GENERALIZED NON-BRAID GRAPHS OF RINGS

Era Setya Cahyati ${ }^{1 *}$, Rambu Maya Imung Maharani ${ }^{2}$, Sri Nurhayati ${ }^{3}$, Yeni Susanti ${ }^{4}$
${ }^{1,2,3,4}$ Department of Mathematics, Gadjah Mada University, Yogyakarta, Indonesia Email: ${ }^{1}$ era.setya.cahyati@mail.ugm.ac.id, ${ }^{2}$ rambu.imung95@mail.ugm.ac.id,
${ }^{3}$ srinurhayati.sn77@mail.ugm.ac.id, ${ }^{4}$ yeni_math@ugm.ac.id
*Corresponding author

Abstract

In this paper, we introduce the definition of generalized non-braid graph of a given ring. Let R be a ring and let k be a natural number. By generalized braider of R we mean the set $B^{k}(R):=\left\{x \in R \mid \forall y \in R,(x y x)^{k}=(y x y)^{k}\right\}$. The generalized non-braid graph of R, denoted by $G_{k}\left(\Upsilon_{R}\right)$, is a simple undirected graph with vertex set $R \backslash B^{k}(R)$ and two distinct vertices x and y are adjacent if and only if $(x y x)^{k} \neq(y x y)^{k}$. In particular, we investigate some properties of generalized non-braid graph $G_{k}\left(\Upsilon_{\mathbb{Z}_{n}}\right)$ of the ring \mathbb{Z}_{n}.

Keywords: Graph, Ring, Non-Braid.

I. INTRODUCTION

Study involving algebraic structure and graph theory introduced by Cayley [1] has led to many fascinating results and questions. There are many research papers on assigning a graph to a ring or a group and investigation of algebraic properties of the associated graph. For example, Abdollahi, et. al. [2] introduced the definition of non-commuting graph of a group, see also [3, $4,5,6,7]$. As generalization of non-commuting graph of a group, Erfanian, et.al [8] introduced the definition of generalization of the non-commuting graph of a group via a normal subgroup. Erfanian, et. al [9] introduced the definition of non-commuting graph of a ring, see also [10, 11].

Motivated by the concept of non-commuting graph of a ring, Cahyati, et.al [12] defined non-braid graph of ring and explored some properties on completeness and connectedness of non-braid graph of \mathbb{Z}_{n}. In [12] it is also introduced a braider of ring R, denoted by $B(R)$, as the set of all $x \in R$ where $x y x=y x y$ for all $y \in R$. The non-braid graph of R, denoted by Υ_{R}, is defined as a simple graph with a vertex set $R \backslash B(R)$ and two distinct vertices x and y are adjacent if and only if $x y x \neq y x y$. In this paper we generalize $B(R)$ into $B^{k}(R)$, that is the set of all $x \in R$ where $(x y x)^{k}=(y x y)^{k}$ for all $y \in R$ and call $B^{k}(R)$ as the generalized braider of ring R. Then the generalized non-braid graphs of R, denoted by $G_{k}\left(\Upsilon_{R}\right)$, is defined as a simple undirected graph with a vertex set $R \backslash B^{k}(R)$ and two distinct vertices x and y are adjacent if and only if $(x y x)^{k} \neq(y x y)^{k}$. In this paper we present some basic properties of generalized non-braid graph of any ring. Particularly, we give some properties of generalized non-braid graph of ring \mathbb{Z}_{n} including some sufficient conditions for the graph to be multipartite graph.

II. RESULTS

For this section, we give the following definition.

Definition 1 Let R be a finite ring and let k be a natural number. Let

$$
B^{k}(R)=\left\{x \in R \mid \forall y \in R,(x y x)^{k}=(y x y)^{k}\right\} .
$$

We call $B^{k}(R)$ as the generalized braider of R. The generalized non-braid graphs of R, denoted by $G_{k}\left(\Upsilon_{R}\right)$, is a simple undirected graph with a vertex set $R \backslash B^{k}(R)$ and two distinct vertices x and y are adjacent, denoted by $x \sim y$, if and only if $(x y x)^{k} \neq(y x y)^{k}$.

Example 1 Let \mathbb{Z}_{7} be a ring. For $k=4$, the generalized braider of \mathbb{Z}_{7} is $B^{4}\left(\mathbb{Z}_{7}\right)=\{\overline{0}\}$ and we have,

\bar{x}	\bar{y}	$(\overline{x y x})^{4}$	$(\overline{y x y})^{4}$	Adjacency
$\overline{1}$	$\overline{2}$	$\overline{2}$	$\overline{4}$	$\overline{1} \sim \overline{2}$
$\overline{1}$	$\overline{3}$	$\overline{4}$	$\overline{2}$	$\overline{1} \sim \overline{3}$
$\overline{1}$	$\overline{4}$	$\overline{4}$	$\overline{2}$	$\overline{1} \sim \overline{4}$
$\overline{1}$	$\overline{5}$	$\overline{2}$	$\overline{4}$	$\overline{1} \sim \overline{5}$
$\overline{1}$	$\overline{6}$	$\overline{1}$	$\overline{1}$	$\overline{1} \nsim \overline{6}$
$\overline{2}$	$\overline{3}$	$\overline{2}$	$\overline{4}$	$\overline{2} \sim \overline{3}$
$\overline{2}$	$\overline{4}$	$\overline{2}$	$\overline{4}$	$\overline{2} \sim \overline{4}$
$\overline{2}$	$\overline{5}$	$\overline{1}$	$\overline{1}$	$\overline{2} \nsim \overline{5}$
$\overline{2}$	$\overline{6}$	$\overline{4}$	$\overline{2}$	$\overline{2} \sim \overline{6}$
$\overline{3}$	$\overline{4}$	$\overline{1}$	$\overline{1}$	$\overline{3} \nsim \overline{4}$
$\overline{3}$	$\overline{5}$	$\overline{4}$	$\overline{2}$	$\overline{3} \sim \overline{5}$
$\overline{3}$	$\overline{6}$	$\overline{2}$	$\overline{4}$	$\overline{3} \sim \overline{6}$
$\overline{4}$	$\overline{5}$	$\overline{4}$	$\overline{2}$	$\overline{4} \sim \overline{5}$
$\overline{4}$	$\overline{6}$	$\overline{2}$	$\overline{4}$	$\overline{4} \sim \overline{6}$
$\overline{5}$	$\overline{6}$	$\overline{4}$	$\overline{2}$	$\overline{5} \sim \overline{6}$

Table 1. Adjacency of elements in $\mathbb{Z}_{7} \backslash B^{4}\left(\mathbb{Z}_{7}\right)$.

From Table 1. we have $V\left(G_{4}\left(\Upsilon_{\mathbb{Z}_{7}}\right)\right)=\mathbb{Z}_{7} \backslash B^{4}\left(\mathbb{Z}_{7}\right)=\{\overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}, \overline{6}\}$ and set of all edges in graph $G_{4}\left(\Upsilon_{\mathbb{Z}_{7}}\right)$ is

$$
\{(\overline{1}, \overline{2}),(\overline{1}, \overline{3}),(\overline{1}, \overline{4}),(\overline{1}, \overline{5}),(\overline{2}, \overline{3}),(\overline{2}, \overline{4}),(\overline{2}, \overline{6}),(\overline{3}, \overline{5}),(\overline{3}, \overline{6}),(\overline{4}, \overline{5}),(\overline{4}, \overline{6}),(\overline{5}, \overline{6})\} .
$$

Figure 1. is graph $G_{4}\left(\Upsilon_{\mathbb{Z}_{7}}\right)$.
Let $k \geq 2$ be a natural number and let f_{k} be a function from $R \backslash B^{k}(R)$ to R defined by $f_{k}(x)=x^{k}$, for all $x \in R$. Let $f_{k}^{-1}(y)$ for arbitrary y be the set $\{x \in R \mid f(x)=y\}$, i.e $f_{k}^{-1}(y)$ is the preimage set of y respect to f_{k}. Let $I(R)$ be the set of all idempotent elements of R, i.e. $I=\left\{x \in R \mid r^{2}=r\right\}$. Let also $U(R)$ be the set of all unit elements of R, and $R^{k}=\left\{x^{k} \mid x \in R\right\}$. By definition of f_{k}, it follows that $f_{k}\left(R \backslash B^{k}(R)\right) \subseteq R^{k}$.

Remark 1 The only idempotent elements of any integral domain R are 0 and 1 .

Figure 1. Graph $G_{4}\left(\Upsilon_{\mathbb{Z}_{7}}\right)$

Lemma 1 Let R be a commutative ring with identity element 1 . If $1 \in B^{k}(R)$, then $R^{k} \subseteq I(R)$.
Proof. Let $x^{k} \in R^{k}$ be arbitrary. Since $1 \in B^{k}(R)$, then

$$
x^{k}=(1 x 1)^{k}=(x 1 x)^{k}=\left(x^{2}\right)^{k}=\left(x^{k}\right)^{2} .
$$

So, $x^{k} \in I(R)$. Hence, $R^{k} \subseteq I(R)$.
Example 2 Consider ring \mathbb{Z}_{6}. Clearly, $B^{2}\left(\mathbb{Z}_{6}\right)=\{\overline{0}, \overline{1}, \overline{2}, \overline{3}, \overline{4}, \overline{5}\}$. Moreover, $\overline{1} \in B^{2}\left(\mathbb{Z}_{6}\right)$ and $\mathbb{Z}_{6}^{2}=\{\overline{1}, \overline{3}, \overline{4}\} \subseteq I\left(\mathbb{Z}_{6}\right)=\{\overline{1}, \overline{3}, \overline{4}\}$.

Theorem 1 For arbitrary commutative ring R with identity element it follows that the graph $G_{k}\left(\Upsilon_{R}\right)$ is a null graph if and only if $R^{k} \subseteq I(R)$.

Proof. (\Rightarrow) Since $G_{k}\left(\Upsilon_{R}\right)$ is null graph, then for any $x \in R \backslash B^{k}(R),(1 x 1)^{k}=(x 1 x)^{k}$. Therefore $1 \in B^{k}(R)$. By Lemma $1, R^{k} \subseteq I(R)$.
(\Leftarrow) Let $x, y \in V\left(G_{k}\left(\Upsilon_{R}\right)\right)$ be arbitrary. We have $x^{k}, y^{k} \in R^{k} \subseteq I(R)$. Moreover, $\left(x^{k}\right)^{2}=x^{k}$ and $\left(y^{k}\right)^{2}=y^{k}$. Note that

$$
(x y x)^{k}=x^{k} y^{k} x^{k}=\left(x^{k}\right)^{2} y^{k}=x^{k} y^{k}=x^{k}\left(y^{k}\right)^{2}=y^{k} x^{k} y^{k}=(y x y)^{k} .
$$

Hence, $x \nsim y$ and therefore $G_{k}\left(\Upsilon_{R}\right)$ is a null graph.
Example 3 Let \mathbb{Z}_{7} be a ring. We get $\mathbb{Z}_{7}^{4}=\{\overline{0}, \overline{1}, \overline{2}, \overline{4}\}$ and $I_{7}=\{\overline{0}, \overline{1}\}$. Since $\mathbb{Z}_{7}^{4} \nsubseteq I_{7}$, then $G_{4}\left(\Upsilon_{\mathbb{Z}_{7}}\right)$ is not null graph. For all $\bar{x} \in \mathbb{Z}_{7},(\overline{0} \bar{x} \overline{0})^{4}=(\bar{x} \overline{0} \bar{x})^{4}$. Hence $\overline{0} \in B^{4}\left(\mathbb{Z}_{7}\right)$. The generalized non-braid graph of \mathbb{Z}_{7} is illustrated by Figure 1.

Lemma 2 Let R be a commutative ring with identity element 1 . Arbitrary vertex $x \in R \backslash B^{k}(R)$ is adjacent to 1 if and only if x^{k} is not an idempotent element.

Proof. It is clear that x is adjacent to 1 if only if

$$
(x 1 x)^{k} \neq(1 x 1)^{k} \Longleftrightarrow\left(x^{2}\right)^{k} \neq x^{k} \Longleftrightarrow\left(x^{k}\right)^{2} \neq x^{k}
$$

The following result is a direct consequence of Lemma 2.

Corollary 1 Let R be any commutative ring with identity element 1 . Let S be the set

$$
S=\left\{x \in R \backslash B^{k}(R) \mid x^{k} \notin I(R)\right\} \cup\{1\} .
$$

Then the subgraph of $G_{k}\left(\Upsilon_{R}\right)$ induced by S has diameter that is at most 2 and moreover contains a star as its subgraph.

Example 4 Consider commutative ring \mathbb{Z}_{6}. We have $V\left(\mathbb{Z}_{6} \backslash B^{3}\left(\mathbb{Z}_{6}\right)\right)=\{\overline{1}, \overline{2}, \overline{4}, \overline{5}\}$ and the idempotent elements of \mathbb{Z}_{6} are $\overline{1}, \overline{3}, \overline{4}$ and $\overline{2}^{3}=\overline{2}, \overline{5}^{3}=\overline{5}$. Since $\overline{2}^{3}$ and $\overline{5}^{3}$ both are not idempotent elements, by Lemma 2 we have $\overline{2} \sim \overline{1}$ and $\overline{5} \sim \overline{1}$ as we can see at Figure 2.

Figure 2. Graph $G_{3}\left(\Upsilon_{\mathbb{Z}_{6}}\right)$.

Lemma 3 Let R be a commutative ring with identity element and $k \geq 2$ be a natural number. Let $x \in B^{k}(R)$. If $a \in f_{k}^{-1}(x)$, then $a \in B^{k}(R)$.

Proof. Let $a \in f_{k}^{-1}(x)$, i.e. $f_{k}(a)=a^{k}=x$. Since $x \in B^{k}(R)$, then each $y \in R$ satisfies $x y x=y x y$. Hence for any $y \in f_{k}\left(R \backslash B^{k}(R)\right)$ we obtain $x y x=y x y$. It follows that for all $b \in f_{k}^{-1}(y)$,

$$
\begin{aligned}
x y x & =y x y \\
a^{k} b^{k} a^{k} & =b^{k} a^{k} b^{k} \\
(a b a)^{k} & =(b a b)^{k}
\end{aligned}
$$

implying $a \in B^{k}(R)$.
Theorem 2 Let R be a commutative ring and $a \in f_{k}\left(R \backslash B^{k}(R)\right)$. If $x, y \in f_{k}^{-1}(a)$, then $x \nsim y$.
Proof. Let $x, y \in f_{k}^{-1}(a)$. Then $f(x)=x^{k}=a$ and $f(y)=y^{k}=a$. Note that

$$
\begin{aligned}
a^{3} & =a^{3} \\
x^{k} y^{k} x^{k} & =y^{k} x^{k} y^{k} \\
(x y x)^{k} & =(y x y)^{k} .
\end{aligned}
$$

It means, $x \nsim y$.
From [12] we know that every two unit elements are adjacent in the non-braid graph of a ring. For generalized non-braid graph we have the following.

Theorem 3 Let R be a commutative ring with identity element. If $a, b \in f_{k}\left(R \backslash B^{k}(R)\right)$ are two distinct unit elements of R, then for any $x \in f_{k}^{-1}(a)$ and $y \in f_{k}^{-1}(b)$ where $x, y \notin B^{k}(R)$ it follows that x is adjacent to y.

Proof. Let $x \in f_{k}^{-1}(a)$ and $y \in f_{k}^{-1}(b)$ be arbitrary element where $x, y \notin B^{k}(R)$. Then we have $f_{k}(x)=x^{k}=a$ and $f_{k}(y)=y^{k}=b$. Since a and b are distinct unit elements, then

$$
\begin{aligned}
a b a & \neq b a b \\
x^{k} y^{k} x^{k} & \neq y^{k} x^{k} y^{k} \\
(x y x)^{k} & \neq(y x y)^{k} .
\end{aligned}
$$

Thus $x \sim y$.
Theorem 4 Let R be a finite commutative ring with identity element. If

$$
a_{1}, \ldots, a_{m} \in f_{k}\left(R \backslash B^{k}(R)\right)
$$

are distinct unit element of R and $\left|f_{k}^{-1}\left(a_{i}\right) \backslash B^{k}(R)\right|=r_{i}$ for $i \in\{1,2, \ldots, m\}$, then the induced subgraph of $G_{k}\left(\Upsilon_{R}\right)$ by $\cup f_{k}^{-1}\left(x_{i}\right) \backslash B^{k}(R), i \in\{1,2, \ldots, m\}$ is a complete m-partite graph $K_{r_{1}, \ldots, r_{m}}$.

Proof. It is clear that for $i \neq j, i, j \in\{1,2, \ldots, m\}$, we get $f_{k}^{-1}\left(x_{i}\right) \cap f_{k}^{-1}\left(x_{j}\right)=\emptyset$. By Theorem 2, all elements in $f_{k}^{-1}\left(a_{i}\right)$ are not adjacent. By Theorem II., for all $i \neq j$, for all $x \in f_{k}^{-1}\left(x_{i}\right)$, and for all $b \in f_{k}^{-1}\left(x_{j}\right)$, it follows that $a \sim b$. Hence, the induced subgraph of $G_{k}\left(\Upsilon_{R}\right)$ by $\cup f_{k}^{-1}\left(x_{i}\right) \backslash B^{k}(R), i \in\{1,2, \ldots, m\}$ is a complete m-partite graph $K_{r_{1}, \ldots, r_{m}}$.

2.1. Generalized non-braid graph of ring \mathbb{Z}_{n}

In this section, we discuss the generalized non-braid graphs of ring \mathbb{Z}_{n}. Let I_{n} be the set of all idempotent elements of \mathbb{Z}_{n} and U_{n} be the set of all unit elements of \mathbb{Z}_{n}.
Lemma 4 If $k=l(n-1)$ for some $l \in \mathbb{N}$ and n is a prime number, then $\mathbb{Z}_{n}^{k}=\{\overline{0}, \overline{1}\}$. In particular, if $\bar{x} \neq \overline{0}$, then $\bar{x}^{k}=\overline{1}$.

Proof. It is obvious that $\{\overline{0}, \overline{1}\} \subseteq \mathbb{Z}_{n}^{k}$. Let $\bar{x}^{k} \in \mathbb{Z}_{n}^{k}$. If $\bar{x}=\overline{0}$, then $\bar{x}^{k}=\overline{0} \in\{\overline{0}, \overline{1}\}$. If $x \neq \overline{0}$, by Fermat Little Theorem, it follows that $x^{n-1}=1 \bmod n$, i.e. $\bar{x}^{n-1}=\overline{1}$. Hence, $\bar{x}^{k}=\left(\bar{x}^{n-1}\right)^{l}=\overline{1}$. Hence, $\mathbb{Z}_{n}^{k} \subseteq\{\overline{0}, \overline{1}\}$.

Example 5 Let $n=5$ and $l=1$, then we have $k=l(n-1)=1(5-1)=4$. Note that for nonzero element in \mathbb{Z}_{5} we have $\overline{1}^{4}=\overline{2}^{4}=\overline{3}^{4}=\overline{4}^{4}=\overline{1}$. It means $\mathbb{Z}_{5}^{4}=\{\overline{0}, \overline{1}\}$.

The three following Propositions show some properties on generalized braider of ring \mathbb{Z}_{n} whenever n is a prime number.

Proposition 1 If n is a prime number, then

$$
B^{k}\left(\mathbb{Z}_{n}\right)= \begin{cases}\mathbb{Z}_{n}, & k=l(n-1) \\ \{\overline{0}\}, & \text { otherwise }\end{cases}
$$

for some $l \in \mathbb{N}$.

Proof. The assertion is true for $n=2$. For $n \geq 3$ we will see two cases:

1. Case $k=l(n-1)$, for some $l \in \mathbb{N}$.

It is obvious that $B^{k}\left(\mathbb{Z}_{n}\right) \subseteq \mathbb{Z}_{n}$. Let $\bar{x} \in \mathbb{Z}_{n}$. If $\bar{x}=\overline{0}$, then it is obvious that $\overline{0} \in B^{k}\left(\mathbb{Z}_{n}\right)$. If $\bar{x} \neq \overline{0}$, then by Lemma 4 it follows that $\bar{x}^{k}=\overline{1}$. For any $\bar{y} \in \mathbb{Z}_{n}$, by Lemma $4, \bar{y}^{k}=\overline{1}$ if $\bar{y} \neq \overline{0}$. If $\bar{y}=\overline{0}$, then $(\overline{x y x})^{k}=\overline{0}=(\overline{y x y})^{k}$. If $\bar{y} \neq \overline{0}$, then

$$
(\overline{x y x})^{k}=\bar{x}^{k} \bar{y}^{k} \bar{x}^{k}=\overline{1}=\bar{y}^{k} \bar{x}^{k} \bar{y}^{k}=(\overline{y x y})^{k} .
$$

So, $\bar{x} \in B^{k}\left(\mathbb{Z}_{n}\right)$. Hence, $B^{k}\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{n}$.
2. Case $k \neq l(n-1)$ for all $l \in \mathbb{N}$.

Let $\bar{x} \in B^{k}\left(\mathbb{Z}_{n}\right)$. Assume that $\bar{x} \neq \overline{0}$. If $\bar{x}^{k} \neq \overline{1}$, then clearly \bar{x}^{k} is not an idempotent element. Otherwise, we have a contradiction. Note that for $\overline{1} \in \mathbb{Z}_{n}$ we have

$$
(\bar{x} \overline{1} \bar{x})^{k} \neq(\overline{1} \bar{x} \overline{1})^{k}
$$

meaning $\bar{x} \notin B^{k}\left(\mathbb{Z}_{n}\right)$, a contradiction. If $\bar{x}^{k}=1$ then \bar{x}^{k} is idempotent element, and therefore $\bar{x}=\overline{1}$. Let \bar{y}^{k} be any element in \mathbb{Z}_{n}^{k} that is not idempotent. It follows that

$$
\bar{y}^{k} \neq \bar{y}^{2 k} \Longleftrightarrow(\overline{1 y 1})^{k} \neq(\overline{y 1 y})^{k} .
$$

Hence, $\bar{x} \notin B^{k}\left(\mathbb{Z}_{n}\right)$ and again we have a contradiction. Therefore we conclude that $B^{k}\left(\mathbb{Z}_{n}\right)=\{\overline{0}\}$.

Example 6 Let $n=7$ and $l=3$, then we have $k=l(n-1)=3(7-1)=18$. For any $\bar{x}, \bar{y} \in \mathbb{Z}_{7}$ where $\bar{x} \neq 0$ and $\bar{y} \neq 0$ we have $\bar{x}^{18}=\bar{y}^{18}=\overline{1}$. It follows that $(\overline{x y x})^{18}=(\overline{y x y})^{18}$. Hence $B^{18}\left(\mathbb{Z}_{7}\right)=\mathbb{Z}_{7}$.

As a corollary, we have
Corollary 2 For any prime number n and for any natural number k, if $k=l(n-1)$ for some natural number l then the graph $G_{k}\left(\Upsilon_{R}\right)$ is an empty graph.

Example 7 Note that $B^{18}\left(\mathbb{Z}_{7}\right)=\mathbb{Z}_{7}$. It means $G_{k}\left(\Upsilon_{R}\right)=\emptyset$.
Lemma 5 If $n=2 p$ for a prime number $p \geq 3$, then $\mathbb{Z}_{n}^{k} \subseteq I_{n}$ for all k in the form $k=l(p-1)$ for some $l \in \mathbb{N}$.

Proof. Let $\bar{x}^{k} \in \mathbb{Z}_{n}^{k}$ be arbitrary. Since p is prime, then by Fermat Little Theorem, $x^{p-1}=1$ $\bmod p$. Hence, there exist $s \in \mathbb{Z}$ such that $x^{p-1}=p s+1$ and we have $2 x^{p-1}=2 p s+2$ implying $\overline{2 x^{p-1}}=\overline{2}$ if and only if $\overline{2}\left(\bar{x}^{p-1}-\overline{1}\right)=\overline{0}$. Therefore $\bar{x}^{p-1}-\overline{1}=\overline{0}$ or $\bar{x}^{p-1}-\overline{1}=\bar{p}$.

If $\bar{x}^{p-1}-\overline{1}=\overline{0}$, then

$$
\begin{aligned}
\bar{x}^{p-1} & =\overline{1} \\
\bar{x}^{p} & =\bar{x} \\
\bar{x}^{2 p-p} & =\bar{x} \\
\bar{x}^{2 p-p} \bar{x}^{p-2} & =\bar{x} \bar{x}^{p-2} \\
\bar{x}^{2 p-2} & =\bar{x}^{p-1} \\
\left(\bar{x}^{p-1}\right)^{2} & =\bar{x}^{p-1}
\end{aligned}
$$

If $\bar{x}^{p-1}-\overline{1}=\bar{p}$, then

$$
\begin{aligned}
\bar{x}^{p-1} & =\bar{p}+\overline{1} \\
\left(\bar{x}^{p-1}\right)^{2} & =(\bar{p}+\overline{1})^{2} \\
& =\bar{p}^{2}+2 \bar{p}+\overline{1} \\
& =\bar{p}^{2}+\overline{1} .
\end{aligned}
$$

If $p \geq 3$ is prime number, then $p-1$ is even number. It means $\frac{p-1}{2} \in \mathbb{Z}$. Note that

$$
p^{2}=\frac{p-1}{2} 2 p+p .
$$

Therefore, $\bar{p}^{2}=\bar{p}$. Hence $\left(\bar{x}^{p-1}\right)^{2}=\bar{p}+\overline{1}=\bar{x}^{p-1}$. and thus $\left(x^{l(p-1)}\right)^{2}=x^{l(p-1)}$. Therefore, $x^{k} \in I_{n}$.

Proposition 2 If $n=2 p$, for a prime number $p \geq 3$, then $B^{k}\left(\mathbb{Z}_{n}\right)=\mathbb{Z}_{n}$ for any $k=l(p-1)$ for some $l \in \mathbb{N}$.

Proof. It is obvious that $B^{k}\left(\mathbb{Z}_{n}\right) \subseteq \mathbb{Z}_{n}$. Let $\bar{x} \in \mathbb{Z}_{n}$. By Lemma $5, \bar{x}^{k}$ is idempotent element. Let $\bar{y} \in \mathbb{Z}_{n}$ be arbitrary. By Lemma $5, \bar{y}^{k}$ is also idempotent element. Since every two idempotent elements are not adjacent, then \bar{x} is not adjacent to \bar{y}. Hence, $\bar{x} \in B^{k}\left(\mathbb{Z}_{n}\right)$.

Example 8 Let $p=5$ and $l=2$, then $k=l(p-1)=2(5-1)=8$ and $n=2 p=10$. Note that for any $x, y \in \mathbb{Z}_{10}, x^{k}$ and y^{k} are idempotent elements. Therefore, we have $B^{8}\left(\mathbb{Z}_{10}\right)=\mathbb{Z}_{10}$.

In the following lemmas, we give some properties on adjacency particularly for ring \mathbb{Z}_{n}
Lemma 6 Let $\bar{x}, \bar{y} \in V\left(G_{k}\left(\Upsilon_{\mathbb{Z}_{n}}\right)\right)$. If $n \mid x y$, then the vertices \bar{x} and \bar{y} are not adjacent.
Proof. Since $n \mid x y$, there is $a \in \mathbb{Z}_{n}$ such that $x y=n a$. Note that $\overline{x y}=\overline{y x}=\overline{0}$, so

$$
(\overline{x y x})^{k}=(\overline{0} \bar{x})^{k}=\overline{0}=(\overline{0})^{k}=(\overline{0 y})^{k}=(\overline{x y y})^{k}=(\overline{y x y})^{k} .
$$

So, the vertices \bar{x} and \bar{y} are not adjacent.
Lemma 7 Let $\bar{x}, \bar{y}, \bar{z} \in V\left(G_{k}\left(\Upsilon_{\mathbb{Z}_{n}}\right)\right)$. If $\overline{x y}=\overline{0}$ and $\bar{z}=\bar{x}+\bar{y}$, then vertices x and y are not adjacent to vertex \bar{z}.

Proof. Let $\bar{x}, \bar{y}, \bar{z} \in V\left(G_{k}\left(\Upsilon_{\mathbb{Z}_{n}}\right)\right)$, where $\overline{x y}=\overline{0}$ and $\bar{z}=\bar{x}+\bar{y}$. Note that

$$
(\overline{x z x})^{k}=(\bar{x}(\bar{x}+\bar{y}) \bar{x})^{k}=\left(\left(\bar{x}^{2}+\overline{x y}\right) \bar{x}\right)^{k}=\left(\left(\bar{x}^{2}+\overline{0}\right) \bar{x}\right)^{k}=\left(\bar{x}^{2} \bar{x}\right)^{k}=\left(\bar{x}^{3}\right)^{k}
$$

and

$$
\begin{aligned}
(\overline{z x z})^{k} & =((\bar{x}+\bar{y}) \bar{x}(\bar{x}+\bar{y}))^{k}=\left((\bar{x}+\bar{y})\left(\bar{x}^{2}+\overline{x y}\right)\right)^{k} \\
& =\left((\bar{x}+\bar{y})\left(\bar{x}^{2}+\overline{0}\right)\right)^{k} \\
& =\left((\bar{x}+\bar{y})\left(\bar{x}^{2}\right)\right)^{k} \\
& =\left(\left(\bar{x}^{3}+\bar{x}^{2} \bar{y}\right)^{k}\right. \\
& =\left(\bar{x}^{3}+\overline{x x y}\right)^{k} \\
& =\left(\bar{x}^{3}+\bar{x} \overline{0}\right)^{k} \\
& =\left(\bar{x}^{3}\right)^{k} .
\end{aligned}
$$

Thus, $(\overline{x z x})^{k}=(\overline{z x z})^{k}$. In similar way, it can be proved that $(\overline{y z y})^{k}=(\overline{z y z})^{k}$ Hence, vertex \bar{y} is not adjacent to vertex \bar{z}. Therefore \bar{x} and \bar{y} are not adjacent to vertex \bar{z}.

Proposition 3 Let $\bar{x}, \bar{z} \in V\left(G_{k}\left(\Upsilon_{\mathbb{Z}_{2} m}\right)\right)$ where m is an odd number. If $\bar{z}=\bar{x}+\bar{m}$, then vertex \bar{z} is not adjacent to vertex \bar{x}.

Proof. Let $\bar{x}, \bar{z} \in V\left(G_{k}\left(\Upsilon_{\mathbb{Z}_{2} m}\right)\right)$ where $\bar{z}=\bar{x}+\bar{m}$. To show that vertex \bar{z} is not adjacent to vertex \bar{x}, we consider the following two cases.
Case 1 . For $\bar{x}=\overline{2 a}$ where $a \in \mathbb{Z}$, we have $(\overline{x m})^{k}=\overline{0}$, and by Lemma 7, \bar{z} is not adjacent to vertex \bar{x}
Case 2. For $\bar{x}=\overline{2 a+1}$ where $a \in \mathbb{Z}$. Note that

$$
\begin{aligned}
(\overline{z x z})^{k} & =((\bar{x}+\bar{m}) \bar{x}(\bar{x}+\bar{m}))^{k} \\
& =\left((\bar{x}+\bar{m})\left(\bar{x}^{2}+\overline{x m}\right)\right)^{k} \\
& =\left((\bar{x}+\bar{m})\left(\bar{x}^{2}+\overline{2 a+1} \bar{m}\right)\right)^{k} \\
& =\left((\bar{x}+\bar{m})\left(\bar{x}^{2}+\bar{m}\right)\right)^{k} \\
& =\left(\bar{x}^{3}+\overline{x m}+\bar{x}^{2} \bar{m}+\bar{m}^{2}\right)^{k} \\
& =\left(\bar{x}^{3}+\overline{2 a+1} \bar{m}+\bar{x}^{2} \bar{m}+\bar{m}^{2}\right)^{k} \\
& =\left(\bar{x}^{3}+\bar{m}+\bar{x}^{2} \bar{m}+\bar{m}^{2}\right)^{k} \\
& =\left(\bar{x}^{3}+\bar{x}^{2} \bar{m}\right)^{k} \\
& =\left(\left(\bar{x}^{2}+\overline{x m}\right) \bar{x}\right)^{k} \\
& =(\bar{x}(\bar{x}+\bar{m}) \bar{x})^{k} \\
& =(\overline{x z x})^{k} .
\end{aligned}
$$

From Case 1 and Case 2, we conclude that vertex \bar{z} is not adjacent to vertex \bar{x}

III. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

We have obtained some results on the generalized non-braid graph, such as some conditions for vertices to be adjacent, and necessary and sufficient condition for the graph to be a null graph. But however the structure of the graph in general is not yet obtained. This will be an interesting object for further research in the future.

ACKNOWLEDGEMENT

We appreciate the reviewers for their comments and suggestions so that we can improve this manuscript.

REFERENCES

[1] Cayley, "Desiderata and suggestions: No. 2. the theory of groups: Graphical representation," American Journal of Mathematics, vol. 1, no. 2, pp. 174-176, 1878. [Online]. Available: http://www.jstor.org/stable/2369306
[2] A. Abdollahi, S. Akbari, and H. Maimani, "Non-commuting graph of a group," Journal of Algebra, vol. 298, no. 2, pp. 468-492, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S002186930600113X
[3] J. C. M. Pezzott, "Groups whose non-commuting graph on a transversal is planar or toroidal," Journal of Algebra and its Applications, vol. 21, no. 10, 2022.
[4] S. Mukhtar, M. Salman, A. D. Maden, and M. Ur Rehman, "Metric properties of noncommuting graph associated to two groups," International Journal of Foundations of Computer Science, vol. 33, no. 6-7, 2022.
[5] M. Salman, T. Noreen, M. U. Rehman, J. Cao, and M. Z. Abbas, "Non-commuting graph of the dihedral group determined by hosoya parameters," Alexandria Engineering Journal, vol. 61, no. 5, p. 3709 - 3717, 2022.
[6] F. Ali, B. A. Rather, M. Sarfraz, A. Ullah, N. Fatima, and W. K. Mashwani, "Certain topological indices of non-commuting graphs for finite non-abelian groups," Molecules, vol. 27, no. 18, 2022.
[7] J. Kalita and S. Paul, "On the spectra of non-commuting graphs of certain class of groups," Asian-European Journal of Mathematics, 2022.
[8] F. Kakeri, A. Erfanian, and F. Mansoori, "Generalization of the non-commuting graph of a group via a normal subgroup," ScienceAsia, vol. 42, p. 231, 062016.
[9] A. Erfanian, K. Khashyarmanesh, and K. Nafar, "Non-commuting graphs of rings," Discrete Mathematics, Algorithms and Applications, vol. 07, no. 03, p. 1550027, 2015.
[10] S. Akbari, M. Ghandehari, M. Hadian, and A. Mohammadian, "On commuting graphs of semisimple rings," Linear Algebra and its Applications, vol. 390, pp. 345-355, 2004. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0024379504002393
[11] J. Dutta, D. K. Basnet, and R. K. Nath, "On generalized non-commuting graph of a finite ring," Algebra Colloquium, vol. 25, no. 1, p. 149-160, 2018.
[12] E. Cahyati, R. Fadhiilah, A. Candra, and I. Wijayanti, "Non-braid graph of ring \mathbb{Z}_{n}," Jurnal Teori dan Aplikasi Matematika, vol. 6, no. 1, pp. 106-116, 2021.

