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Abstract. We are interested in study of the velocity (𝑓𝑓′) and temperature (𝜃𝜃) profiles for 
fluid flow over the surface of porous flat plate with the effect of magnetohydrodynamics. 
The dimensional equations are first transformed into the non-dimensional equations. 
Then, we transform the non-dimensional equations into the similar equations using 
stream functions. The numerical results are based on the discretization of similar 
equations using the finite difference method of Keller-Box. Based on the numerical 
results, the velocity profiles (𝑓𝑓′) decrease when the viscoelastic parameter (𝐾𝐾), Prandtl 
number (𝑃𝑃𝑟𝑟), magnetic parameter (𝑀𝑀), porosity parameter (𝑃𝑃) are increased. Moreover, 
the temperature profile (𝜃𝜃) is increased when the viscoelastic parameter (𝐾𝐾) and 
magnetic parameter (𝑀𝑀) are increased. However, the temperature profile (𝜃𝜃) decreases 
when Prandtl number (𝑃𝑃𝑟𝑟) and porosity (𝑃𝑃) are increased. 
Keywords: magnetohydrodynamics, porosity, viscoelastic fluid, Prandtl number. 

I. INTRODUCTION

Non-Newtonian fluids research has grew-up so fast because of more application in 
industrial fields such as in petroleum production, wire drawing, paper production etc. Walters-
B was one of viscoelastic fluid model which was first developed by Walters [3] and its future 
research was studied in [9]. The result has shown that different choices of the measure of strain 
correspond different theories of finite linear viscoelasticity.  

Much work has been done in order to understand the effect of velocity profile and heat 
transfer in viscoelastic fluids [10, 11, 14, 18]. Heat and velocity analysis fluid flow past over a 
flat plate had much attention for researcher because many branches of science and technology 
employed this technique as in the study of [1, 2, 5, 12]. In most of the studies, the effects of 
magnetohydrodynamics in a fluid flow became interested because of its application in 
engineering [4, 6, 13, 16, 17, 19].  

Kayvan [8] has presented that all parameters such as the Reynolds number, the 
Weissenberg number, and the magnetic number has a profound effect on the velocity profiles. 
Kasim [7] has studied magnetohydrodynamic flow of viscoelastic fluid past over a flat plate 
for the steady state and incompressible, that was solved numerically by Box-Keller method.  

In this research, the profile of velocity (𝑓𝑓′) and of temperature (𝜃𝜃) for free convection 
flow in viscoelastic fluid past over a porous flat plate with the effect of magnetohydrodynamics 
is studied and solved numerically using Keller-Box method. This present paper is the modified 
version of researches studied in [12] and [14], where the porosity flat plate is considerable in 
this paper. 
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The rest of paper is organized as follows. In Section 2, we present the mathematical model 
of fluid flow over a horizontal porous flat plate, and the boundary conditions. Section 3 is 
devoted to establish the numerical results, where the algorithm of Keller-Box and its 
discretization are presented in this section. In Section 4, we establish the summaries for all 
numerical results of discretization results obtained from the previous section. 

II. MATHEMATICAL MODEL

Figure 1. Schematic view of porous flat plate 

This problem considered steady two-dimensional flow with constant velocity 𝑈𝑈𝑤𝑤 to the 
free stream velocity 𝑈𝑈∞, as shown in Figure 1, where the 𝑥𝑥-axis extends parallel to the plate 
and 𝑦𝑦-axis extends upwards normal to the plate. The type of tensor that is used in the 
momentum equation is Walters’B fluid [9, 15]. Thermodynamics conservation law, Newton’s 
second law, and mass conservation are used to construct the following modified mathematical 
model studied in [20]. 
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with the boundary condition 

𝜕𝜕 = 𝑈𝑈𝑥𝑥, 𝜕𝜕 = 𝑉𝑉𝑥𝑥, 𝜕𝜕 = 𝜕𝜕𝑤𝑤 at  𝑦𝑦 = 0

𝜕𝜕 = 𝑈𝑈∞, 
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0, 𝜕𝜕 = 𝜕𝜕∞ at  𝑦𝑦 → 0 (2) 

We use stream function of 𝜓𝜓 to analyze the profile of velocity and temperature on the 
boundary layer. So, the velocity components can be written as 

𝜕𝜕 =
𝜕𝜕𝜓𝜓
𝜕𝜕𝑦𝑦

, 𝜕𝜕 = −
𝜕𝜕𝜓𝜓
𝜕𝜕𝑥𝑥

(3) 
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which can be transformed into 

𝜓𝜓 = 𝑈𝑈∞𝑥𝑥𝜕𝜕√2𝑓𝑓(𝜂𝜂), 𝜃𝜃(𝜂𝜂) =
𝜕𝜕 − 𝜕𝜕∞
𝜕𝜕𝑤𝑤 − 𝜕𝜕∞

, 𝜂𝜂 = �𝑈𝑈∞
2𝑥𝑥𝜕𝜕

𝑦𝑦                                (4) 

By substituting (3) and (4) into (1), the non-dimensional stream function equations can be 
obtained 

1
𝑃𝑃𝑟𝑟
𝜃𝜃″ + 𝑓𝑓𝜃𝜃′ + 𝐸𝐸𝑐𝑐(𝑓𝑓″)2 = 0

𝑓𝑓‴ + 𝑓𝑓𝑓𝑓″ +
𝐾𝐾
2

(𝑓𝑓𝑓𝑓⁗ + 𝑓𝑓′𝑓𝑓‴ − (𝑓𝑓″)2) −𝑀𝑀𝑓𝑓′ − 𝑃𝑃𝑓𝑓′ = 0
                   (5) 

with the boundary conditions 

𝑓𝑓(0) = 𝑓𝑓𝑤𝑤, 𝑓𝑓′(0) = 𝜆𝜆𝑚𝑚, 𝑓𝑓′(∞) = 1.5
𝑓𝑓″(0) = 0, 𝜃𝜃(0) = 1, 𝜃𝜃(∞) = 0                                              (6) 

where the viscoelastic parameter (𝐾𝐾) , moving parameter (𝜆𝜆𝑚𝑚), porosity (𝑃𝑃), Euckert number 
(𝐸𝐸𝑐𝑐), and magnetic parameter (𝑀𝑀) defined as 
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, 𝐸𝐸𝑐𝑐 =
𝑈𝑈∞3

𝑐𝑐𝑝𝑝(𝜕𝜕𝑤𝑤 − 𝜕𝜕∞)
, 𝑀𝑀 =

𝑘𝑘0𝑈𝑈∞
𝜌𝜌𝜈𝜈

         (7) 

III. NUMERICAL RESULTS AND DISCUSSION 

The non-dimensional stream function equations are solved by Keller-Box method. We 
simulate the discretization using the software MATLAB 2010a, then we get the velocity profile 
(𝑓𝑓′) and the temperature profile (𝜃𝜃) for the fluid flow over the porous flat plate with the effect 
of magnetohydrodynamic. Moreover, the algorithm of Keller-Box for this case can be stated 
as follows 

 
Algorithm 1. Keller-Box method 
input : initializing the value of 𝑃𝑃,𝑀𝑀,𝐾𝐾,𝑃𝑃𝑟𝑟, boundary layer thickness 𝑦𝑦, step size ℎ 
procedure 
                𝛿𝛿𝑓𝑓0 = 0, 𝛿𝛿𝜕𝜕0 = 0, 𝛿𝛿𝑠𝑠0 = 0, 𝛿𝛿𝜕𝜕𝑁𝑁 = 0, 𝛿𝛿𝜕𝜕𝑁𝑁 = 0, 𝛿𝛿𝑠𝑠𝑁𝑁 = 0 
                𝑓𝑓(𝑗𝑗, 1) = 1.5 ∗ �𝑦𝑦(𝑗𝑗) + 𝑒𝑒−𝑦𝑦(𝑗𝑗) − 1� 
                𝜕𝜕(𝑗𝑗, 1) = 1.5 ∗ �1 − 𝑒𝑒−𝑦𝑦(𝑗𝑗)� 
                𝜕𝜕(𝑗𝑗, 1) = 1.5 ∗ 𝑒𝑒−𝑦𝑦(𝑗𝑗) 
                𝑤𝑤(𝑗𝑗, 1) = −1.5 ∗ 𝑒𝑒−𝑦𝑦(𝑗𝑗) 
                𝑠𝑠(𝑗𝑗, 1) = 1 − �𝑦𝑦(𝑗𝑗)

𝑦𝑦(𝑁𝑁)� 

                𝑡𝑡(𝑗𝑗, 1) = − 1
𝑦𝑦(𝑁𝑁) 

       for 𝑗𝑗 = 1 to 𝑁𝑁 do 
            if (𝑗𝑗 = 1) do 
                  [𝛼𝛼1] = [𝐴𝐴1] 
                  �𝛼𝛼𝑗𝑗��Γ𝑗𝑗� = �𝐶𝐶𝑗𝑗� 
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                  [𝛼𝛼1][𝑤𝑤1] = [𝑟𝑟1] 
            else if (𝑗𝑗 = 𝑁𝑁) do 
                   �𝛼𝛼𝑗𝑗� = �𝐴𝐴𝑗𝑗� − �𝐵𝐵𝑗𝑗��Γ𝑗𝑗−1� 
                   �𝛼𝛼𝑗𝑗��𝑤𝑤𝑗𝑗� = �𝑟𝑟𝑗𝑗� − �𝐵𝐵𝑗𝑗��𝑤𝑤𝑗𝑗−1� 
            else 
                   �𝛼𝛼𝑗𝑗� = �𝐴𝐴𝑗𝑗� − �𝐵𝐵𝑗𝑗��Γ𝑗𝑗−1� 
                   �𝛼𝛼𝑗𝑗��Γ𝑗𝑗� = �𝐶𝐶𝑗𝑗�  
                   �𝛼𝛼𝑗𝑗��𝑤𝑤𝑗𝑗� = �𝑟𝑟𝑗𝑗� − �𝐵𝐵𝑗𝑗��𝑤𝑤𝑗𝑗−1� 
            end if 
       end for 𝑗𝑗 % step for update value of 𝛿𝛿 using backward sweep 
              for 𝑗𝑗 = 1 to 𝑁𝑁 do 
                    if (𝑗𝑗 = 𝑁𝑁) 
                         �𝛿𝛿𝑗𝑗� = �𝑤𝑤𝑗𝑗� 
                    else 
                         �𝛿𝛿𝑗𝑗� = �𝑤𝑤𝑗𝑗� − �Γ𝑗𝑗��𝛿𝛿𝑗𝑗+1� 
                    end if 
              end for 𝒋𝒋 % step for update value of 𝑓𝑓,𝜕𝜕, 𝜕𝜕,𝑤𝑤, 𝑠𝑠 and 𝑡𝑡 
               for 𝑗𝑗 = 1 to 𝑁𝑁 − 1 do 
                     𝑓𝑓(𝑗𝑗 + 1) = 𝑓𝑓(𝑗𝑗) + 𝛿𝛿𝑓𝑓(𝑗𝑗);       𝜕𝜕(𝑗𝑗 + 1) = 𝜕𝜕(𝑗𝑗) + 𝛿𝛿𝜕𝜕(𝑗𝑗) 
                     𝜕𝜕(𝑗𝑗 + 1) = 𝜕𝜕(𝑗𝑗) + 𝛿𝛿𝜕𝜕(𝑗𝑗);       𝑤𝑤(𝑗𝑗 + 1) = 𝑤𝑤(𝑗𝑗) + 𝛿𝛿𝑤𝑤(𝑗𝑗) 
                     𝑠𝑠(𝑗𝑗 + 1) = 𝑠𝑠(𝑗𝑗) + 𝛿𝛿𝑠𝑠(𝑗𝑗);        𝑡𝑡(𝑗𝑗 + 1) = 𝑡𝑡(𝑗𝑗) + 𝛿𝛿𝑡𝑡(𝑗𝑗) 
               end for 𝑗𝑗        
end procedure 
output : profiles of velocity (𝑓𝑓′), profile of temperature (𝜃𝜃) 

The stencil of Keller-Box for the steady-stated is in the following Figure 2 

 
Figure 2. Stencil of Keller-Box in steady state 

Figure 2 shows the stencil of Keller-Box for the steady state with step size of 𝛥𝛥𝑦𝑦/2, the 
lower boundary condition 𝑦𝑦 = 0 and upper boundary condition 𝑦𝑦 = 𝑁𝑁. Moreover, 𝑦𝑦 is the 
thickness of boundary layer of shear stress between viscoelastic fluid and the surface of porous 
flat plate. Based on these conditions, the stream function equations are first changed into first 
order as stated as follows 

𝑓𝑓′ = 𝜕𝜕, 𝜕𝜕′ = 𝜕𝜕, 𝜕𝜕′ = 𝑤𝑤, 𝑠𝑠′ = 𝑡𝑡                                              

𝑤𝑤 + 𝑓𝑓𝜕𝜕 +
𝐾𝐾
2

(𝜕𝜕𝑤𝑤 + 𝑓𝑓𝑤𝑤′ − 𝜕𝜕2) −𝑀𝑀𝜕𝜕 − 𝑃𝑃𝜕𝜕 = 0,
1
𝑃𝑃𝑟𝑟
𝑡𝑡′ + 𝑓𝑓𝑡𝑡 + 𝐸𝐸𝑐𝑐𝜕𝜕2 = 0        (8) 
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Equations (8) are stated in block matrix and then solved using LU decomposition. The 
numerical results of velocity profile (𝑓𝑓′) and temperature profile (𝜃𝜃) are as follows.  

 
Figure 3. Velocity profile (𝑓𝑓′) with the thickness of 

boundary layer (𝑦𝑦) for various values of 
magnetohydrodynamics (𝑀𝑀) 

 
Figure 4. Temperature profile (𝜃𝜃) with the thickness 

of boundary layer (𝑦𝑦) for various values of 
magnetohydrodynamics (𝑀𝑀) 

 
Figure 5. Velocity profile (𝑓𝑓′) with the thickness of 
boundary layer (𝑦𝑦) for various values of viscoelastic 

(𝐾𝐾) 

 
Figure 6. Temperature profile (𝜃𝜃) with the thickness 

of boundary layer (𝑦𝑦) for various values of 
viscoelastic (𝐾𝐾) 

The existence of a transverse magnetic field to an electrically conducting fluid gives rise 
to a type force, called as Lorentz force. This force has the tendency to slow down the motion 
of the fluid. The result qualitatively agrees with the expectations, since magnetic field gives 
force on the free convective flow which decreases the motion of the fluid as shown in Figure 
3. The presence of transverse magnetic field produces the Lorentz force. As the Lorentz force 
increases, the fluid exhibits a resistance to this force by increasing the friction between its 
layers. This resistance appears as an increase in the temperature, the temperature profile 
increases when the magnetic parameter increases as shown in Figure 4. It is observed from 
Figure 5 and Figure 6 show that the increases of the viscoelastic parameter increases the 
temperature of the fluids but decreases the velocity profile. 
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Figure 7. Velocity profile (𝑓𝑓′) with the thickness of 
boundary layer (𝑦𝑦) for various values of Parndtl (𝑃𝑃𝑟𝑟) 

 
Figure 8. Temperature profile (𝜃𝜃) with the thickness 
of boundary layer (𝑦𝑦) for various values of Prandtl 

(𝑃𝑃𝑟𝑟) 

It is clear from Figure 7 that the velocity profiles decrease for increasing the Prandtl 
number. As the Prandtl number increases, viscous forces tend to suppress the buoyancy force 
which decreases the fluid velocity in the boundary layer. Temperature profile decreases when 
Prandtl number increases as in Figure 8. 

 
Figure 9. Velocity profile (𝑓𝑓′) with the thickness of 

boundary layer (𝑦𝑦) for various values of porosity (𝑃𝑃) 

 
Figure 10. Velocity profile (𝑓𝑓′) with the thickness of 
boundary layer (𝑦𝑦) for various values of porosity (𝑃𝑃) 

Figure 9 describes about the profile graphic of fluid velocity with variation of porosity 
parameters (𝑃𝑃). From the simulation results shown that the smaller the flat plate porosity 
values, resulting in the flow velocity is increased. Conversely, if value the porosity of the larger 
flat plate, then the velocity of fluid flow is decreased. So, it can be concluded that the value the 
parameter porosity (𝑃𝑃) is inversely proportional to the flow rate through the porous surface of 
flat plate. Figure 10 describes about the profile of fluid temperature with variation of porosity 
parameters (𝑃𝑃). From the simulation results, it shows that the smaller the flat plate porosity 
values, resulting in the temperature of the flow is decreased. Conversely, if the value of the 
porosity of flat plate is greater, then the temperature of the fluid flow increases. This is due to 
the influence of the porosity parameters given. So, it can be concluded that the porosity 
parameter is proportional to the temperature of the flow through the porous surface of flat plate. 
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IV. CONCLUSION 

We have examined the influence of variable magnetic on viscoelastic fluid flow over a 
porous flat plate. The Keller-Box is used to solve the problem and the numerical results are 
presented to analyze the temperature profile and velocity profile. The following main 
conclusions can be drawn from the present study: the velocity profiles decrease for the 
increasing of viscoelastic parameter (𝐾𝐾), Prandtl number (𝑃𝑃𝑟𝑟), magnetic parameter (𝑀𝑀), 
porosity parameter (𝑃𝑃) and the temperature profile increases for increasing of viscoelastic 
parameter (𝐾𝐾), magnetic parameter (𝑀𝑀), but temperature profile decrease for increasing of 
Prandtl number (𝑃𝑃𝑟𝑟), and porosity (𝑃𝑃). 
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