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I. PENDAHULUAN

Through various years, Fibonacci's famous number sequence has been a source of a lot 

of intriguing mathematical investigations and researches [14]. Fibonacci sequence is one of the 

interesting topics in combinatorics and number theory that intrigued and inspired a lot of 

mathematicians for many years [1, 2, 7, 9, 16]. A Fibonacci number 𝐹𝑛 is defined recursively

as 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 2, and 𝐹0 = 0, 𝐹1 = 1 [3, 4]. The concept of Fibonacci numbers

has a lot of interesting applications in physical sciences [8, 18]. Some applications of Fibonacci 

numbers can also be found in the area of graph theory [4, 5, 15, 17]. In addition, several 

mathematicians are inspired of dealing Fibonacci identities that can be proven by induction, 

generating functions, determinants and so on [2, 3, 14, 16]. On the other hand, a Pythagorean 

triple (𝑋, 𝑌, 𝑍) is a triple of positive integers such that 𝑋2 + 𝑌2 = 𝑍2. A Pythagorean triple is

said to be primitive if the greatest common divisor of the triple is 1, and each pair of integers 

𝑋, 𝑌, and 𝑍 are relatively prime, otherwise the triple is known as non-primitive [6, 7, 9]. 

Pythagorean triple is considered as one of the oldest topic in number theory that remains 

intriguing and receiving much attention to research [6, 7, 9, 10, 11].  

In the paper of Casinillo and Casinillo [6], an alternative formula that generates 

Phytagorean triples was construted. And this formula is called the generalized version of 

Pythagorean triples since it generates a primitive and non-primitive triples. However, the 

formula does not generates all Pythagorean triples. It is worthy to note that some Pythagorean 

triples are scalar multiples of other triples, hence, to generate all triples, one may consider a 

scalar positive integer to the generalized version of Pythagorean triples. Another paper of 

Casinillo and Casinillo [7] generates a new formula for generalized version of congruent 

numbers based on a generalized version of Pythagorean triples. Furthermore, an elliptic curve 

equation was also constructed from generalized version of Pythagorean triples. Several 

mathematicians studied the deep connection of Fibonacci numbers and Pythagorean triples 

which resulted to numerous papers in literature [10, 12, 13, 14].  Hence, the purpose of this 

paper is to construct a new formula that generates a Fibonacci numbers in a generalized version 

of Pythagorean triples. In addition, the paper formulates some Fibonacci identities and prove 

using mathematical induction. 
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II. RESULTS 

The following theorem shows that a Pythagorean triple (𝑋, 𝑌, 𝑍) is a function of two 

distinct Fibonacci numbers, that is, 𝑋 = 𝛿1(𝐹𝑛, 𝐹𝑚), 𝑌 = 𝛿2(𝐹𝑛, 𝐹𝑚), and 𝑍 = 𝛿3(𝐹𝑛, 𝐹𝑚), 
where 𝑛 and 𝑚 are positive integers and 𝛿𝑖: (ℤ+)2 ⟶ ℤ+ for 𝑖 ∈ {1, 2, 3}. The proof of the 

theorem is based on the current study by Casinillo and Casinillo [6] which deals with 

generalized Pythagorean triples. It is worthy to note that Theorem 1 also generates primitive 

and non-primitive Pythagerean triples. 

 

Theorem 1. Let 𝐹𝑛 and 𝐹𝑚 be Fibonacci numbers where where 𝑛 and 𝑚 are positive integers. 

If (𝑋, 𝑌, 𝑍) is a Pythagorean triple, then 𝑋 = 2𝐹𝑛
2 + 2𝐹𝑚𝐹𝑛, 𝑌 = 2𝐹𝑚𝐹𝑛 + 𝐹𝑚

2, and 𝑍 = 2𝐹𝑛
2 +

2𝐹𝑚𝐹𝑛 + 𝐹𝑚
2 . 

 

Proof. Suppose that (𝑋, 𝑌, 𝑍) is a Pythagorean triple. Then, it satisfies the Diophantine equation   

           𝑋2 + 𝑌2 = 𝑍2                                                               (1) 

So, by algebra, it follows that 
(𝑍 + 𝑌)(𝑍 − 𝑌)

𝑋2
= 1                                                                (2) 

Rewritting the equation (2), we obtain 

(
𝑍 + 𝑌

𝑋
) (

𝑍 − 𝑌

𝑋
) = 1 = (

𝑍

𝑋
+

𝑌

𝑋
) (

𝑍

𝑋
−

𝑌

𝑋
)                                     (3) 

We suppose that 𝐹𝑛 and 𝐹𝑚 be Fibonacci numbers. Now, we let 
𝑍

𝑋
+

𝑌

𝑋
=

𝐹𝑛 + 𝐹𝑚

𝐹𝑛
                                                              (4) 

and 

 
𝑍

𝑋
−

𝑌

𝑋
=

𝐹𝑛

𝐹𝑛 + 𝐹𝑚
                                                               (5) 

By algebra, we can manipulate equation (4) and (5) and arrive the following equations 

𝑍

𝑋
=

2𝐹𝑛
2 + 2𝐹𝑚𝐹𝑛 + 𝐹𝑚

2

2𝐹𝑛
2 + 2𝐹𝑚𝐹𝑛

                                                         (6) 

and  

𝑌

𝑋
=

2𝐹𝑚𝐹𝑛 + 𝐹𝑚
2

2𝐹𝑛
2 + 2𝐹𝑚𝐹𝑛

                                                                   (7) 

Hence, it is clear that  
(𝑋, 𝑌, 𝑍) = (2𝐹𝑛

2 + 2𝐹𝑚𝐹𝑛, 2𝐹𝑚𝐹𝑛 + 𝐹𝑚
2 , 2𝐹𝑛

2 + 2𝐹𝑚𝐹𝑛 + 𝐹𝑚
2)                       (8) 

This completes the proof.                                                                                                                

 

The corollary and remarks below are direct consequence of Theorem 1. 

 

Corollary 2. Let (𝑋(𝐹𝑛, 𝐹𝑚), 𝑌(𝐹𝑛, 𝐹𝑚), 𝑍(𝐹𝑛, 𝐹𝑚)) be a Pythagorean triple where 𝐹𝑛 and 

𝐹𝑚 are Fibonacci numbers.  If 𝑁 is a congruent number, then 𝑁 = 2𝐹𝑚𝐹𝑛
3 + 3𝐹𝑚

2𝐹𝑛
2 + 𝐹𝑚

3𝐹𝑛. 
 

Proof. Immediate from Theorem 1.                                                                                                 

 

Remark 3. Let 𝐹𝑛 and 𝐹𝑚 are Fibonacci numbers. Then, the following holds: 

i. 𝑍(𝐹𝑛, 𝐹𝑚) >  𝑌(𝐹𝑛, 𝐹𝑚) >  𝑋(𝐹𝑛, 𝐹𝑚) > 6    where 𝑛 < 𝑚; and 

ii. 𝑍(𝐹𝑛, 𝐹𝑚) >  𝑋(𝐹𝑛, 𝐹𝑚) >  𝑌(𝐹𝑛, 𝐹𝑚) ≥ 3    where 𝑛 ≥ 𝑚. 
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Remark 4. Let (𝑋(𝐹𝑛, 𝐹𝑚), 𝑌(𝐹𝑛, 𝐹𝑚), 𝑍(𝐹𝑛, 𝐹𝑚)) be a Pythagorean triple where 𝐹𝑛 and 𝐹𝑚 are 

Fibonacci numbers.  If 𝑐𝑜𝑠2 [𝜋
(𝑍−1)!+1

𝑍
] = 1, then 𝑍 is a Pythagorean prime. 

 

The following lemma below is useful in proving our next new results. For the sake of 

curiosity, we provide alternative (detailed) proofs using mathematical induction to the 

following interesting Fibonacci identities showing that it is true for all positive integers. 

 

Lemma 5. [2, 3] Let 𝐹𝑛 be a Fibonacci number and 𝑛 is a positive integer. Then, the following 

identities holds: 

i. 𝐹2𝑛+1 = 𝐹𝑛+1
2 + 𝐹𝑛

2 ; and  

ii. 𝐹2𝑛 = 𝐹𝑛(𝐹𝑛+1 + 𝐹𝑛−1).  

 

Proof. Case (i). We let 𝐴(𝑛) is the statement 𝐹2𝑛+1 = 𝐹𝑛+1
2 + 𝐹𝑛

2 where 𝑛 is a positive integer. 

Now, we consider the base case 𝐴(1) as follows 

                                                           𝐹2(1)+1 = 𝐹1+1
2 + 𝐹1

2                                   (9) 

                                                                   𝐹3 = 𝐹2
2 + 𝐹1

2 (10) 
                                                                     2 = 2                                                                       (11) 

Hence, 𝐴(1) is true. In this case, our induction hypothesis is the statement 𝐴(𝑛). Then, we 

show that 𝐴(𝑛 + 1) is true, that is, 𝐹2(𝑛+1)+1 = 𝐹2𝑛+3. By definition of Fibonacci numbers, we 

obtain 𝐹2(𝑛+1)+1 = 𝐹2𝑛+2 + 𝐹2𝑛+1 = 𝐹2(𝑛+1) + 𝐹2𝑛+1. So, from our assumption hypothesis, 

we get 𝐹2(𝑛+1)+1 = 𝐹𝑛+1(𝐹𝑛+2 + 𝐹𝑛) + 𝐹𝑛+1
2 + 𝐹𝑛

2. Again, by definition of Fibonacci numbers 

and by simple algebra, we have 

                                         𝐹2(𝑛+1)+1 = (𝐹𝑛+1
2 + 2𝐹𝑛𝐹𝑛+1 + 𝐹𝑛

2) + 𝐹𝑛+1
2                                   (12) 

                                                          = (𝐹𝑛+1 + 𝐹𝑛)2 + 𝐹𝑛+1
2                                                     (13) 

                                         𝐹2(𝑛+1)+1 = 𝐹𝑛+1
2 + 𝐹𝑛

2                                                                     (14) 

Thus, it is proven that 𝐴(𝑛 + 1) is true. 

 

Case (ii). Again, we let  𝐵(𝑛) be the statement 𝐹2𝑛 = 𝐹𝑛(𝐹𝑛+1 + 𝐹𝑛−1) where 𝑛 is a positive 

integer. First, we consider the base case 𝐵(1) as follows: 

                                                           𝐹2(1) = 𝐹1(𝐹1+1 + 𝐹1−1)                                                  (15) 

                                                               𝐹2 = 𝐹1(𝐹2 + 𝐹0)                                                         (16) 
                                                                1 = 1                                                                           (17) 

This implies that 𝐵(1) holds true. Assuming that our induction hypothesis is the statement 

𝐵(𝑛). Secondly, we want to show that 𝐵(𝑛 + 1) is also true. So, we get 𝐹2(𝑛+1) = 𝐹2𝑛+2. Then, 

by definition of Fibonacci numbers, we have 𝐹2(𝑛+1) = 𝐹2𝑛+1 + 𝐹2𝑛. Hence, from the 

induction hypothesis, we obtain 𝐹2(𝑛+1) = 𝐹𝑛+1
2 + 𝐹𝑛

2 + 𝐹𝑛(𝐹𝑛+1 + 𝐹𝑛−1). By algebra and by 

definition of Fibonacci number, we have the following 

                                            𝐹2(𝑛+1) = 𝐹𝑛+1(𝐹𝑛 + 𝐹𝑛+1) + 𝐹𝑛(𝐹𝑛 + 𝐹𝑛−1)                              (18) 

                                                            = 𝐹𝑛+1𝐹𝑛+2 + 𝐹𝑛𝐹𝑛+1                                                     (19) 
                                                𝐹2(𝑛+1) = 𝐹𝑛+1(𝐹𝑛+2 + 𝐹𝑛)                                                        (20) 

This shows that 𝐵(𝑛 + 1) is true for all positive integer 𝑛. Combining the two cases completes 

the proof.                                                                                                                                               
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The next lemma below is a direct consequence of Lemma 5 showing that the Pythagorean triple 

(𝑋, 𝑌, 𝑍) is a function of Fibonacci number. 

 

Lemma 6. [11] Let (𝑋, 𝑌, 𝑍) be Pythagorean triple. If 𝑛 ≥ 2, then 

(𝑋 = 2𝐹𝑛𝐹𝑛+1, 𝑌 = 𝐹𝑛+1
2 − 𝐹𝑛

2, 𝑍 = 𝐹2𝑛+1) 

 

Proof. Follows directly from Lemma 5.                                                                                          

 

Our next result is quick from Theorem 1, Lemma 5 and Lemma 6 above. This shows a new 

interesting Fibonacci identities which can be proven by induction. 

 

Theorem 7. Let 𝑘 ≥ 2. If (𝑋, 𝑌, 𝑍) is a Pythagorean triple, then 

i. 𝑋 = 2𝐹𝑘𝐹𝑘+1 = 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘 ; 

ii.  𝑌 = 𝐹𝑘+1
2 − 𝐹𝑘

2 = 𝐹𝑘−1
2 + 2𝐹𝑘−1𝐹𝑘 ; and 

iii. 𝑍 = 𝐹2𝑘+1 = 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘+𝐹𝑘−1

2 . 

Proof. Let 𝑘 ≥ 2. Then, by Theorem 1, it is easy to check that 

               (𝑋, 𝑌, 𝑍) = (2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘 , 𝐹𝑘−1

2 + 2𝐹𝑘−1𝐹𝑘, 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘+𝐹𝑘−1

2 )             (21) 

for 𝑛 = 𝑘 = 𝑚 + 1. Now, we consider the following 3 cases below: 

Case (i). We let 𝐶(𝑘) is the statement 2𝐹𝑘𝐹𝑘+1 = 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘 where 𝑘 is a positive integer 

greater than 1. Now, we consider the base case 𝐶(2) as follows 

                                                       2𝐹2𝐹2+1 = 2𝐹2
2 + 2𝐹2−1𝐹2                    (22) 

              2𝐹2𝐹3 = 2𝐹2
2 + 2𝐹1𝐹2                             (23) 

           2(1)(2) = 2(1)2 + 2(1)(1)                          (24) 
           4 = 4                                                                           (25) 

Hence, the base case 𝐶(2) is true. Our induction hypothesis is the statement 𝐶(𝑘). So, we will 

show that 𝐶(𝑘 + 1) holds. By definition of Fibonacci numbers, we obtain 

    2𝐹𝑘+1𝐹𝑘+2 = 2𝐹𝑘+1(𝐹𝑘 + 𝐹𝑘+1)                               (26) 
            = 2𝐹𝑘+1

2 + 2𝐹𝑘𝐹𝑘+1                                                     (27) 

Hence, it is proven that 𝐶(𝑘 + 1) is true. 

Case (ii). Again, let  𝐷(𝑘) be the statement 𝐹𝑘+1
2 − 𝐹𝑘

2 = 𝐹𝑘−1
2 + 2𝐹𝑘−1𝐹𝑘 where 𝑘 is a positive 

integer greater than 1. So, consider the base case 𝐷(2), we have 

                        𝐹2+1
2 − 𝐹2

2 = 𝐹2−1
2 + 2𝐹2−1𝐹2                                                       (28) 

                                                 𝐹3
2 − 𝐹2

2 = 𝐹1
2 + 2𝐹1𝐹2                                                              (29) 

                                           (2)2 − (1)2 = (1)2 + 2(1)(1)                                                       (30) 
                                                            3 = 3                                                                               (31) 

This implies that 𝐷(2) holds true. Assume that the induction hypothesis is the statement 𝐷(𝑘). 

Hence, we want to show that 𝐷(𝑘 + 1) is also true. By definition of Fibonacci numbers, we 

obtain 

                   𝐹𝑘+2
2 − 𝐹𝑘+1

2 = (𝐹𝑘 + 𝐹𝑘+1)2 − (𝐹𝑘−1 + 𝐹𝑘)2                    (32) 
                                        = 𝐹𝑘

2 + 2𝐹𝑘𝐹𝑘+1 + 𝐹𝑘+1
2 − 𝐹𝑘−1

2 − 2𝐹𝑘−1𝐹𝑘 + 𝐹𝑘
2                               (33) 

By simplifying equation (33) and from our assumption, we get the following 

                𝐹𝑘+2
2 − 𝐹𝑘+1

2 = 2𝐹𝑘𝐹𝑘+1 + 𝐹𝑘+1
2 − 𝐹𝑘+1

2 + 𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘 − 2𝐹𝑘−1𝐹𝑘                (34) 

                       𝐹𝑘+2
2 − 𝐹𝑘+1

2 = 𝐹𝑘
2 + 2𝐹𝑘𝐹𝑘+1                                                                              (35) 

This shows that 𝐷(𝑘 + 1) also holds. 

Case (iii). Lastly, we let 𝐸(𝑘) be the statement 𝐹2𝑘+1 = 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘+𝐹𝑘−1

2  where 𝑘 is a 

positive integer greater than 1. Consider the base case 𝐸(2), so we have 
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                                                         𝐹2𝑘+1 = 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘+𝐹𝑘−1

2                                          (36) 

                                                       𝐹2(2)+1 = 2𝐹2
2 + 2𝐹2−1𝐹2+𝐹2−1

2                                          (37) 

                                                               𝐹5 = 2𝐹2
2 + 2𝐹1𝐹2+𝐹1

2                                                (38) 

                                                                 5 = 5                                                                          (39) 

It follows that 𝐸(2) holds. Next, we assume that the induction hypothesis is the statement 𝐸(𝑘). 

So, we want to show that 𝐸(𝑘 + 1) holds true. Hence, we have 

                                                  𝐹2(𝑘+1)+1 = 𝐹2𝑘+3                                                                   (40) 

                                                                   = 𝐹2𝑘+2 + 𝐹2𝑘+1                                                    (41) 

                                                                   = 𝐹2(𝑘+1) + 𝐹2𝑘+1                                                  (42) 

In view of Lemma 5, we obtain 

                                     𝐹2(𝑘+1)+1 = 𝐹𝑘+1(𝐹𝑘+2 + 𝐹𝑘) + 𝐹𝑘+1
2 + 𝐹𝑘

2                                       (43) 

By definition of Fibonacci number and simplifying equation (43), we end up with 

𝐹2(𝑘+1)+1 = 2𝐹𝑘+1
2 + 2𝐹𝑘𝐹𝑘+1 + 𝐹𝑘

2 

This implies that 𝐸(𝑘 + 1) is true. Hence, combining the 3 cases, completes that proof.              

                                                                                                                      

The following corollary below shows a new Fibonacci identity for the hypothenuse of 

a right triangle.  This result is quick from Theorem 1 and Lemma 6. 

 

Corollary 8. Let (𝑋, 𝑌, 𝑍) be a Pythagorean triple. For any 𝑘 ≥ 2, we have 

𝑍 = 𝐹𝑘+1
2 + 𝐹𝑘

2 = 2𝐹𝑘
2 + 2𝐹𝑘−1𝐹𝑘+𝐹𝑘−1

2  

 

Proof. Note that by Lemma 6, we have 𝑋 = 2𝐹𝑘𝐹𝑘+1 and 𝑌 = 𝐹𝑘+1
2 − 𝐹𝑘

2. Solving 𝑍 in the 

equation 𝑋2 + 𝑌2 = 𝑍2, we obtain 𝑍 = 𝐹𝑘+1
2 + 𝐹𝑘

2. By Theorem 1, 𝑍 = 𝐹2𝑘+1 = 2𝐹𝑘
2 +

2𝐹𝑘−1𝐹𝑘+𝐹𝑘−1
2 . Clearly, the hypothesis follows and this completes the proof.                             

III. CONCLUSION 

In this paper, we had developed a new formula that generates a Fibonacci numbers in a 

generalized Pythagorean triples. Furthermore, the paper formulated some Fibonacci identities 

and proved using induction. For future research, one must investigate the connection of 

generalized version of congruent numbers [7] and Fibonacci numbers. 

 

CONCLUSION 

The authors are very grateful to the referees for the rigorous review and suggestions 

which led to the improvement of this paper. 
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