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A tuberculosis model that integrates pre-infection and active infection stages along with 

two treatment parameters was studied. The model also considered the death rate due to 

pre-tuberculosis infection. The basic reproduction ratio was used to investigate the 

local and global stability of the equilibrium point. The local stability of uninfected 

equilibrium was analysed using Routh Hurwitz criteria. The existence of endemic 

equilibrium was given. After we achieved the endemic equilibrium, the global stability 

of the endemic equilibrium was analyzed using the Lyapunov function. A numerical 

simulation was studied to illustrate the effect of the treatment on the spread of the 

tuberculosis disease. 

Keywords: Tuberculosis, treatment, stability, Routh Hurwitz, Lyapunov 

I. INTRODUCTION

Tuberculosis is an airborne direct infectious disease. The parts of the body that often 

affected are the lungs, the kidneys, and spine [1,2]. Tuberculosis already infected a third of 

the world's population. It was estimated that every year there are around 9 million new 

tuberculosis patients with 3 million deaths. In developed countries, it is estimated that 75% of 

all tuberculosis patients are in the productive age group (aged 15-50 years). Death from 

tuberculosis disease is 25% of all preventable deaths [3]. According to WHO, countries in 

Asia with the highest prevalence are India, China and Indonesia [3,4]. Therefore, we need to 

work on controlling the spread of tuberculosis. 

Tuberculosis is mainly spread from person to person through the droplet containing 

tuberculosis bacteria that released in the air. There is a difference between being infected 

with tuberculosis bacteria and having active tuberculosis disease. The stages of tuberculosis 

are exposed, latent infection (pre infected), and active tuberculosis disease. Early diagnosis 

and treatment of the person with active tuberculosis disease is important because the stage of 

tuberculosis cannot be separated from contact with active TB patients. Prevention method 

such as chemoprophylaxis is also important because it aims to kill or slow the progression of 

the disease [5,6]. Alhough tuberculosis is a treatable infectious disease, it continues to evolve 

resistance to drugs [6,7]. 

Mathematical models can provide a useful tool to analyze the dynamics of the spread and 

control of tuberculosis disease. Some mathematical models for tuberculosis have been 

developed and studied. Bowong and Tewa [8] formulated a tuberculosis model with SEI type 

JOURNAL OF FUNDAMENTAL MATHEMATICS 
AND APPLICATIONS (JFMA) VOL. 4 NO. 2 (NOV 2021) 

Available online at www.jfma.math.fsm.undip.ac.id

https://doi.org/10.14710/jfma.v4i2.12049 193 p-ISSN: 2621-6019 e-ISSN: 2621-6035



 

and a general contact rate. They derived the equilibrium stability using Lyapunov stability 

theory. Huo et al. [9] introduced a tuberculosis model with considering tuberculosis patients 

with the drug sensitive of strain bacterium tuberculosis to be treated. They gave a detailed 

analysis about positivity and boundedness, existence and uniqueness, also global stability of 

the equilibrium of the model. Yu et al [10] studied a tuberculosis model with drug resistance 

cases. They classified the infected classes into tuberculosis infection class and MDR-TB 

(Multi-Drug Resistance Tuberculosis) infection class, and analysed the local equilibrium 

stability of the model. 

In this study, we established and analysed the dynamical behaviour of the tuberculosis 

spread by integrating the pre and active infection stages. The model considers two treatment 

parameters and death rate and it is assumed that there is a death due to pre infection of 

tuberculosis. Local stability analysis was proved by using Routh Hurwitz criteria, while 

global stability analysis was proved by using Lyapunov function. We presented  a numerical 

simulations to confirm our results. 

II. MODEL CONSTRUCTION

We construct the model motivated by Huo and Zou [14]. We consider two kinds of 

treatments, i.e, treatment for exposed individual and treatment for pre infectious individuals 

with efficacies and p r , respectively. The model consists of five variable and several 

parameters which is constructed in Figure 1. The model form five nonlinear equations 

describing populations of susceptible ( S ), exposed ( E ), pre infected (
1

I ), actively infected (

2
I ) and recovered ( )R .  

Parameter   is the recruitment rate of S. The natural mortality rate is represented by  . 

Parameter 
1

  and 
2

 are transmission rate with 
1

I and 
2

I  respectively. The first treatment is 

given to exposed individuals with rate p . In some special cases sometimes the immune 

system is impaired, it fails to overcome and prevent disease. An exposed person who has 

been given the treatment and rejection occurs in his/her body can go to 
1

I  stage at a rate p  

or go to 
2

I
 
stage at a rate ( )1 p − . The rate of change of an individual from the actively

infected stage to the pre infected stage is denoted by 2
 . An individual changes from the 
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Figure 1. Transfer diagram for tuberculosis model 
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actively infected stage to the recovered stage with rate 1
 . By 

1
  and  

2
  we denote the death 

rate due to  
1

I and 
2

I , respectively. A pre infected individual is given the second treatment 

with r  as the treatment effectiveness rate. If the treatment is successful then he/she is 

heading to the recovery stage at a rate r . Otherwise, he/she becomes resistant at a rate 

( )1 r − . The model is given in the following.  

1 2 2I

d

d
S

S

t
I IS S   − −= −    (1) 

    
( )1 1 2 2

I S
t

I S
dE

d
E   + − +=   (2) 

    
( ) 1 21

1
2p

I
I

d
E

dt
I   − + += +   (3) 

    
( ) ( ) ( )2 11 22

2 1 1
dI

p r I
dt

E I    = − + + +− −+    (4) 

1 1 2

d
rI I R

R

dt
  −= +  (5) 

III. ANALYSIS OF THE MODEL 

The model (1) – (5) is studied to get the basic reproduction ratio and explore the stability 

of uninfected state, and stability of endemic equilibrium. 

3.1 Basic Reproduction Ratio 

We derive the ratio 0  using the next generation matrix. The model (1) – (5) has an 

uninfected equilibrium point. The uninfected equilibrium point is defined as the point at 

which there is no disease in the population ( )1 2
0I I= = . By making all right hand side of 

model (1) – (5) equal to zero and solving the equations, thus, we get the uninfected 

equilibrium point , 0,0,0,0UE




 
=  
 

. From Dickmann [11], we can obtain the next 

generation matrix as  follows, 

1 2 3Ψ Ψ Ψ

0 0

0 0 0

0K

 
 

=
 
  

           (6) 

where,  

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )

2 1 2 1 1 2

1 2 1 1 2

1

1 1
Ψ ,

p p p p pr

r

         

            

+ + + + − + + −

 + + + + + + + + 

=  

( ) ( )

( )( ) ( )
2 1 2 1 2

1 2 1 1 2

2Ψ ,
1 r

r

     

          

 + + + + −

 + + + + + + + 

=  

( )

( )( ) ( )
2 1 1 2

1 2 1 1 2

3Ψ
r

     

          

+ + +

 + + + + + + +

=


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The eigenvalues of matrix K are 

( ) ( )( ) ( )( )
( ) ( )( ) ( )

2 1 2 1 1 2

1 2 1 1 2

0, 0,
1 1p p p p pr

r

         

            

 + + + + − + + − 

 + + + + + + + + 

.  Hence, we have 

0
 for system (1) – (5) as follow 

( ) ( )( ) ( )( )
( ) ( )( ) ( )

2 1 2 1 1 2

0

1 2 1 1 2

1 1p p p p pr

r

         

            

 + + + + − + + − 
 =

+ + + + + + + +  

(7) 

Next, the local stability of equilibrium is presented in the following subsection. 

3.2 Local Stability of Uninfected Equilibrium 

The local stability of the model (1) – (5) can be proved by using linearization Routh- 

Hurwitz criterion. 

Theorem 1: If 0 1  , the uninfected equilibrium , 0,0,0,0UE




 
=  
 

is locally 

asymptotically stable. 

Proof: The model (1) – (5) has Jacobian matrix at UE  in the following, 

( )
( )

( )

1 2

1 2

1 2

2 1 2

1

0 0

0 0

0 0

( ) 00 (1 ) (1 )

0 0

J UE

p

p r

r

 
  

 

 
   

 

    

    

 

 
− − − 
 
 

− + 
=  

− + + 
 

− + + +− − 
 − 

(8) 

The matrix (8) has two eigenvalues −  and other three eigenvalues are the solution of the 

equation  
3 2

2 1 0 0A A A + + + = , 

where, 

( ) ( ) ( )22 1 1 2 ,A         = + + + + + + + +

( )( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
( )

1 2 1 1 21 2

1

2 1 2 1 1

0

2

1

1 1
1

p p

p p p

r
A

p pr

 

       

          



++ −

+ + +

+ + + + + + +
=

− + + −
−

+
+

( ) ( ) ( ) ( )( )
1 1

2 1 2 1 1 2
1 1p p p p pr



        


+

+ + + + − + + −

( ) ( ) ( ) ( )( )
2 2

2 1 2 1 1 2

,
1 1p p p p pr



        



+ + + + − + + −

with 
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( )( ) ( )( ) ( ) ( )( )

( ) ( )( )( ) ( ) ( )

1 2 1 2 2 1 1

2

1 1 2 2 1 2 1

1 1 2 1 1

2 1 2

rp rp r p p

p p

            

             

 = + + + − + + + − + + + +

+ + + + + + + + + + + +   

( )( )( ) ( )(

) ( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

2 2 2

2 1 1 2

2

1 2 1 1 2 2 1

2 2

1 2 2 1 1 1

1 (1 )( ) 2 1 (1 )

( ) ( 1) (1 ) (1 ) 2

1 2 1 3 2

pr p pr r p

p p r pr

p pr

       

           

            

 = − + − + + + + + − + −

+ − + − + + + − + +

+ + + − + + + − + + +
  

( ) ( )( ) ( )( )( )0 1 2 1 1 2 01 .A r           = + + + + + + + + −
 

Then, we compute 1 2 0A A A−  

( ) ( )( ) ( )( )( )1 2 0 1 2 1 1 2 01A A A r           − + + + + + + + + −=
 

( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
1 2 1 2 1 2 2

2 1 2 1 1 2

2 ( 1) 1 2 1

1 1

p p p r p

p p p p pr

            

        

+ + + + − + − + + + + + −

+ + + + − + + −

 
 
 

 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

2 1 1

2 1 2 1 1 2

2 2 2

2 1 2 1 1 2

1 1

1 1

A

p p p p pr

A

p p p p pr



        



        


+ +

+ + + + − + + −



+ + + + − + + −

 

 

We see that 1 2 0 0A A A−  , when 0 1  . Hence, the equilibrium , 0,0,0,0UE




 
=  
 

 is 

locally asymptotically stable by Routh-Hurwitz criterion. It means, over time the disease will 

disappear.   

3.3 Global Stability for the Endemic Equilibrium 

The existence of an endemic equilibrium of model (1) – (5) is guaranteed if 0
1  . The 

model (1) – (5) has endemic equilibrium ( )* * * * *

1 2, , , ,S E I I REE = , where 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

1 2 1 2 2 1 2*

1 2 1 2 2 1 1 1

r
S

p p p rp p

            

           

+ + + + + + + + +
=

+ + + + + + − + −
 , 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 1 2 1 2 2 1 2*

1 1 1

I r
E

p pr

          

   

+ + + + + + + +
=

+ − + −
 , 

( )

( )( ) ( )
2 2 1 2*

1

1 1 1

I p p p
I

p pr

   

  

+ + +
=

+ − + −
, 

( ) ( ) ( )( )
( ) ( ) ( )( )

2 1 1 2 2 1*

1

1

1 1

I p pr pr r
R

p pr

       

   

− + + + + +
=

+ − + −
. 

The solution *

2I
 
fulfills the linear equation  

21 0 0Ia a+ =    (9)  
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where,  

( )( ) ( )( ) ( )( )2 1 2 1 2 1 2 2 1 21 1
a pp p r              + + + + + + + + + + += + +   

( ) ( )( ) ( )( ) ( )( ) ( )( )1 1 2 1 2 2 1 2 2
1 1p pr r             + − + − + + + + + + + ++   

( ) ( )( ) ( )( ) ( )( ) ( )( )

( )

1 1 2 1 2 2 20 1

01

1 1

.

pa pr r                + − + −= + + + + + + +

−

+ +

The unique solution *

2
I of equation (9) is positive if and only if 0

1

0
a

a
  or 

0
1  .  Hence, 

when  0
1  , the endemic equilibrium exists.  

 

Theorem 2: If 0
1  , the endemic equilibrium ( )* * * * *

1 2, , , ,S E I I REE =  of the system (1-

5) is globally asymptotically stable.  

Proof: Given a candidate Lyapunov function, 1
F C , as follows, 

* * * * * *

1 2* * *

1
1 1 1

1

ln ln ln
S E

S E

I
F S S S c E E E c I I I

I

    
= − − + − − + − −    
     

 

* * *

3 4 *

* 2
2 2 2 *

2

ln ln
I

c I I I c R R R
R

RI

   
+ − − + − −   

  
 

with positive constant
 1 2 3 4

, , ,c c c c  to be determined. The type of Lyapunov function that we 

used has been mentioned in [22], [23], [24], [25], [26]. Derivative of F  with respect to t is 

given as follows 
* * * ** * *

1 2 3 4* *

1 1 2 2

1 2

1 1 1 1 1
I dI I dIdF S dS E dE R dR

c c c
dt S dt E dt I dt I dt R dt

c= + + +
        

− − − − + −        
        

  

 

( ) ( )

( ) ( )( ) ( )(

( ))

* ** * *

1 1
1 1 1 1 2 2 2 2 2 2

1 1

* * * *

2 2
3 3 1 4 1 4 1 2

2 2

2 3 1

*

1 2 2 2 4 1 3

*
1 4 3

2 1

1 1

1 1

I IS E E
K S c I S c I S c pE c I

S E E I I

I I R R
c p E c r I c rI c I

I I R R

c p c p c E

I S c c c

S c r c r

c

     

   

   

    

  

  

    
= − − − + − +    

     

   
− − + − − +   

  

+ + − − + +

+ + + − +

+ + −

− + + ( )( )

( ) ( )

2 1 2 2 4

1 1 1 1 2 1 2 2

I c R

c I S c I S

  

   

+ + −

+ − + + − +

        (10)  

where ( ) ( ) ( )* * * * *

1 2 1 1 3 2 1 2 2 4
K S c E c I c I c R           = + + + + + + + + + + + . We 

denote 

1 2

* * * * *

1 2

, , , , 
I IS E R

x y w z v
S E I I R

= = = = =  . The equation (10) becomes 
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( ) ( )

( ) ( )

( ) ( )( )

* * * * * * *

1 1 1 1 2 2 2 2 2 2

* * * *

3 3 1 4 1 4 1 2

* * * * *

4 1 1 1 1 2 1 2 2

* *

2 3 1 1

1

1 1

1

dF xw xz y z
K S x c I S c I S c pE c I

dt x y y w w

y w w z
c p E c r I c rI c I

z z v v

c R v c I S xw c I S xz

c p c p c E y S c

     

   

    

    

    
= − − − + − +    

    

   
− − + − − +   
   

− + − + + − +

+ + − − + + + ( )(

( )) ( )( )*

1

4 3

* *

2 1 2 2 2 4 1 3 2 1 2 2

1

I w

r c r

c S c c c I z

 

         

+ −

− + + + + + − + + +

(11) 

Calculating the coefficients of , , , ,xw xz y w z  are equal to zero, so we get 

1 1c =   (12) 

( ) ( )1 2 1 3 1c c pc c p   + = + − (13) 

( ) ( )*

2 1 1 4 3 1c S c r c r     + + = + + − (14) 

( ) *

3 2 1 2 2 2 2 4 1c S c c      + + + = + + (15) 

We define a set of the terms, 
1

, , , , , , , , , , , , , ,
y z y w w z xw xz

A x y w z v xw xz
x w w z z v v y y

 
=  
 

. The four 

subsets of A  are 
1 1 1

, , , , , , , , ,
y xw y xz z w

x
x x w y x z y w z

      
       
      

. The right hand side in (11) 

becomes 

2 3 4

* * *

4 4 1 4 1 2

1

1 1 1
2 3 3 2b b b

dF xw xzy y z w

w y z y w
b x

dt x x x

w z
c R v c rI c I

v v

z

  

      
= − − + − − − + − − − + − −      

      

− − −

(16) 

The constants 1 2 3 4 4, , , ,b b b b c can be obtained by considering the relations as follows
* * * * *

1 1 2 2
I S I S S   = + + (17) 

( ) * * * *

1 1 2 2

*
I S I SE    ++ = (18) 

( ) * * *

1 1 2 2
I pE I    + + = + (19) 

( ) ( ) ( )* * *

2 1 2 2 1
1 1I p E r I     + + + = − + − (20) 

Equating coefficients in equation (11) and (16), we have 

1 2 3 42 3 3 2b b b b K+ + + =   (21) 
*

1
b S= (22) 

* * * * *

1 2 3 1 1 2 2
b b b I S I S S   + + = = + + (23) 

* * *

2 2 1 1 1
b c pE c I S = = (24) 

( ) * * *

3 3 1 2 2
1b c p E c I S = − = (25) 

( )* *

4 2 2 2 3 1
1b c I c r I = = −

(26)

1
1,c = (27) 
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* *

1 1

*2
c

I S

pE




=  (28) 

( )

*

3

*

2 2

*
1

I S
c

p E



 −
=  (29) 

Then, one finally has 

* * * * *

1 1 2 2

* *
* * * *1 1

2 2 4 4 1 4 1 2*

1 1 1
2 3 3

2 0.

y ydF xw xz
S x I S I S

dt x x x

I S w z
I c R v c rI c I

w y z y

z

pE vz v

w

w

  


   



    
= − − + − − − + − − − +    

     

 
− − − − −  

 

 (30) 

It is clear that 0
dF

dt
= when * * * *

1 1 2 2

*
, , , ,S S E E I I I I R R= = = = = , so the maximum invariant 

set of ( )1 2, , , , | 0
dF

S E I I R
dt

 
= 

 
 is ( )* * * * *

1 2, , , ,EE S E I I R= . We conclude that 

( )* * * * *

1 2, , , ,EE S E I I R=  is globally asymptotically stable. It means, the disease will stay in 

the population and maybe it will continue to spread.  

 

IV. NUMERICAL SIMULATION 

We give a numerical simulation to illustarate the effects of administering drugs to exposed 

and pre-infected individuals. The simulation of the model (1) – (5) when  

   0.08 14 , 0.0101 12 , = = 1 20.041, 0.011, = =  10.002, 0.185, 0.72 14 ,  = = =

0.5p r= =  2 0.069 14 , =    1 20.2 15 , 0.02 8 = =  are presented in the Figure 1. By 

using that parameter values, we get the value of uninfected equilibrium point 

( ), 0,0,0,0 7.2908,0,0,0,0UE




 
=  
 

. 

 

Figure 1: Simulation graph of tuberculosis spread model 
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Figure 1 shows that the number of susceptible population decreases in early period and 

immediately it increases drastically. Tuberculosis starts spreading and increasing in the 

number of susceptible population due to infection. Either the first treatment or the second 

treatment has an effect on reducing the number of pre infected and actively infected 

population. The effectiveness of treatment causing the number of exposed and recovered 

population increase and going to their equilibrium points. It shows that over time, the 

population will stable and converges to a value of equilibrium points. 

 

V. CONCLUSION 

In this study, we considered the dynamics of tuberculosis spread model with two 

parameters of treatment, that is, treatment for exposed population and treatment for pre 

infected population. We provided an uninfected equilibrium point and an endemic 

equilibrium point. Using next generation matrix, we got the basic reproduction ratio. We 

proved the local stability of uninfected equilibrium and the global stability of endemic 

equilibrium based on basic reproduction ratio. The uninfected equilibrium is locally 

asymptotically stable when 0 1  , while the endemic equilibrium is globally asymptotically 

stable when 0
1  . Treatment plays a crucial role to manage the spread of tuberculosis. 
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