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Abstract. This paper aims to provide a new  general  explicit  polynomial  solution on 
power sums of consecutive positive integers under alternating signs. Moreover, it 
examines the solution under odd and even number of terms in the series and provides 
some examples. 
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I. INTRODUCTION

In the paper of Casinillo [1], the alternative general form for alternating series for 
consecutive positive integer with power 𝑝𝑝 ∈ ℤ+are presented and explored. Although the series 
is well-known and well-research throughout the years, still discrete mathematicians are 
intrigued to find alternative solutions [2][3][4][5][6]. In most of the previous results, the series 
is expressed as a polynomial in relation to Bernoulli numbers [2][3], and generating functions 
[4]. However, this current paper develops a polynomial solution for the series as an extension 
of the existing papers of Casinillo and Mamolo [5], and Casinillo and Abas [6] where they had 
solved the series for 𝑝𝑝 = 2 and 𝑝𝑝 = 3, respectively. From the paper of Casinillo [1], here are 
the different forms of the series in relation to odd and even terms. Let 𝜆𝜆 and 𝑝𝑝 be a positive 
integer. If 𝜆𝜆 is even and 𝑡𝑡 = 2𝑥𝑥 − 1 (𝑥𝑥 ∈ ℤ+), we have 

𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � (−1)𝑗𝑗𝑗𝑗𝑝𝑝
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

= 𝜆𝜆𝑝𝑝 − (𝜆𝜆 + 1)𝑝𝑝 + ⋯+ (𝜆𝜆 + 2𝑥𝑥 − 2)𝑝𝑝              (1) 

 and for 𝑡𝑡 = 2𝑥𝑥 (𝑥𝑥 ∈ ℤ+), we also have 

𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � (−1)𝑗𝑗𝑗𝑗𝑝𝑝
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

= 𝜆𝜆𝑝𝑝 − (𝜆𝜆 + 1)𝑝𝑝 + ⋯− (𝜆𝜆 + 2𝑥𝑥 − 1)𝑝𝑝 .            (2) 

Considering if 𝜆𝜆 is odd, then, we have 

   𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � (−1)𝑗𝑗+1𝑗𝑗𝑝𝑝
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

= 𝜆𝜆𝑝𝑝 − (𝜆𝜆 + 1)𝑝𝑝 + ⋯+ (𝜆𝜆 + 2𝑥𝑥 − 2)𝑝𝑝           (3) 

where 𝑡𝑡 = 2𝑥𝑥 − 1 (𝑥𝑥 ∈ ℤ+), and lastly 

       𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � (−1)𝑗𝑗+1𝑗𝑗𝑝𝑝
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

= 𝜆𝜆𝑝𝑝 − (𝜆𝜆 + 1)𝑝𝑝 + ⋯− (𝜆𝜆 + 2𝑥𝑥 − 1)𝑝𝑝            (4) 

where 𝑡𝑡 = 2𝑥𝑥 (𝑥𝑥 ∈ ℤ+). The superscripts 𝑜𝑜 and 𝑒𝑒 in the alternating series represent odd and 
even terms, respectively. Let 𝑃𝑃𝑑𝑑(𝑥𝑥) ∈ ℤ[𝑥𝑥] be a polynomial in 𝑥𝑥 of degree 𝑑𝑑 ∈ ℤ+. For 
instance, we let 𝑥𝑥 = 3, so we have, 𝑃𝑃3(𝑥𝑥) = 2𝑥𝑥3 + 𝑥𝑥2 − 5, 𝑃𝑃3(𝑥𝑥) = 7𝑥𝑥3 + 4𝑥𝑥2 − 𝑥𝑥, and 
𝑃𝑃3(𝑥𝑥) = −3𝑥𝑥3, among others. In that case, the focus of this paper is to construct a new explicit 

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 5 NO. 1 (JUN 2022) 

Available online at www.jfma.math.fsm.undip.ac.id

p-ISSN: 2621-6019 e-ISSN: 2621-603516https://doi.org/10.14710/jfma.v5i1.13763



 
 
 
 
 
 

 
 

polynomial solution in 𝑥𝑥 for alternating power sum where 𝑝𝑝 ≥ 1. The coefficient of variable 𝑥𝑥 
in the polynomial is a function of 𝜆𝜆, that is, 𝑃𝑃𝑑𝑑(𝑥𝑥) = 𝑓𝑓0(𝜆𝜆)𝑥𝑥𝑑𝑑+𝑓𝑓1(𝜆𝜆)𝑥𝑥𝑑𝑑−1+. . . +𝑓𝑓𝑝𝑝−1(𝜆𝜆)𝑥𝑥 +
𝑓𝑓𝑝𝑝(𝜆𝜆) where 𝑓𝑓𝑖𝑖(𝜆𝜆) ∈ ℤ[𝜆𝜆]for 𝑖𝑖 = 0,1,2, . . . , 𝑝𝑝. Moreover, the polynomial solution will be 
investigated in relation to the parity of a number of terms in the series. 

II. RESULTS 

The first result is immediate from equations (1) and (3) above. This represents that 
alternating series can be transformed into an explicit polynomial under an odd number of terms. 
The explicit polynomial of this series can be solved by simulation that forms a system of 
equations.  
 
Theorem 2.1. Let 𝜆𝜆, 𝑥𝑥, and 𝑝𝑝 be a positive integer. If 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) = ∑ (−1)𝑗𝑗𝑗𝑗𝑝𝑝𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆  and 𝑥𝑥 =
𝑡𝑡+1
2

 and 𝑡𝑡 ≡ 1(𝑚𝑚𝑜𝑜𝑑𝑑 2), then 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) = ∑ 𝑎𝑎𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗 > 0𝑝𝑝
𝑗𝑗=0   where 𝑎𝑎𝑗𝑗(𝜆𝜆) ∈ ℤ[𝜆𝜆]. 

 
Proof. Without loss of generality (WLOG), we let 𝜆𝜆 be an even positive integer. Then, we 
simulate equation (1) with the following values 𝑥𝑥 = 1, 2, . . . , 𝑝𝑝,𝑝𝑝 + 1. So we obtain the 
following system of equations 

                         

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 1,𝑝𝑝) = �𝑎𝑎𝑗𝑗(𝜆𝜆) = 𝜆𝜆𝑝𝑝

𝑝𝑝

𝑗𝑗=0

𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 2,𝑝𝑝) = �𝑎𝑎𝑗𝑗(𝜆𝜆)2𝑗𝑗 = �(−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝
2

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0

𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 3,𝑝𝑝) = �𝑎𝑎𝑗𝑗(𝜆𝜆)3𝑗𝑗 = �(−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝
4

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0.                            .                               .
.                            .                               .
.                            .                               .

𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑝𝑝 + 1,𝑝𝑝) = �𝑎𝑎𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗 = �(−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝
2𝑝𝑝

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0

                                 (5) 

Since the number of unknowns (𝑎𝑎0(𝜆𝜆), 𝑎𝑎1(𝜆𝜆), 𝑎𝑎2(𝜆𝜆),…, 𝑎𝑎𝑝𝑝(𝜆𝜆)) and the number of equations 
are equal, and no linear dependence exists between pairwise equations, then the system of 
equations has a unique solution. In that case, using Gaussian elimination and backward 
substitution, we get the following results, 

                                       

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑎𝑎0(𝜆𝜆) = 𝑃𝑃𝑝𝑝(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑎𝑎1(𝜆𝜆) = 𝑃𝑃𝑝𝑝−1(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑎𝑎2(𝜆𝜆) = 𝑃𝑃𝑝𝑝−2(𝜆𝜆) ∈ ℤ[𝜆𝜆]

.

.

.
𝑎𝑎𝑝𝑝(𝜆𝜆) = 𝑃𝑃0(𝜆𝜆) ∈ ℤ[𝜆𝜆]

                                                              (6) 

In (6), it is noted that for 𝜆𝜆 ≥ 2, we have 𝑎𝑎𝑗𝑗(𝜆𝜆) > 0 for all 𝑗𝑗 ∈ {0, 1, 2, . . . , 𝑝𝑝} and for 𝜆𝜆 = 1, we 
also have 𝑎𝑎0(𝜆𝜆) + 𝑎𝑎1(𝜆𝜆) + 𝑎𝑎2(𝜆𝜆)+. . . +𝑎𝑎𝑝𝑝(𝜆𝜆) > 0. Hence, it is concluded that 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) >
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0 for all values of 𝑥𝑥 ∈ ℤ. After that, we verify that the result holds for all positive integer 𝑥𝑥. 
So, we let 𝑀𝑀(𝑥𝑥) be the equation, 

                    𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � (−1)𝑗𝑗𝑗𝑗𝑝𝑝 =
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

�𝑎𝑎𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗
𝑝𝑝

𝑗𝑗=0

                                         (7) 

For 𝑥𝑥 = 1, 𝑀𝑀(𝑥𝑥) holds, that is, 

                                                     𝜆𝜆𝑝𝑝 = �𝑃𝑃𝑝𝑝−𝑗𝑗(𝜆𝜆)(1)𝑗𝑗
𝑝𝑝

𝑗𝑗=0

= 𝜆𝜆𝑝𝑝                                         (8) 

We have to note that the induction hypothesis is the statement 𝑀𝑀(𝑥𝑥) and we want to show 
that 𝑀𝑀(𝑥𝑥 + 1) also holds. So, it follows that 

                𝐴𝐴𝑡𝑡+2𝑜𝑜 (𝜆𝜆, 𝑥𝑥 + 1,𝑝𝑝) = �𝑎𝑎𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗
𝑝𝑝

𝑗𝑗=0

− (𝜆𝜆 + 2𝑥𝑥 − 1)𝑝𝑝 + (𝜆𝜆 + 2𝑥𝑥)𝑝𝑝              (9) 

and we have 

            𝐴𝐴𝑡𝑡+2𝑜𝑜 (𝜆𝜆, 𝑥𝑥 + 1, 𝑝𝑝) = �𝑃𝑃𝑝𝑝−𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗 − (𝜆𝜆 + 2𝑥𝑥 − 1)𝑝𝑝 + (𝜆𝜆 + 2𝑥𝑥)𝑝𝑝
𝑝𝑝

𝑗𝑗=0

            (10) 

By expanding and simplifying equation (10), we get 

                                      𝐴𝐴𝑡𝑡+2𝑜𝑜 (𝜆𝜆, 𝑥𝑥 + 1,𝑝𝑝) = �𝑃𝑃𝑝𝑝−𝑗𝑗(𝜆𝜆)(𝑥𝑥 + 1)𝑗𝑗
𝑝𝑝

𝑗𝑗=0

                              (11) 

Hence, 𝑀𝑀(𝑥𝑥) holds for all values of 𝑥𝑥 ∈ ℤ. This completes the proof.                      
 
Illustration 2.1. Let 𝑝𝑝 = 1 and 𝜆𝜆 be odd. We have 

                                     𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 1) = � (−1)𝑗𝑗+1𝑗𝑗
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

= 𝑥𝑥 + (𝜆𝜆 − 1)                    (12) 

To obtain equation (12), we assume 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 1) = 𝑎𝑎𝑥𝑥 + 𝑏𝑏, where 𝑎𝑎 = 𝑓𝑓1(𝜆𝜆) ∈ ℤ[𝜆𝜆] and 𝑏𝑏 =
𝑓𝑓2(𝜆𝜆) ∈ ℤ[𝜆𝜆]. In that case, we simply simulate 𝑥𝑥 from 1 to 2. Then, we obtain 

� 𝑎𝑎 + 𝑏𝑏 = 𝜆𝜆
2𝑎𝑎 + 𝑏𝑏 = 𝜆𝜆 + 1 

Solving the parameters 𝑎𝑎 and 𝑏𝑏, we get 
� 𝑎𝑎 = 1
𝑏𝑏 = 𝜆𝜆 − 1 

By substitution, it follows that equation (12) holds. By, mathematical induction, it is clear that 
equation (12) is valid for all 𝑥𝑥 ∈ ℤ. 
 
Example 1. Consider  𝐴𝐴5𝑜𝑜(5, 3, 1). Then, applying equation (12), we have 

 𝐴𝐴5𝑜𝑜(5, 3, 1) = �(−1)𝑗𝑗+1𝑗𝑗 = 5 − 6 + 7 − 8 + 9 = 3 + (5 − 1) = 7
9

𝑗𝑗=5

 

Illustration 2.2. Let 𝑝𝑝 = 2 and 𝜆𝜆 be odd. We have 

            𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 2) = � (−1)𝑗𝑗+1𝑗𝑗2
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆

= 2𝑥𝑥2 + (2𝜆𝜆 − 3)𝑥𝑥 + (𝜆𝜆 − 1)2                  (13) 

The proof can be found in [5]. 
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Example 2. Consider  𝐴𝐴5𝑜𝑜(5, 3, 2). Then, applying equation (13), we have 

 𝐴𝐴5𝑜𝑜(5, 3, 2) = �(−1)𝑗𝑗+1𝑗𝑗2 = 52 − 62 + 72 − 82 + 92
9

𝑗𝑗=5

= 2(3)2 + [2(5) − 3]3 + (5 − 1)2

= 55 
 

Illustration 2.3. Let 𝑝𝑝 = 3 and 𝜆𝜆 be odd.  We have 

                 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 3) = � (−1)𝑗𝑗+1𝑗𝑗3
𝜆𝜆+2𝑥𝑥−2

𝑗𝑗=𝜆𝜆
= 4𝑥𝑥3 + (6𝜆𝜆 − 9)𝑥𝑥2 + (3𝜆𝜆2 − 9𝜆𝜆 + 6)𝑥𝑥 + (𝜆𝜆 − 1)2                                           (14) 

 
The proof can be found in [6]. 
 
Example 3. Consider  𝐴𝐴5𝑜𝑜(5, 3, 3). Then, applying equation (14), we have 

 𝐴𝐴5𝑜𝑜(5, 3, 3) = �(−1)𝑗𝑗+1𝑗𝑗3 = 53 − 63 + 73 − 83 + 93
9

𝑗𝑗=5
= 4(3)3 + [6(5) − 9](3)2 + [3(5)2 − 9(5) + 6](3) + (5 − 1)3 = 469 

 
The second result is also immediate from equations (2) and (4) above. This also represents that 
alternating series can be transformed into an explicit polynomial under an even number of 
terms. Again, the solution for this polynomial can be obtained by simulation and solving a 
system of equations. 
 
Theorem 2.2. Let 𝜆𝜆, 𝑥𝑥, and 𝑝𝑝 be a positive integer. If 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = ∑ (−1)𝑗𝑗𝑗𝑗𝑝𝑝𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆  and 𝑥𝑥 =
𝑡𝑡
2
 and 𝑡𝑡 ≡ 0(𝑚𝑚𝑜𝑜𝑑𝑑 2), then 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = ∑ 𝑏𝑏𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗 > 0𝑝𝑝

𝑗𝑗=0   where 𝑏𝑏𝑗𝑗(𝜆𝜆) ∈ ℤ[𝜆𝜆]. 
 
Proof. WLOG, we let 𝜆𝜆 be an even natural number. Next, for values of 𝑥𝑥 = 1, 2, . . . , 𝑝𝑝,𝑝𝑝 + 1, 
we simulate equation (2). Then, we get the following system of equations below, 

                         

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎧ 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 1,𝑝𝑝) = �𝑏𝑏𝑗𝑗(𝜆𝜆) = �(−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝

1

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0

𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 2,𝑝𝑝) = �𝑏𝑏𝑗𝑗(𝜆𝜆)2𝑗𝑗 = �(−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝
3

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0

𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 3,𝑝𝑝) = �𝑏𝑏𝑗𝑗(𝜆𝜆)3𝑗𝑗 = �(−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝
5

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0.                            .                               .
.                            .                               .
.                            .                               .

𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆,𝑝𝑝 + 1,𝑝𝑝) = �𝑏𝑏𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗 = � (−1)𝑗𝑗(𝜆𝜆 + 𝑗𝑗)𝑝𝑝
2𝑝𝑝+1

𝑗𝑗=0

𝑝𝑝

𝑗𝑗=0

                            (15) 
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Now, it is worthy to note that the number of unknowns (𝑏𝑏0(𝜆𝜆), 𝑏𝑏1(𝜆𝜆), 𝑏𝑏2(𝜆𝜆),…, 𝑏𝑏𝑝𝑝(𝜆𝜆)) and the 
number of equations in (15) is equal, and additionally, no linear dependence exists, then it is 
clear that the system of equations has a singular solution. Using the Gaussian elimination and 
applying the method of backward substitution, we obtain 

                                       

⎩
⎪
⎪
⎨

⎪
⎪
⎧
𝑏𝑏0(𝜆𝜆) = 0 = 𝑃𝑃𝑝𝑝(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑏𝑏1(𝜆𝜆) = 𝑃𝑃𝑝𝑝−1(𝜆𝜆) ∈ ℤ[𝜆𝜆]
𝑏𝑏2(𝜆𝜆) = 𝑃𝑃𝑝𝑝−2(𝜆𝜆) ∈ ℤ[𝜆𝜆]

.                    

.                    

.                    
𝑏𝑏𝑝𝑝(𝜆𝜆) = 𝑃𝑃0(𝜆𝜆) ∈ ℤ[𝜆𝜆]

                                                      (16) 

In the system of equations in (16), we have to note that for 𝜆𝜆 ≥ 1, we have 𝑏𝑏𝑗𝑗(𝜆𝜆) ≤ 0 for all 
𝑗𝑗 ∈ {0, 1, 2, . . . ,𝑝𝑝}. This implies that 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) < 0 for all 𝑥𝑥 ∈ ℤ. Next, we verify the result 
that it holds for all positive integer 𝑥𝑥. We let 𝑁𝑁(𝑥𝑥) be, 

                       𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) = � (−1)𝑗𝑗𝑗𝑗𝑝𝑝 =
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

�𝑏𝑏𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗
𝑝𝑝

𝑗𝑗=0

                                      (17) 

For 𝑥𝑥 = 1, 𝑁𝑁(𝑥𝑥) holds, that is, 

              𝜆𝜆𝑝𝑝 − (𝜆𝜆 + 1)𝑝𝑝 = �𝑃𝑃𝑝𝑝−𝑗𝑗(𝜆𝜆)(1)𝑗𝑗
𝑝𝑝

𝑗𝑗=0

= 𝜆𝜆𝑝𝑝 − (𝜆𝜆 + 1)𝑝𝑝                                    (18) 

It is worth noting that the induction hypothesis is 𝑁𝑁(𝑥𝑥). So, we want to show that 𝑁𝑁(𝑥𝑥 + 1) 
is also true. We have 

                  𝐴𝐴𝑡𝑡+2𝑒𝑒 (𝜆𝜆, 𝑥𝑥 + 1,𝑝𝑝) = �𝑏𝑏𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗
𝑝𝑝

𝑗𝑗=0

+ (𝜆𝜆 + 2𝑥𝑥)𝑝𝑝 − (𝜆𝜆 + 2𝑥𝑥 + 1)𝑝𝑝              (19) 

and we also obtain, 

               𝐴𝐴𝑡𝑡+2𝑒𝑒 (𝜆𝜆, 𝑥𝑥 + 1, 𝑝𝑝) = �𝑃𝑃𝑝𝑝−𝑗𝑗(𝜆𝜆)𝑥𝑥𝑗𝑗 + (𝜆𝜆 + 2𝑥𝑥)𝑝𝑝 − (𝜆𝜆 + 2𝑥𝑥 + 1)𝑝𝑝
𝑝𝑝

𝑗𝑗=0

            (20) 

In that case, by expanding and simplifying equation (20), we end up with 

                                      𝐴𝐴𝑡𝑡+2𝑒𝑒 (𝜆𝜆, 𝑥𝑥 + 1,𝑝𝑝) = �𝑃𝑃𝑝𝑝−𝑗𝑗(𝜆𝜆)(𝑥𝑥 + 1)𝑗𝑗
𝑝𝑝

𝑗𝑗=0

                                  (21) 

Hence, it is concluded that 𝑁𝑁(𝑥𝑥) holds for all values of 𝑥𝑥 ∈ ℤ. This completes the proof.                                                                                                                             
 
 
Illustration 2.4. Let 𝑝𝑝 = 1 and 𝜆𝜆 be odd. Then, we have 

                                             𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 1) = � (−1)𝑗𝑗+1𝑗𝑗
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

= −𝑥𝑥                                  (22) 

To arrive at equation (22), we need to assume that 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 1) = 𝑐𝑐𝑥𝑥 + 𝑑𝑑, where 𝑐𝑐 = 𝑓𝑓3(𝜆𝜆) ∈
ℤ[𝜆𝜆] and 𝑑𝑑 = 𝑓𝑓4(𝜆𝜆) ∈ ℤ[𝜆𝜆]. Next, we simulate 𝑥𝑥 = 1, 2. So, we have 

� 𝑐𝑐 + 𝑑𝑑 = 𝜆𝜆 − (𝜆𝜆 + 1) = −1
2𝑐𝑐 + 𝑑𝑑 = 𝜆𝜆 − (𝜆𝜆 + 1) + (𝜆𝜆 + 2) − (𝜆𝜆 + 3) = −2 

In that case, we solve for the parameters c and 𝑑𝑑, and we get 
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�𝑐𝑐 = −1
𝑑𝑑 = 0  

Hence, equation (22) holds, and clearly, it is valid for all 𝑥𝑥 ∈ ℤ by mathematical induction. 
 
Example 4. Consider  𝐴𝐴6𝑒𝑒(5, 3, 1). Applying equation (22), we have 

 𝐴𝐴6𝑒𝑒(5, 3, 1) = �(−1)𝑗𝑗+1𝑗𝑗 = 5 − 6 + 7 − 8 + 9 − 10 =
10

𝑗𝑗=5

− 3 

Illustration 2.5. Let 𝑝𝑝 = 2 and 𝜆𝜆 be odd. We have 

                            𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 2) = � (−1)𝑗𝑗+1𝑗𝑗2
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

= −2𝑥𝑥2 − (2𝜆𝜆 − 1)𝑥𝑥                     (23) 

The proof can be found in [5]. 
 
Example 5. Consider  𝐴𝐴6𝑒𝑒(5, 3, 2). Applying equation (23), we have 

 𝐴𝐴6𝑒𝑒(5, 3, 2) = �(−1)𝑗𝑗+1𝑗𝑗2 = 52 − 62 + 72 − 82 + 92
10

𝑗𝑗=5

− 102 = −2(3)2 − [2(5) − 1]3

= −45 
 

Illustration 2.6. Let 𝑝𝑝 = 3 and 𝜆𝜆 be odd.  We have 

                 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 3) = � (−1)𝑗𝑗+1𝑗𝑗3
𝜆𝜆+2𝑥𝑥−1

𝑗𝑗=𝜆𝜆

   

= −4𝑥𝑥3 + (−6𝜆𝜆 + 3)𝑥𝑥2 + (−3𝜆𝜆2 + 3𝜆𝜆)𝑥𝑥                                                       (24) 
 

The proof can be found in [6]. 
 
Example 6. Consider  𝐴𝐴6𝑒𝑒(5, 3, 2). Applying equation (24), we have 

 𝐴𝐴6𝑒𝑒(5, 3, 1) = �(−1)𝑗𝑗+1𝑗𝑗3 = 53 − 63 + 73 − 83 + 93 − 103
10

𝑗𝑗=5
= −4(3)3 + [−6(5) + 3](3)2 + [−3(5)2 + 3(5)](3) = −531. 

. 

III. CONCLUSION 

This study had developed new polynomial solutions for alternating power sums, that is,  
𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) and 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) where 𝜆𝜆, 𝑥𝑥,𝑝𝑝 ∈ ℤ. It is concluded that polynomial solutions are 
different in regards to the parity of a number of terms (odd and even) in the series. Moreover, 
it is found that 𝐴𝐴𝑡𝑡𝑜𝑜(𝜆𝜆, 𝑥𝑥, 𝑝𝑝) > 0 and 𝐴𝐴𝑡𝑡𝑒𝑒(𝜆𝜆, 𝑥𝑥,𝑝𝑝) < 0. Furthermore, one may consider developing 
a new polynomial solution for power sums based on the current paper as future research. 
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