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Abstract. Given a ring R, a monoid with a strictly ordered (S,≤), a
homomorphism of monoid ω : S → End(R), and a skew generalized
power series ring R[[S,≤, ω]]. We collect all matrices over R[[S,≤, ω]],
i.e. Mn(R[[S,≤, ω]]). This set become a ring. In this research, we de-
termine the sufficient conditions for R, (S,≤) and ω, so the element of
Mn(R[[S,≤, ω]]) is an idempotent matrix.
Keywords: idempotent matrix, strictly ordered monoid, monoid homo-
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I. INTRODUCTION

A matrix is a rectangular array of numbers [1]. When the matrices entries are elements
of a ring, the matrices are called matrices over a ring [2]. The ring is defined as a non-empty
set that is completed with two binary operations and fulfills certain axioms [3]. One example
of a ring is the skew generalized power series rings (SGPSR) R[[S,≤, ω]] [4]. If we collect all
functions f such that support of f is Artinian and narrow, then the set from a strictly ordered
monoid (S,≤). Research related to the properties of SGPSR R[[S,≤, ω]], among others, can
be found in Mazurek et al. [5],[6],[7] and Faisol et al. [8],[9],[10],[11],[12],[13].

SGPSR R[[S,≤, ω]] is a generalization of The Generalized Power Seris Rings (GPSR)
R[[S]] introduced by Ribenboim [14]. He used a strictly ordered monoid structure and applied
Artinian and narrow concepts of set theory to construct this ring. This ring is a generaliza-
tion of the ring semigroup R[S][15]. On the other hand, we can express GPSR as the general
form of the ring polynomial R[X] and the ring power series R[[X]][16]. Besides Ribenboim
[17],[18],[19],[20],[21], a study related to the structure of GPSR R[[S]] can also be seen in the
results of Faisol et al. [22],[23],[24],[25],[26].

A set of n× n matrices with entries in a ring R that form a ring under matrix addition and
matrix multiplication is called a matrix ring [27], denoted by Mn(R). In 2021, Rugayah et al.
[28] have constructed the set of all matrices over SGPSR, denoted by Mn(R[[S,≤, ω]]). Fur-
thermore, they introduce the definition and the properties of the ideal matrix ring over SGPSR.

If R is a ring with an identity element, then an element e of R is idempotent if e2 = e [29].
A square matrix C is said to be idempotent in matrices theory when it has the property that
C2 = C [30]. This concept gives us some motivation to investigate the sufficient conditions for
the matrices over SGPSR to be an idempotent matrix. So, in this research, we will determine
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the sufficient conditions for an element of Mn(R[[S,≤, ω]]) to be an idempotent matrix over
SGPSR R[[S,≤, ω]].

II. MAIN RESULT

First, we review the construction of SGPSR as follows from Mazurek, and Ziembowski
[4].

In this article, we express R as a ring with an identity element, (S,≤) as a strictly ordered
monoid, and a homomorphism of monoid ω, where ω : S → End(R), and ωs as a homomor-
phic image of ω(s), for every s ∈ S. Furthermore, ωst = ω(st) = ω(s)ω(t) = ωsωt, for every
s, t ∈ S. If 1 ∈ S is an identity element of S, then ω1 = idR is an identity element of End(R).

Let RS = {h|h : S → R} and

R[[S,≤, ω]] = {h ∈ RS|supp(h) is narrow and Artinian}

where supp(h) is the set of all s ∈ S, such that h(s) 6= 0. For every h, k ∈ R[[S,≤, ω]],
supp(h+ k) is a subset of supp(h)∪ supp(k), supp(−h) = supp(h), and supp(hk) is a subset
of supp(h) + supp(k). Now, we define:

(hk)(s) =
∑

(x,y)∈χs(h,k)

h(x)ωx(k(y)), (1)

for all h, k ∈ R[[S,≤, ω]], where the set

χs(h, k) = {(x, y) ∈ supp(h)× supp(k)|xy = s}

is finite. With this operation, R[[S,≤, ω]] is a ring that we call Skew Generalized Power Series
Ring (SGPSR).

For any t ∈ R and s ∈ S, we define the maps ct, fs ∈ R[[S,≤, ω]] as follows:

ct(u) =

{
t if u = 1

0 if u 6= 1,
(2)

and

fs(u) =

{
1 if u = s

0 if u 6= s,
(3)

for every u ∈ S.

Based on (2) and (3), t 7→ ct is a ring monomorphism from R to R[[S,≤, ω]], and s 7→ fs
is a monoid monomorphism from S to the multiplicative monoid (with composition operation)
of SGPSR R[[S,≤, ω]]. Moreover, fsct = cωs(t)fs.

Example 1 Now, we give some examples of SGPSR R[[S,≤, ω]].

1. We take S = N ∪ {0} as a monoid with pointwise addition, a trivial ordered ≤ on S,
and ω : S → End(R) as a homomorfism of monoid with ωs = idR, for all s ∈ S, then
SGPSR R[[S,≤, ω]] is the polynomial ring R[X].
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2. If we choose S = N ∪ {0} as a monoid with pointwise addition, an usual ordered ≤ on
S, ω : S → End(R) as a homomorfism of monoid with ωs = idR for every s ∈ S, then
SGPSR R[[S,≤, ω]] become power series ring R[[X]].

3. If we only choose ω : S → End(R) as a monoid homomorfism with ωs = idR for all
s ∈ S, then SGPSR R[[S,≤, ω]] become the GPSR R[[S]].

Now, we collect all idempotents of R, we donote by E(R) = {e ∈ R|e2 = e}. If σ(e) = e
for any e ∈ E(R), then σ is idempotent-stabilizing, where σ is an endomorphism of a ring R.
Next, we provide the conditions for an element of SGPSR R[[S,≤, ω]] to be an idempotent in
Proposition 1.

Proposition 1 Let (S,≤) be a strictly ordered monoid, and ω : S → End(R) is a homomor-
phism of monoid, whereωs is idempotent-stabilizing for all s ∈ S. If f ∈ R[[S,≤, ω]], then f is
an idempotent element of R[[S,≤, ω]] if and only if there is an idempotent element e in R such
that f = cωs(e) for every s ∈ S.

Proof. a

1. We will show that there exist an idempotent element e in R such that f = cωs(e).

(case 1: f is equal to 0) It is clear that f = 0 is an idempotent of R[[S,≤, ω]], because

(ff)(s) = (00)(s) =
∑
xy=s

0(x)ωx(0(y)) =
∑
xy=s

0ωx(0) = 0 = 0(s) = f(s),

for every s ∈ S.

Since ωs is idempotent-stabilizing for every s ∈ S, for an idempotent e = 0 ∈ R, we
have ωs(0) = ωs(e) = e = 0 and

cωs(e)(u) = c0(u) =

{
0 if u = 1

0 if u 6= 1,

for every u ∈ S. Therefore, cωs(e) = 0 = f .

(case 2: f 6= 0) Since f is an idempotent of R[[S,≤, ω]],

(ff)(u) =
∑
xy=u

f(x)ωx(f(y)) = f(u), (4)

for every u ∈ S.

If u = 1 ∈ S, then

(ff)(1) =
∑
xy=1

f(x)ωx(f(y)) = f(1)ω1(f(1)) = f(1)idR(f(1)) = f(1)f(1).

Therefore, based on (4), we get f(1)f(1) = (ff)(1) = f(1). In the other word, there is
an idempoten e = f(1) ∈ R.
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If u 6= 1 ∈ S, then
(ff)(u) =

∑
xy=u

f(x)ωx(f(y))

and
f(u) =

∑
xy=u

f(x)ωx(f(y))

This conditions, only holds for f(u) = 0.

Since ωs is idempotent-stabilizing for every s ∈ S, we obtain

f(u) =

{
e if u = 1

0 if u 6= 1
=

{
ωs(e) if u = 1

0 if u 6= 1,
= cωs(e)(u)

for every u, s ∈ S. Therefore, f = cωs(e).

In the other side, we will show that if e is an idempotent of a ring R dan cωs(e) = f for
all s ∈ S, then f is an idempotent element of R[[S,≤, ω]].
For every u, s ∈ S, we get:

(ff)(u) = (cωs(e)cωs(e))(u)

=
∑
xy=u

cωs(e)(x)ωx(cωs(e)(y))

= cωs(e)(1)ω1(cωs(e)(u)) + 0

= ωs(e)idR(cωs(e)(u))

= ωs(e)cωs(e)(u)

Since ωs is idempotent-stabilizing, if u = 1, then

(ff)(1) = ωs(e)cωs(e)(1) = eωs(e) = ee = e = ωs(e).

If u 6= 1, then
(ff)(u) = ωs(e)cωs(e)(u) = e0 = 0.

Therefore, we obtain (ff)(u) = cωs(e)(u) = f(u), which is prove that f is an idempotent
element of R[[S,≤, ω]].
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We can see the definition of set of all matrices over SGPSR R[[S,≤, ω]] as follows from
Rugayah et al. [28].

Proposition 2 Let R be a ring with 1R ∈ R, e an idempotent element of R, (S,≤) a strictly or-
dered monoid, and ω is a homomorphism of monoid from S toEnd(R), where ωs is idempotent-
stabilizing for every s ∈ S. If En(R[[S,≤, ω]]) = [fij] ∈Mn(R[[S,≤, ω]]) such that

fij =

{
cωs(e) if i = j

0 if i 6= j,

for all s ∈ S, then En(R[[S,≤, ω]]) is an idempotent matrix over R[[S,≤, ω]].

Proof. For 1 ≤ i ≤ n and 1 ≤ j ≤ n, we get E2
n(R[[S,≤, ω]]) = [fij][fij] = [αij] where

αij =

{
c2ωs(e)

if i = j

0 if i 6= j,

Based on Proposition 1, f = cωs(e) is an idempotent element of R[[S,≤, ω]]. Therefore,

αij =

{
cωs(e) if i = j

0 if i 6= j,
= fij.

In the other word,E2
n(R[[S,≤, ω]]) = [fij][fij] = [αij] = En(R[[S,≤, ω]]). Hence,En(R[[S,≤

, ω]]) is an idempotent matrix over R[[S,≤, ω]].

III. CONCLUSIONS AND FUTURE RESEARCH DIRECTION

According to the main results, if the homomorphic image of a monoid homomorphism ω is
idempotent-stabilizing, then an element f of SGPSR R[[S,≤, ω]] is idempotent element if and
only if ring R has an idempotent element e such that f = cωs(e), for every s ∈ S. Furthermore,
a matrix over SGPSR R[[S,≤, ω]] is an idempotent matrix if it is a diagonal matrix with entries
on the main diagonal is equal to cωs(e).

For further research, there is an opportunity to study the necessary and sufficient condi-
tions for a matrix over SGPSR R[[S,≤, ω]] to be a unit element and a nilpotent element of
Mn(R[[S,≤, ω]]).
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