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Abstract. Given the finite set of 𝑛! ∙ 	𝑛" 	 ∙∙∙ 	𝑛# points 𝐺$!,$",...,$# ⊂ ℝ# such that 𝑛# ≥
. . . ≥ 𝑛" ≥ 𝑛! ∈ ℤ', we introduce a new algorithm, called ΜΛΙ, which returns an 
uncrossing covering path inside the minimum axis-aligned bounding box [0, 𝑛! − 1] 	×
	[0, 𝑛" − 1]	×	∙∙∙	× 	 [0, 𝑛# − 1], consisting of 3 ∙ ∏ 𝑛(#)!

(*! − 2 links of prescribed length 
𝑛# − 1 units. Thus, for any 𝑛# ≥ 3, the link length of the covering path provided by our 
ΜΛΙ-algorithm is smaller than the cardinality of the set 𝐺$!,$",...,$#. Furthermore, 
assuming 𝑘 > 2, we present an uncrossing covering path for 𝐺+,+,...,+, comprising only 
20 ∙ 3#)+ − 2 two units long edges, which is constrained by the axis-aligned bounding 
box :0, 4 − √3=	×	:0, 4 − √3= 	×	 [0, 2] 	×	∙∙∙	× 	 [0, 2]. 
Keywords: Path covering, MΛI-algorithm, AABB, Polygonal chain, Optimization 
problem, Link distance, Minimum bounding box, Analytical geometry. 
 

I. INTRODUCTION 

In the present paper we will study constrained optimization problems which are strongly 
related to three-dimensional integrated circuits (3D ICs) design, and could have applications in 
robot manufacturing. In order to compactly describe these fundamental problems, and extend 
our results to higher dimensions, we shall do well to begin with a few basic definitions. 

Definition 1 Let 𝑊 and 𝑍 be two sets, and let us denote the Cartesian product by symbol “×”. 
Thus, 𝑊	 × 	𝑍 ∶= {(𝑤, 𝑧) ∶ 	𝑤 ∈ 𝑊	 ∧ 	𝑧 ∈ 𝑍}, since it represents the set of all points (𝑤, 𝑧), 
where 𝑤 ∈ 𝑊 and 𝑧 ∈ 𝑍. 

Definition 2 Let 𝑛!, 𝑛", . . . , 𝑛#)!, 𝑛# ∈ ℤ' be such that 𝑛! ≤ 𝑛" ≤	. . . ≤ 𝑛#)! ≤ 𝑛#. 
We define, ∀𝑘 ∈ ℤ', 𝐺$!,$",...,$# ∶= {0, 1, . . . , 𝑛! − 1} 	×	 {0, 1, . . . , 𝑛" − 1} 	× ⋯	×
	{0, 1, . . . , 𝑛# − 1}, so that the grid 𝐺$!,$",...,$# is a set of ∏ 𝑛(#

(*!  points in the Euclidean space 
ℝ#. 

Definition 3 ∀𝑘 ∈ ℤ', let us denote by 𝐵M$!,$",...,$# ∶= {(𝑥!, 𝑥", . . . , 𝑥#) ∶ 	 𝑥! ∈ [0, 	𝑛! − 1]	∧
	𝑥" ∈ [0, 	𝑛" − 1] ∧. . . . .∧ 	𝑥# ∈ [0, 	𝑛# − 1]} ⊂ ℝ# the MAABB (i.e., minimum axis-aligned 
bounding box), and let us define 𝐵$!,$",...,$# ∶= {(𝑥!, 𝑥", . . . , 𝑥#) ∶ 	 𝑥! ∈ [0, 	𝑛!] 	∧ 	𝑥" ∈
[0, 	𝑛"] ∧. . . . .∧ 	𝑥# ∈ [0, 	𝑛#]} ⊂ ℝ# as RAABB (i.e., regular axis-aligned bounding box). 

Definition 4 A covering path is a directed polygonal chain that visits every node of 𝐺$!,$",...,$# 
exactly once, while a covering trail is a directed polygonal chain that joins every node of 
𝐺$!,$",...,$#, but it can visit any of them more than once; in both cases, edges cannot be repeated 
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and every couple of consecutive edges cannot be collinear. A covering path is uncrossing if 
none of its edges meets one other, and it is self-intersecting otherwise. 
Definition 5 A covering circuit 𝐹$!,$",...,$# is a closed directed trail that visits every node of 
𝐺$!,$",...,$# in which the starting point is equal to the endpoint. A covering cycle for 𝐺$!,$",...,$# 
is a covering circuit in which the only repeated node can be the first/last one. In particular, we 
call regular covering cycle a cycle whose endpoint/starting point belongs to 𝐺$!,$",...,$# and we 
call smart covering cycle a cycle whose endpoint/starting point is a Steiner point (i.e., a point 
that does not belong to 𝐺$!,$",...,$#). 

Definition 6 The link length ℎ(𝑄) of a covering trail/circuit 𝑄$!,$",...,$# for 𝐺$!,$",...,$# 
corresponds to the number of its edges, while the length of a given edge is the Euclidean 
distance between its two endpoints. Lastly, let us define the length classes of a covering 
trail/circuit as the set comprising all the lengths of its edges, denoting by 𝑙!,-,∏ $$#

$%! )!(𝑄) the 
𝑗-th element of the aforementioned set (where 𝑙!(𝑄) < 𝑙"(𝑄) <	. . . < 𝑙-&'((𝑄)) and simplify 
the notation by omitting the subscript if 𝑙!(𝑄) = 𝑙-&'((𝑄), so that 𝑙(𝑄) ∶= 𝑙!(𝑄). 

Thanks to the new ΜΛΙ-algorithm, described in Section II, we solve a pivotal problem 
concerning uncrossing covering paths consisting of less than ∏ 𝑛(#

(*! − 1 links of prescribed 
length [1], lying entirely inside the MAABB of any 𝑘-dimensional finite set of 𝑛! 	× 	𝑛" 	×	∙∙∙
	× 	𝑛#)! 	× 	𝑛# points. 

In Section II, we also show how, for specific cases as 𝑛! = 𝑛# = 3, it is possible to shorten 
the link length [2] of the general solution provided by the ΜΛΙ-algorithm if we consider the 
bounding box ∏ [0, 𝑛(]#

(*!  (i.e., the RAABB) instead of the MAABB. Moreover, referring to 
the grid graphs 𝐺+,+ = {0, 1, 2} 	× 	{0, 1, 2} and 𝐺+,+,+ = {0, 1, 2} 	× 	 {0, 1, 2} 	× 	 {0, 1, 2}, we 
have constructively proved in [3] the existence of self-intersecting covering paths inside the 
MAABB (see Definition 3) that are formed by less than 3# line segments, all belonging to the 
same irrational length class. 

The aim of this work is to find valid solutions for some problems that arise when we combine 
in different ways a few basic constraints on the paths needed to cover all the points of the set 
𝐺$!,$",...,$# (see Definition 2) [2, 4]. 

The four fundamental constraints we are interested in, are as follows: 

1. Visit all the points of 𝐺$!,$",...,$# with an uncrossing covering path 𝑃$!,$",...,$# [5]; 

2. Consider only covering paths such that all their edges belong to a unique length class 
𝑙V𝑃$!,$",...,$#W ∈ ℝ; 

3. 𝑃$!,$",...,$# ⊂ 𝐵$!,$",...,$#; 

4. The link length of 𝑃$!,$",...,$# has to be smaller than the cardinality of the set 
𝐺$!,$",...,$#. Therefore let ℎV𝑃$!,$",...,$#W < ∏ 𝑛(#

(*! . 

The additional constraint that will be considered is to replace the RAABB with the MAABB 
[3]. Thus, merely 𝑃$!,$",...,$# ⊆ 𝐵M$!,$",...,$#, instead of 𝑃$!,$",...,$# ⊂ 𝐵$!,$",...,$# (as stated by the 
third rule above). 
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The goal to minimize the total (Euclidean) length of the covering path, denoted by 
𝜆V𝑃$!,$",...,$#W, will not be taken into account in this paper [6, 7], and it is trivial to note that it 
cannot be less than ∏ 𝑛(#

(*! − 1 units, which implies 𝑙V𝑃$!,$",...,$#W = 1. Consequently, we can 
be interested in reducing/minimizing the link length of 𝑃$!,$",...,$# if and only if all the 
previously stated conditions have been fulfilled, so that 𝑙V𝑃$!,$",...,$#W ∙ ℎV𝑃$!,$",...,$#W =
𝜆V𝑃$!,$",...,$#W. 

Before asking if there exists any covering path which satisfies the four fundamental 
constraints, and if 𝑙V𝑃$!,$",...,$#W is unique or not for some 𝑘-tuple (𝑛!, 𝑛", . . . , 𝑛#), let us give a 
valid lower bound on the link length of any covering trail for 𝐺$!,$",...,$#. 

Since Reference [5], Equation 4, guarantees a lower bound for the link length of the minimal 
covering trail (without additional constraints as above), and considering that, by definition, it 
cannot be greater than the link length of the minimal covering path, ∀𝑘, 𝑛 ∈ ℕ − {0, 1, 2} we 
have 

     ℎV𝑃$!,$",...,$#W ≥ [3 ∙ ∏ $$)∑ $$'#)+
#)"
$%!

#
$%!
"∙$#'$#)!)+

\ + 𝑘 − 2.    (1) 

 

II. THE 𝚳𝚲𝚰-ALGORITHM 

We introduce the general ΜΛΙ-algorithm, which is able to cover 𝐺$!,$",...,$# for any given 
𝑘-tuple (𝑛!, 𝑛", . . . , 𝑛#)!, 𝑛#) such that 𝑘 ≥ 2, under the four fundamental constraints stated in 
the previous section, plus the additional one. The resulting, inside the MAABB, uncrossing 
covering path has a total of ∏ 𝑛( + 2 ∙ aV∏ 𝑛(#)!

(*! W − 1b#)!
(*!  edges. 

Hence, 

     ℎV𝑃$!,$",...,$#W = 3 ∙ ∏ 𝑛(#)!
(*! − 2.       (2) 

Since 𝑘 ≥ 2, the inequality 

       3 ∙ ∏ 𝑛(#)!
(*! − 2 < ∏ 𝑛(#

(*!       (3) 

holds for any 𝑛! ≤ 𝑛" ≤	. . . ≤ 𝑛#)! ≤ 𝑛# such that 𝑛# > 2. 
Let 𝑛! > 1. If 𝑛# = 2, it is clearly possible to join the 2# vertices of the grid spending 2# −

1 links of unitary length, as explained in [6], reproducing 2#)" times the trivial two-
dimensional covering path 𝑃"," = (0, 0)-(0, 1)-(1, 1)-(1, 0) and fixing the aforementioned 3 ∙
2#)" edges with 2#)" − 1 additional links. Similarly, if 𝑘 = 1, then 𝑃$! = (0, 0)-(0, 𝑛!) ≡ 𝐵M$! 
always works. 

Thus, from here on, let us assume 3 ≤ 𝑛# ∧ 𝑘 ≥ 2, and the ΜΛΙ-algorithm can always be 
applied, providing a valid path such that ℎV𝑃$!,$",...,$#W + 1 < ∏ 𝑛(#

(*! . 

𝚳𝚲𝚰-algorithm: Given (𝑛!, 𝑛", . . . , 𝑛#) ⇒ 𝐺$!,$",...,$#, return an uncrossing covering path 
𝑃$!,$",...,$# ⊆ 𝐵M$!,$",...,$# ⊂ 𝐵$!,$",...,$# such that ℎV𝑃$!,$",...,$#W = 3 ∙ ∏ 𝑛(#)!

(*! − 2 and 𝑙(𝑃) =
𝑛# − 1. 
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𝑃$!,$",...,$#[first	layer] = (0, 0, 0, . . . , 0, 0)-(0, 0, 0, . . . , 0, 𝑛# − 1)-n
!
"
, 0, 0, . . . , 0, 𝑛# − 1 −

o(𝑛# − 1)" −
!
1
p-(1, 0, 0, . . . , 0, 𝑛# − 1)-(1, 0, 0, . . . , 0, 0)-n

+
"
, 0, 0, . . . , 0, o(𝑛# − 1)" −

!
1
p-

(2, 0, 0, . . . , 0, 0)-(2, 0, 0, . . . , 0, 𝑛# − 1)-n
2
"
, 0, 0, . . . , 0, 𝑛# − 1 − o(𝑛# − 1)" −

!
1
p-

(3, 0, 0, . . . , 0, 𝑛# − 1)-(3, 0, 0, . . . , 0, 0)-n
3
"
, 0, 0, . . . , 0, o(𝑛# − 1)" −

!
1
p-. . . and so forth, until 

either (𝑛! − 1, 0, 0, . . . , 0, 𝑛# − 1) or (𝑛! − 1, 0, 0, . . . , 0, 0) is reached last (depending on 
whether 𝑛! is odd or even, respectively). 

Now, let us assume that 𝑛! is even, so that the last link to cover the first layer is 
(𝑛! − 1, 0, 0, . . . , 0, 𝑛# − 1)-(𝑛! − 1, 0, 0, . . . , 0, 0). Otherwise, 𝑛! have to be odd and we fall 
in the opposite case, where two flipped bridges will alternately be switched moving from layer 
to layer. 

Then, by assuming for simplicity 𝑛! ∶ 	 𝑛! = 2 ∙ 𝑚, where 𝑚 ∈ ℕ − {0, 1}, we have 

𝑃$!,$",...,$#[first	bridge] = n𝑛! − 1,
!
"
, 0, . . . , 0, o(𝑛# − 1)" −

!
1
p-(𝑛! − 1, 1, 0, . . . , 0, 0). 

𝑃$!,$",...,$#[second	layer] = (𝑛! − 1, 1, 0, . . . , 0, 𝑛# − 1)-n𝑛! − 1 −
!
"
, 1, 0, . . . , 0, 𝑛# − 1 −

o(𝑛# − 1)" −
!
1
p-(𝑛! − 2, 1, 0, . . . , 0, 𝑛# − 1)-(𝑛! − 2, 1, 0, . . . , 0, 0)-n𝑛! − 2 −

!
"
, 1, 0, . . . , 0,

o(𝑛# − 1)" −
!
1
p-(𝑛! − 3, 1, 0, . . . , 0, 0)-(𝑛! − 3, 1, 0, . . . , 0, 𝑛# − 1)-. . . and so on. In this way, 

we finally reach (0, 0, 1, . . . , 0, 0), the last point of the second layer. 

𝑃$!,$",...,$#[second	bridge] = n0, 0, +
"
, . . . , 0, o(𝑛# − 1)" −

!
1
p-(0, 0, 2, . . . , 0, 0). 

We repeat the same pattern until we reach the endpoint, which is the last visited point among 
all the elements of the set 𝑉 defined as 

𝑉 ∶= y(𝑥!, 𝑥", . . . , 𝑥#)!, 𝑥#) ∶ 	 𝑥! ∈ {0, 	𝑛! − 1} 	∧ 	𝑥" ∈ {0, 	𝑛" − 1} ∧. . . . .∧ 	𝑥#)! ∈
{0, 	𝑛#)! − 1} 	∧ 	𝑥# ∈ {0, 	𝑛# − 1}z. 

 
Therefore, ∀(𝑛!, 𝑛", . . . , 𝑛#) ∶ 𝑛! ≤ 𝑛" ≤	. . . ≤ 𝑛# ∈ ℕ − {0, 1}, ∃𝑃$!,$",...,$#, an inside the 

MAABB uncrossing covering path, such that ℎV𝑃$!,$",...,$#W < ∏ 𝑛(#
(*! 	∧ 	𝑙(𝑃$!,$",...,$#) =  

𝑛# − 1. Moreover, the ΜΛΙ-algorithm let 𝑃$!,$",...,$# join an increasing number of points with 
every triplet of consecutive edges as 𝑛# grows, and Equations (4)&(5) show how its efficiency 
becomes absolute when 𝑛# approaches infinity. Then from Equation (2), it follows that 

     
456*!,*",...,*#7

∏ $$#
$%!

= +
$#
− "

∏ $$#
$%!

.      (4) 

Hence, 

       lim
$#→'9

456*!,*",...,*#7

∏ $$#
$%!

= 0.      (5) 
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Figure 1. First layer of the covering path 𝑃+,+,+, edges 1 to 7: all of them belong to the length class 2. 

The two Steiner points (in green) are S! ≡ &12 , 2 −
√15
2 ' ≅ (0.5, 0.063508) and 

S# ≡ &32 ,
√15
2 ' ≅ (1.5, 1.936492) (picture realized with GeoGebra [8]). 

 

 
Figure 2. The whole directed covering path 𝑃+,+,+, edges 1 to 25: all of them belong to the length 

class 2 (picture realized with GeoGebra). 
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As a couple of examples, we can take 𝑃+,+ ⊂ 𝐵M+,+ and 𝑃+,+,+ ⊂ 𝐵M+,+,+, where 

𝑃+,+ = (0, 0)-(0, 2)-a!
"
, 2 − √!2

"
b-(1, 2)-(1, 0)-a+

"
, √!2
"
b-(2, 0)-(2, 2) and 𝑃+,+,+ = (0, 0, 0)-

(0, 0, 2)-a!
"
, 0, 2 − √!2

"
b-(1, 0, 2)-(1, 0, 0)-a+

"
, 0, √!2

"
b-(2, 0, 0)-(2, 0, 2)-a2, !

"
, 2 − √!2

"
b-

(2, 1, 2)-(2, 1, 0)-a+
"
, 1, √!2

"
b-(1,1, 0)-(1, 1, 2)-a!

"
, 1, 2 − √!2

"
b-(0, 1, 2)-(0, 1, 0)-a0, +

"
, √!2
"
b-

(0, 2, 0)-(0, 2, 2)-a!
"
, 2, 2 − √!2

"
b-(1, 2, 2)-(1, 2, 0)-a+

"
, 2, √!2

"
b-(2, 2, 0)-(2, 2, 2), as shown in 

Figures 1&2. 
Referring to 𝐺+,+ and 𝐺+,+,+ (as above), it is possible to show also the existence of self-

intersecting covering paths, 𝑀+,+ ⊂ 𝐵M+,+ and 𝑀+,+,+ ⊂ 𝐵M+,+,+, such that their link length is 
∏ 3(#
(*! − 1 and 𝑙(𝑀+,+) = 𝑙(𝑀+,+,+) = √5 > 𝑛	# − 1. In particular, as shown in Figure 3, 

𝑀+,+ = (1, 2)-(2, 0)-(0, 1)-(2, 2)-(1, 0)-(0, 2)-(2, 1)-(0, 0)-no2
"
, o2

"
p, while 𝑀+,+,+ =

(2, 0, 0)-(0, 1, 0)-(2, 2, 0)-(1, 0, 0)-(0, 2, 0)-(1, 2, 2)-(0, 0, 2)-(2, 1, 2)-(0, 2, 2)-(1, 0, 2)-
(2, 2, 2)-(0, 1, 2)-(2, 0, 2)-(2, 2, 1)-(0, 1, 1)-(2, 0, 1)-(1, 2, 1)-(0, 0, 1)-(2, 1, 1)-(0, 2, 1)-

(1, 0, 1)-(1, 2, 0)-(1, 1, 2)-(2, 1, 0)-(0, 0, 0)-no2
"
, o2

"
, 0p-n√!@

!"
∙ a6 − �24 − 3 ∙ √10b ,

√!@
!"
∙ a6 − �24 − 3 ∙ √10b , !" ∙ o

2
+
∙ V4 + √10Wp (see [3], proof of Theorem 2, for details). 

 

Figure 3. The self-intersecting covering path 𝑀$,$ consists of 8 edges, and all of them belong to 
the length class √5 (picture realized with GeoGebra). 

On the other hand, considering all the grids 𝐺+,+,..,+(𝑘) ∶ 	𝑘 ≥ 2, if we loosen the constraint 
on the minimum axis-aligned bounding box to the regular one (or at least to 𝐵�+,+,..,+ ∶=
[0, 2] 	× 	 :0, 4 − √3= 	×	 :0, 4 − √3= 	× ∏ [0, 2]#)+

(*! ), we can easily show the existence of 
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uncrossing covering paths with at most ℎV𝑃�	+,+,..,+W = 20 ∙ 3#)+ − 2 links, all belonging to the 
length class 𝑙V𝑃�	+,+,..,+W = 2 (see Figures 4&5). 

 
Figure 4. The covering path 𝑃�	+,+ = (0, 2)-(0, 0)-(2, 0)-(2, 2)-(1, 2 − √3)-(1, 4 − √3) 

(picture realized with GeoGebra). 
 

       
Figure 5. The (uncrossing) covering path 𝑃�	+,+,+ = (0, 2, 0)-(0, 0, 0)-(2, 0,0)-(2, 2, 0)-(1, 2 − √3, 0)-

(1, 4 − √3, 0)-(1, 4 − √3, 2)-(1, 2 − √3, 2)-(2, 2, 2)-(2, 0, 2)-(0, 0, 2)-(0, 2, 2)-

8 &
!'
,
($$∙√$)$&*+#∙,2541∙√$)-#-&./

#'
,
($$∙√$)$&)+#∙,2541∙√$)-#-&./

#' 9-(4 − √3, 1, 1)-(2 − √3, 1, 1)-

(2, 0, 1)-(0, 0, 1)-(0, 2, 1)-(2, 2, 1) extends 𝑃�	+,+ to three dimensions [8]. 
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Consider the uncrossing covering path 𝑃�	+,+,+ (see Figure 5 where 𝑥B- = 0.7 and the bigger 
of the two values of 𝑦V𝑥B-W have been selected). The Steiner point S2 ≡ V𝑥B- , 𝑦B- , 𝑧B-W can be 
arbitrarily chosen among many of the solutions provided by the intersection of the two spheres 
of radius 2 units which are centered in A ≡ (0, 2, 2) and B ≡ V4 − √3, 1, 1W. Thus, 

                   �
𝑥" + (𝑦 − 2)" + (𝑧 − 2)" = 2"

V𝑥 − 4 + √3W
"
+ (𝑦 − 1)" + (𝑧 − 1)" = 2"

 .             (6) 

 
At this purpose, it is necessary to preliminary point out that the two conditions 𝑦B- ∈

�+
"
−o1CC∙√+)+++

"1D
, 4 − √3� − {2} and 𝑧B- ≤ 2 should be satisfied, and they are a sufficient 

restriction to ensure that any constrained solution of (7) returns a valid S2, avoiding any self-
intersecting risk for 𝑃�	+,+,+ (see Relations (7) to (9) below), so we have 

𝑦!! =
"
#
∙ $%4 ∙ '8 ∙ √3 − 21. ∙ 𝑥$ + 4 ∙ '108 − 53 ∙ √3. ∙ 𝑥 + 336 ∙ √3 − 601 + 2 ∙ '4 − √3. ∙ 𝑥 + 8 ∙ √3 − 134		∧

				𝑧!! =
"
#
∙ $−%4 ∙ '8 ∙ √3 − 21. ∙ 𝑥$ + 4 ∙ '108 − 53 ∙ √3. ∙ 𝑥 + 336 ∙ √3 − 601 + 2 ∙ '4 − √3. ∙ 𝑥 + 8 ∙ √3 − 134.  (7) 

More specifically, the circumference by (6) under the pair of previously stated conditions 
assures the existence of (at least) one possible Steiner point S2, which is well-defined assuming 
S2 ≡ S�2 ∨ V𝑦B- ≥ 𝑧B-) ∧ 	S2 ≢ S�2W (as above), for any 

    𝑥 ∈ �2 − √+
"
−oE3'!"E∙√+

1DE
, C2∙F")√+G)

HD!C∙√+)!21D
E∙F2)"∙√+G

� ≈ [0.346647, 0.918696].  (8) 

Forasmuch as S�2 ≡ �2+∙√+)!@E'
H"@E∙√3−313

E∙F"∙√+)2G
, 2, !2!)"∙√+)

H"@@D"∙√3−17383
!@1

	� cannot be accepted 

as a solution in order to generate a covering path which is not self-intersecting (i.e., 𝑦B- ≠ 2 
by one of the stated conditions), let us replace the invalid Steiner point S�2 with S�2 ≡

�2+∙√+)!@E'
H"@E∙√3−313

E∙F"∙√+)2G
, !2!)"∙√+)

H"@@D"∙√3−17383
!@1

, 2�. Finally, we observe that there are not any 
other critical values, because (see Figure 6, looking for any possible collision between the 
twelfth link of 𝑃�	+,+,+ and the light blue layer in the middle) 

	�
𝑥" + (𝑦 − 2)" + (𝑧 − 2)" = 𝑟"

	V𝑥 − 4 + √3W
"
+ (𝑦 − 1)" + (𝑧 − 1)" = 𝑟"

		∩ 		 �	
𝑥

2 − √3
= 2 − 𝑦

𝑦 = 𝑧
⇒ 

   ⇒

⎩
⎪
⎨

⎪
⎧ 𝑥" + (𝑦 − 2)" + (𝑧 − 2)" = 𝑟"

V𝑥 − 4 + √3W
"
+ (𝑦 − 1)" + (𝑧 − 1)" = 𝑟"
I

")√+
= 2 − 𝑦
𝑦 = 𝑧

⇒

⎩
⎪⎪
⎨

⎪⎪
⎧𝑟 =

HD13"2)"!"EE∙√+
!""

𝑥 = !D")E2∙√+
!""

𝑦 = !!2)""∙√+
!""

𝑧 = !!2)""∙√+
!""

⇒ 𝑟 < 2.  (9) 
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Figure 6. Graphical proof that no collision will occur in the process of moving S0 along the allowed 
arc :2 > 𝑦1+ ≥ 𝑧1+? of the circle given by Equation (6), as shown by comparison of (6) with (9) (i.e., 

observing that 2 > 𝑟 ≈ 1.9715304811). The radius of the circle centered in C ≡ C-)√$
#
, $
#
, $
#
D is 𝑎 =

23∙√$)0
#

≈ 1.4879857577, while a collision between the 13th and the 15th link would only occur for 

𝑦1+ =
!5!*#∙√$)2#''6#∙√$)!&$3$

!'-
< 1 = 𝑧1+ [8]. 

Let us extend the results to higher dimensions, we then assume 𝑘 ≥ 3. 
From Equations (7)&(8), since it is possible to set an unlimited number of layer bridges by 

choosing distinct Steiner points as S2, we are able to straightforwardly derive uncrossing 
covering paths 𝑃�+,+,..,+ with 18 ∙ 3#)+ + ∑ 3- ∙ 4 =#)1

-*@ 20 ∙ 3#)+ − 2 edges if we simply lift, by 
iteration, the given 3D pattern to the next dimension (in a very similar way as we previously 
shown in Figure 2 for the ΜΛΙ-algorithm). Furthermore, referring to the same AABB (i.e., 
𝐵�+,+,..,+) and pattern by Figures 5&6, it is possible to save one more line for any dimensional 
bridge if we switch from uncrossing covering paths to covering trails, spending a total of 
18 ∙ 3#)+ + ∑ 3- =#)+

-*!
!+	∙	+#)"	)	+

"
 links (at most) to join all the given 3# points, and this 

consideration would suffice to reveal how many unexplored optimization problems could be 
studied starting from a different set of preliminary assumptions, rather than the four 
fundamental constraints stated in Section I. 

We could also go further and decide (as a random example) to cover the grid with an 
unconstrained circuit of minimum link length, disregarding the RAABB, 
so we may accept 𝐹","," = a− 1+√13

6
, − 1+√13

6
, 0b-a7+√13

6
, 7+√13

6
, 0b-a− 1+√13

4
, !
"
, 3+√13

4
b-

a7+√13
6

, − 1+√13
6

, 0b-a− 1+√13
6

, 7+√13
6

, 0b-a5+√13
4

, !
"
, 3+√13

4
b-a− 1+√13

6
, − 1+√13

6
, 0b and 

𝐹J","," = V1 − √2, 1 − √2, 0W-V√2, √2, 0W-n!" ,
!
"
, 2 ∙ √3 −o+

"
p-V√2, 1 − √2, 0W-V1 − √2,
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√2, 0W-n!" ,
!
"
, 2 ∙ √3 − o+

"
p-V1 − √2, 1 − √2, 0W as a pair of valid solutions (see Figures 

7&8), while we may reject (0, 0, 0)-(1, 0, 0)-(1, 1, 0)-(0, 1, 0)-(0, 1, 1)-(1, 1, 1)-(1, 0, 1)-
(0, 0, 1) for two different reasons. 

 
Figure 7. A smart covering cycle for 𝐺#,#,#. 𝐹#,#,# has link length of 6, is constrained by 

J− !*√!$
-

, 0*√!$
-

K × J− !*√!$
5

, &*√!$
5

K × J0, $*√!$
-

K ⊈	RAABB, and is characterized by 

𝑙(𝐹#,#,#) =
√#∙,-*√!$.

$
 (see Definitions 3 to 6) [8]. 

 
Figure 8. A covering circuit with optimal link length ℎ:𝐹>#,#,#? = 6. 

𝐹>#,#,# is inside the AABB Q1 − √2, √2R 	×	 Q1 − √2, √2R 	×	S0, 2 ∙ √3 − T$
#
U ⊈	RAABB 

and is characterized by 𝑙(𝐹>#,#,#) = 4 − √2	 (see Definitions 3 to 6) [8]. 

Lastly, it is even possible to approach some optimization problems of path covering focusing 
on the AABB volume, such as finding the uncrossing covering path of minimal link length 
which subtends the minimum volume AABB. 
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Let 𝐺","," be given and assume 𝑥B! > 0. We could begin with the set of self-intersecting 
covering paths 𝑃�",","V𝑥B!W = (0, 1, 0)-(0, 0, 0)-V𝑥B! , 0, 𝑥B!W-a

!
"
, 𝑦B"V𝑥B!W,

!
"
b-V1 − 𝑥B! , 0,

𝑥B!W-(1, 0, 0)-(1, 1, 0), and then determine the value of 𝑥B! that minimizes the volume of the 
AABB from 

      

⎩
⎪
⎨

⎪
⎧V1 − 𝑥B!W ∙ 𝑦B" + 𝑥B! =

!
"

K5F"∙I.! 	)	!G	∙	L." ∙	I.!7

KI.!
= 0

𝑥B! > 1

	.                        (10) 

Hence, 

                

⎩
⎪
⎨

⎪
⎧ 	𝑦B" =

!	)	"∙I.!
"∙F!	)	I.!G

𝑥B!
+ − 2 ∙ 𝑥B!

" + 𝑥B! =
!
E

𝑥B! > 1

	⇒	 �
	𝑥B! =

+	'	√2
1

𝑦B" =
+	'	√2
"

	.                   (11) 

Now, let 𝜑 ∶= !	'	√2
"

 (i.e., the well-known golden ratio). 

It follows that 𝑥B! =
!	'	M
"
		∧ 	𝑦B" = 1 + 𝜑. 

Thus, for any 0 < 𝜀 < M	)	!
"

, we can easily derive the uncrossing covering path 𝑃�",","(𝜀) =

(0, 1, 0)-(0, 0, 0)-a!	'	M
"
, 0, !	'	M

"
b-a!

"
, 1 + 𝜑, !

"
b-a!	)	M

"
+ 𝜀, 2 ∙ 𝜑 ∙ 𝜀, !	'	M

"
− 𝜀b-a1,

1∙M∙N
!	)	M	'	"∙N

, 0b-(1, 1, 0) from 𝑃�","," a
!	'	M
"
b = (0, 1, 0)-(0, 0, 0)-a!	'	M

"
, 0, !	'	M

"
b-a!

"
, 1 + 𝜑,

!
"
b-a!	)	M

"
, 0, !	'	M

"
b-(1, 0, 0)-(1, 1, 0). Consequently, lim

N→@
𝑃�",","(𝜀) = 𝑃�","," a

!	'	M
"
b (see Figure 

9). 

 
Figure 9. The self-crossing covering path 𝑃W#,#,# C

!	*	@
#
D and the uncrossing covering path 𝑃X#,#,#(𝜀), 

where the (Euclidean) distance between the point (1, 0, 0) and the Steiner point S-, ∈ 𝑃X#,#,#(𝜀) is 
given by −𝑦1-, = − -∙@∙A

!	)	@	*	#∙A
 (picture realized with GeoGebra). 
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Therefore, 𝑃�",","(𝜀) shows the existence of minimal uncrossing covering paths which are 
entirely contained in �!	)	M

"
+ 𝜀, !	'	M

"
  	× 	� 1∙M∙N

!	)	M	'	"∙N
, 1 + 𝜑  	×	 �0, !	'	M

"
  ⊂ [−0.309016,

1.309017] 	×	 [−10.47214 ∙ 𝜀, 2.618034] 	×	 [0, 1.309017], an AABB	⊈	RAABB with a 
volume of less than 5.5451 cubic units for any sufficiently small 𝜀 (i.e., 𝜀 ≤ 1.1936 ∙ 10)3 
will always work). Of course, this does not prove that 𝑃�",","(0') is an optimal uncrossing 
covering path for the AABB volume, but constitutes a good example of the variety of hard 
open problems linked to any 𝐺$!,$",...,$# grid, including the basic case 𝐺",",". 

 

III. CONCLUSION 

This paper ends the trilogy started with the introduction of the standard clockwise-algorithm 
[9], able to perfectly solve (with covering trails of minimal link length) the generalization to 𝑘-
dimensions of Loyd’s nine dots puzzle [10]. 

In the present work, we set a unique length class for every edge of any uncrossing covering 
path for 𝐺$!,$",...,$#, imposing also that the link length must be less than the number of points to 
be visited, and in addition, every covering path is constrained by a given AABB ⊆ RAABB, 
so we studied different patterns according to the size of the AABB, with the purpose of 
reducing, for any 𝑘 > 1, the link length of the valid paths. 

On the other hand, if we discard the RAABB constraint for our uncrossing covering path, 
even the minimization of the link length applied to 𝐺",",...," turns into open problem for any 𝑘 ≥
3 (see Section IV), while a different kind of three-dimensional AABB, such as 
�− !

√"
, 1 + !

√"
  × �0, 1 + !

√"
  × �0, 1 + !

√"
  ⊈	RAABB (i.e., a box with a volume of only 

F!'√"G
/

"
< 7.035534 units3 but which is not entirely contained in the RAABB), let us speculate 

how a− !
√"
, 0, 1 + !

√"
b-(1, 0, 0)-a− !

√"
, 1 + !

√"
, 0b-a!

"
, !
"
, 1 + !

√"
b-a1 + !

√"
, 1 + !

√"
, 0b-

(0, 0, 0)-a1 + !
√"
, 0, 1 + !

√"
b would solve the aforementioned problem if only we could allow 

self-intersecting for those 6 links of prescribed length 1 + √2 units. 
Thanks to the ΜΛΙ-algorithm, we showed that it is possible to provide acceptable covering 

paths, inside the MAABB, whose edges belong to the same integer (and not only irrational [3]) 
length class, in two, three, and more dimensions. We hope that the arising questions concerning 
how many valid length classes there are for any 𝑘-tuple (𝑛!, 𝑛", . . . , 𝑛#), under many different 
sets of constraints [2] (even allowing trails, walks or trees [11] instead of merely paths), will 
provide a challenging environment for new researches in this subfield of graph theory, born 
from an ancient two-dimensional puzzle which was first published more than one hundred 
years ago [10]. 

Let us now conclude our research on this topic taking leave of us with a remarkable sentence 
by a revolutionary mathematician who died in the XIX century: 
“Quand la concurrence, c’est-à-dire l’égoïsme, ne règnera plus dans la science, quand on 
s’associera pour étudier, au lieu d’envoyer aux académies des paquets cachetés, on 
s’empressera de publier ses moindres observations pour peu qu’elles soient nouvelles et en 
ajoutant : « Je ne sais pas le reste. »” Evariste Galois, De Ste Pélagie, December 1831 [12]. 
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