is not adjacent to  $\overline{y}$ . Hence,  $\overline{x} \in B^k(\mathbb{Z}_n)$ .

**Example 8** Let p = 5 and l = 2, then k = l(p-1) = 2(5-1) = 8 and n = 2p = 10. Note that for any  $x, y \in \mathbb{Z}_{10}$ ,  $x^k$  and  $y^k$  are idempotent elements. Therefore, we have  $B^8(\mathbb{Z}_{10}) = \mathbb{Z}_{10}$ .

In the following lemmas, we give some properties on adjacency particularly for ring  $\mathbb{Z}_n$ 

**Lemma 6** Let  $\overline{x}, \overline{y} \in V(G_k(\Upsilon_{\mathbb{Z}_n}))$ . If n | xy, then the vertices  $\overline{x}$  and  $\overline{y}$  are not adjacent.

*Proof.* Since n|xy, there is  $a \in \mathbb{Z}_n$  such that xy = na. Note that  $\overline{xy} = \overline{yx} = \overline{0}$ , so

$$(\overline{xyx})^k = (\overline{0}\overline{x})^k = \overline{0} = (\overline{0})^k = (\overline{0y})^k = (\overline{xyy})^k = (\overline{yxy})^k.$$

So, the vertices  $\overline{x}$  and  $\overline{y}$  are not adjacent.

**Lemma 7** Let  $\overline{x}, \overline{y}, \overline{z} \in V(G_k(\Upsilon_{\mathbb{Z}_n}))$ . If  $\overline{xy} = \overline{0}$  and  $\overline{z} = \overline{x} + \overline{y}$ , then vertices x and y are not adjacent to vertex  $\overline{z}$ .



*Proof.* Let  $\overline{x}, \overline{y}, \overline{z} \in V(G_k(\Upsilon_{\mathbb{Z}_n}))$ , where  $\overline{xy} = \overline{0}$  and  $\overline{z} = \overline{x} + \overline{y}$ . Note that

$$(\overline{xzx})^k = (\overline{x}(\overline{x} + \overline{y})\overline{x})^k = ((\overline{x}^2 + \overline{xy})\overline{x})^k = ((\overline{x}^2 + \overline{0})\overline{x})^k = (\overline{x}^2\overline{x})^k = (\overline{x}^3)^k$$

and

$$(\overline{zxz})^k = ((\overline{x} + \overline{y})\overline{x}(\overline{x} + \overline{y}))^k = ((\overline{x} + \overline{y})(\overline{x}^2 + \overline{xy}))^k$$
$$= ((\overline{x} + \overline{y})(\overline{x}^2 + \overline{0}))^k$$
$$= ((\overline{x} + \overline{y})(\overline{x}^2))^k$$
$$= ((\overline{x}^3 + \overline{x}^2\overline{y})^k$$
$$= (\overline{x}^3 + \overline{xxy})^k$$
$$= (\overline{x}^3 + \overline{x0})^k$$
$$= (\overline{x}^3)^k.$$

Thus,  $(\overline{xzx})^k = (\overline{zxz})^k$ . In similar way, it can be proved that  $(\overline{yzy})^k = (\overline{zyz})^k$  Hence, vertex  $\overline{y}$  is not adjacent to vertex  $\overline{z}$ . Therefore  $\overline{x}$  and  $\overline{y}$  are not adjacent to vertex  $\overline{z}$ .

**Proposition 3** Let  $\overline{x}, \overline{z} \in V(G_k(\Upsilon_{\mathbb{Z}_{2m}}))$  where *m* is an odd number. If  $\overline{z} = \overline{x} + \overline{m}$ , then vertex  $\overline{z}$  is not adjacent to vertex  $\overline{x}$ .

*Proof.* Let  $\overline{x}, \overline{z} \in V(G_k(\Upsilon_{\mathbb{Z}_2m}))$  where  $\overline{z} = \overline{x} + \overline{m}$ . To show that vertex  $\overline{z}$  is not adjacent to vertex  $\overline{x}$ , we consider the following two cases.

Case 1. For  $\overline{x} = \overline{2a}$  where  $a \in \mathbb{Z}$ , we have  $(\overline{xm})^k = \overline{0}$ , and by Lemma 7,  $\overline{z}$  is not adjacent to vertex  $\overline{x}$ 

Case 2. For  $\overline{x} = \overline{2a+1}$  where  $a \in \mathbb{Z}$ . Note that

$$(\overline{zxz})^{k} = ((\overline{x} + \overline{m})\overline{x}(\overline{x} + \overline{m}))^{k}$$

$$= ((\overline{x} + \overline{m})(\overline{x}^{2} + \overline{x}\overline{m}))^{k}$$

$$= ((\overline{x} + \overline{m})(\overline{x}^{2} + \overline{2a + 1}\overline{m}))^{k}$$

$$= ((\overline{x} + \overline{m})(\overline{x}^{2} + \overline{m}))^{k}$$

$$= (\overline{x}^{3} + \overline{x}\overline{m} + \overline{x}^{2}\overline{m} + \overline{m}^{2})^{k}$$

$$= (\overline{x}^{3} + \overline{2a + 1}\overline{m} + \overline{x}^{2}\overline{m} + \overline{m}^{2})^{k}$$

$$= (\overline{x}^{3} + \overline{m} + \overline{x}^{2}\overline{m} + \overline{m}^{2})^{k}$$

$$= ((\overline{x}^{2} + \overline{x}\overline{m})\overline{x})^{k}$$

$$= ((\overline{x}^{2} + \overline{x}\overline{m})\overline{x})^{k}$$

$$= (\overline{x}(\overline{x} + \overline{m})\overline{x})^{k}$$

From Case 1 and Case 2, we conclude that vertex  $\overline{z}$  is not adjacent to vertex  $\overline{x}$ 



# **III. CONCLUSIONS AND FUTURE RESEARCH DIRECTION**

We have obtained some results on the generalized non-braid graph, such as some conditions for vertices to be adjacent, and necessary and sufficient condition for the graph to be a null graph. But however the structure of the graph in general is not yet obtained. This will be an interesting object for further research in the future.

## ACKNOWLEDGEMENT

We appreciate the reviewers for their comments and suggestions so that we can improve this manuscript.

## REFERENCES

- [1] Cayley, "Desiderata and suggestions: No. 2. the theory of groups: Graphical representation," *American Journal of Mathematics*, vol. 1, no. 2, pp. 174–176, 1878. [Online]. Available: http://www.jstor.org/stable/2369306
- [2] A. Abdollahi, S. Akbari, and H. Maimani, "Non-commuting graph of a group," *Journal of Algebra*, vol. 298, no. 2, pp. 468–492, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002186930600113X
- [3] J. C. M. Pezzott, "Groups whose non-commuting graph on a transversal is planar or toroidal," *Journal of Algebra and its Applications*, vol. 21, no. 10, 2022.
- [4] S. Mukhtar, M. Salman, A. D. Maden, and M. Ur Rehman, "Metric properties of noncommuting graph associated to two groups," *International Journal of Foundations of Computer Science*, vol. 33, no. 6-7, 2022.
- [5] M. Salman, T. Noreen, M. U. Rehman, J. Cao, and M. Z. Abbas, "Non-commuting graph of the dihedral group determined by hosoya parameters," *Alexandria Engineering Journal*, vol. 61, no. 5, p. 3709 3717, 2022.
- [6] F. Ali, B. A. Rather, M. Sarfraz, A. Ullah, N. Fatima, and W. K. Mashwani, "Certain topological indices of non-commuting graphs for finite non-abelian groups," *Molecules*, vol. 27, no. 18, 2022.
- [7] J. Kalita and S. Paul, "On the spectra of non-commuting graphs of certain class of groups," *Asian-European Journal of Mathematics*, 2022.
- [8] F. Kakeri, A. Erfanian, and F. Mansoori, "Generalization of the non-commuting graph of a group via a normal subgroup," *ScienceAsia*, vol. 42, p. 231, 06 2016.
- [9] A. Erfanian, K. Khashyarmanesh, and K. Nafar, "Non-commuting graphs of rings," *Discrete Mathematics, Algorithms and Applications*, vol. 07, no. 03, p. 1550027, 2015.
- [10] S. Akbari, M. Ghandehari, M. Hadian, and A. Mohammadian, "On commuting graphs of semisimple rings," *Linear Algebra and its Applications*, vol. 390, pp. 345–355, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0024379504002393



- [11] J. Dutta, D. K. Basnet, and R. K. Nath, "On generalized non-commuting graph of a finite ring," *Algebra Colloquium*, vol. 25, no. 1, p. 149 – 160, 2018.
- [12] E. Cahyati, R. Fadhiilah, A. Candra, and I. Wijayanti, "Non-braid graph of ring  $\mathbb{Z}_n$ ," *Jurnal Teori dan Aplikasi Matematika*, vol. 6, no. 1, pp. 106–116, 2021.