Jurnal Epidemiologi Kesehatan Komunitas 10 (4), 2025, 34-49

An Epidemiological Management Approach to Stroke Disease in Coastal Communities: A Structural Model for Tertiary Prevention

Krish Naufal Anugrah Robby^{1*}, Isa Ma'rufi¹, El houssin Ouassou², Latifatul Izzah³

¹Faculty of Public Health, Universitas Jember, Jember, East Java, Indonesia ²Faculty of Law, Economics & Social Sciences of Agdal, Mohammed V University in Rabat, Rabat, Morocco. ³Department of History, Faculty of Humanities, Universitas Jember, Jember, East Java, Indonesia

Article Information: Received 7 July 2025; Last Revised 26 October 2025; Accepted 12 November 2025; Available Online 13 November 2025; Published 13 November 2025

ABSTRACT

Background: Stroke survivors in coastal areas face major challenges, such as limited access to health services, minimal post-stroke education, and inadequate monitoring. Without a targeted tertiary prevention strategy, the risk of recurrence and disability remains high. This study aimed to develop a stroke management model to enhance self-control and support community-based health policy planning.

Methods: A cross-sectional study was conducted among 45 stroke survivors in the Puger Subdistrict, Jember Regency, using a total sampling approach. Data were collected through questionnaires and measurements of blood pressure, cholesterol, and random blood glucose using touch-based devices and digital sphygmomanometers. Path analysis was performed using Partial Least Squares structural equation modeling.

Results: Clinical needs, such as elevated blood pressure and cholesterol levels, encouraged survivors to be more active in managing their conditions and increased their interactions with health services. However, paradoxically, poor self-management, such as infrequent blood pressure monitoring and unhealthy diets, places a greater burden on the health system. This indicates that an increased system response alone is insufficient without strengthening the individual roles. Family history and blood glucose levels also contribute to indirect pathways.

Conclusion: Preventing stroke recurrence requires a comprehensive epidemiological management approach, including clinical control, dietary education, and sustainable, community-based interventions. This model can serve as a basis for designing health programs and policies that are more responsive to the needs of coastal communities in the future.

Keywords: stroke; tertiary prevention; managerial epidemiology; coastal areas; health policy

Copyright © 2025 by Jurnal Epidemiologi Kesehatan Komunitas. This is an open-access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0)
DOI: https://doi.org/10.14710/jekk.v10i4.28422

^{*}Corresponding author, krishnaufal@unej.ac.id

Introduction

Stroke is the leading cause of death and longterm disability worldwide. Each year, more than 12 million new cases occur globally, with an estimated 7.3 million deaths and millions of survivors living with complex neurological dysfunction.¹ In Indonesia, based on the 2018 Riskesdas, the prevalence of stroke was 10.9 per 1,000 population. The death rate due to stroke in Indonesia is high, reaching 178.30 per 100,000 people.² Coastal areas, such as Southeast Maluku, even recorded a higher prevalence, at 12.6%, with ischemic stroke as the dominant form of 95.3%.3 The villages of Puger Kulon and Puger Wetan are representative of the coastal areas in Jember. Based on preliminary studies, there is no documented data on the number of stroke patients at the community health center. From the results of a rapid survey and in collaboration with local cadres and residents, data was obtained on 45 people from the two villages who had suffered a stroke. The estimated prevalence (Puger Kulon and Puger Wetan villages) is 45 stroke patients/16,170 residents or 2.783/1000 residents.

Although acute stroke therapy has made significant progress, the implementation of tertiary prevention in communities with limited resources, such as coastal areas, still faces many challenges. Primary service systems in these areas often do not provide ongoing support, such adequate blood pressure monitoring, metabolic regulation, long-term and rehabilitation. Research by Nakibuuka et al. (2021) in Uganda showed that a lack of community support, limited medicines, and low levels of family health literacy are the main barriers to successful stroke recurrence prevention, especially in remote and resourcepoor areas. Similar barriers can also be encountered in Indonesia's coastal communities that have limited geographical conditions and access to health services.4

Tertiary prevention is essential for lowering the risk of recurrence, accelerating functional recovery, and improving the quality of life of stroke survivors. Unfortunately, survivors in rural and coastal areas often do not receive adequate education on blood pressure, cholesterol, and blood sugar control. Many families are unaware of how to continue therapy after the patient is discharged from a health facility. International studies have shown that these barriers include limited knowledge, insufficient resources, and a lack of rehabilitation professionals.^{5,6}

In addition, the health system's response to stroke in this area is still reactive rather than preventive. Healthcare services are more often accessed when patients are already in a state of crisis rather than as part of long-term risk control. Even hospitals classified as ready face challenges in implementing thrombolytic therapy and comprehensive rehabilitation programs in a timely manner in rural areas.⁷

In response to this situation, the development of a stroke epidemiology management model based on tertiary prevention is very important. This model needs to include integration between clinical data, metabolic status, socioeconomic conditions, and primary health system responses to produce more adaptive and sustainable intervention strategies in coastal communities. This study aims to build a causality model that explains the main factors that affect the quality of stroke management, with the hope of improving the effectiveness of the healthcare system and improving the quality of life of stroke survivors in resource-constrained areas.

Method

This study used a quantitative approach with a cross-sectional design to analyze the influence of pathways between sociodemographic factors, metabolic clinical status, consumption behavior, and health system response to stroke management in coastal areas. The research location was the working area of the Puger District Health Center, Jember Regency, which represents coastal communities with limited resources for handling non-communicable diseases.

The study subjects were stroke survivors, that is, individuals who had received a stroke diagnosis from a hospital and now live in the community. A total of 45 individuals were identified, all of whom met the inclusion criteria and agreed to participate; therefore, total sampling was employed.

The inclusion criteria were as follows: (1) diagnosis of stroke by medical personnel in formal health facilities, (2) permanent domicile

in the coastal area of Puger District, and (3) ability to participate in interviews and examinations. Respondents were excluded if they had a severe disability or did not complete the data collection process. Data collection was conducted through home visits assisted by local health cadres.

The research instruments consisted of clinical structured questionnaires and examinations covering sociodemographic characteristics, socioeconomic status, family history of stroke and hypertension, and food consumption habits. Blood pressure, total cholesterol levels, and random blood sugar (GDA). GDA and cholesterol measurements were performed using touch-based devices, which have been proven to have high accuracy and precision in glucose monitoring in the field. Blood pressure was measured using a calibrated digital sphygmomanometer. The GDA cutoff of \geq 200 mg/dL follows the WHO/AHA guidelines.⁷

In this study, the exogenous (independent) variables included anthropometric status, socioeconomic status, level of formal education, needs, and comprehensive clinical condition. The mediating variables consisted of family history of stroke, blood glucose status, blood pressure, and hypertension-related needs. The endogenous (dependent) variables were stroke disease management and system response to risk.

Access to health services denotes the category of healthcare services selected by individuals with stroke. Controlled blood sugar status reflects whether blood glucose levels are maintained within normal limits. Controlled cholesterol status levels indicate whether cholesterol levels are effectively regulated. Fruit consumption status represents the respondent's regular pattern of fruit intake. Fat consumption

status describes the frequency of consuming foods high in cholesterol. *Vegetable consumption status* refers to the respondent's routine intake of vegetables.

Data analysis was performed in stages. Univariate analysis was conducted using SPSS version 26 to describe the distribution of the respondents' characteristics. Furthermore, a multivariate analysis was carried out with the Partial Least Squares structural equation (PLS-SEM) modeling approach SmartPLS software version 4. The model evaluation included a convergent validity test (Average Variance Extracted / AVE), composite reliability (CR), and a path coefficient test using bootstrapping technique with subsamples, referring to the approach.8 All research procedures were approved by the Health Research Ethics Commission of Dian Nuswantoro University (certificate number: 001458/DIAN **NUSWANTORO** UNIVERSITY/2025).9

Result

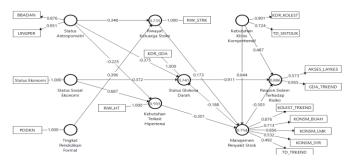
Descriptive Analysis of Respondent Characteristics

The characteristics of respondents with areas included stroke coastal sociodemographic aspects, clinical conditions, consumption behavior, and access to health services. Table 1 presents the distribution of respondents based on age, sex, socioeconomic status, education, body mass index, stroke history, history of hypertension, and control status of risk factors such as blood pressure, cholesterol levels, and blood sugar. In addition, this table illustrates individual responses to stroke risk and patterns of access to healthcare facilities in coastal areas.

Table 1. Characteristics of Respondents with Stroke on the Coast

Variable	Respondents (n)	Precentage (%)	
Age			
35-45 years old	6	13.3	
46-55 years old	18	40.0	
>55 years old	21	46.7	

Variable	Respondents (n)	Precentage (%)
Gender	•	
Woman	15	33.3
Man	30	66.7
Economy class		
Lower class (below UMR)	12	26.7
Middle Class	33	73.3
Work		
Not working	30	66.7
Productive Work (Fishermen and Self-Employed)	15	33.3
Education		
Primary education (Not school, elementary, junior	36	80
high)		
Secondary Education (SMA)	9	20.0
Body Mass Index		20.0
Lack of heavy BB	15	33.3
Disadvantages of a mild level		20.0
BB	9	= 5.5
Usual	21	46.7
	21	40./
Family Stroke History Yes	9	20.0
Not	36	80.0
Family History of	30	80.0
Hypertension		
Yes	27	60.0
Not	18	40.0
System response to risk	10	10.0
Access to healthcare		
Not accessing Yankes or Non-	6	13.3
Traditional Medical	O	13.3
(Masseuse/Never)		
Partial Pharmaceutical/Partial	9	20.0
Individual (Pharmacy,	,	20.0
Independent Practice)		
Tertiary Medical Formal,	30	66.7
Primary Medical Formal, Non-		· · · ·
Government Formal		
(Hospitals, Health Centers,		
Clinics)		
Controlled Blood Sugar		
Status		
Yes (<140)	39	86.7
No (≥200)	6	13.3
Stroke Disease Management		
Cholesterol Status Under		
Control		
No (≥200 mg/dL)	30	66.7
· · · · · · · · · · · · · · · · · · ·		


Yes (<200 mg/dL)	15		33.3
Fruit Consumption Status			
Often	21		21.0
Infrequently	24		24.0
Fat Consumption Status			
Often	30		33.3
Infrequently	15		66.7
Vegetable Consumption			
Status			
Often	6		13.3
Infrequently	39		86.7
Controlled Blood Pressure			
Status			
Out of Control	33		73.3
Respondents Controlled	12		26.7
Comprehensive clinical		Mean	
needs			
Cholesterol Levels		210.33	
Systolic Blood Pressure		170	
Diastolic Blood Pressure		121.46	
Blood Glucose Status			
Blood Sugar Levels		147.66	

All participants in this study were stroke patients residing in the coastal areas. The majority were men (66.7%) with the largest age group over 55 years old (46.7%). Most have a low level of education (80.0%) and belong to the middle socioeconomic working class (73.3%) and are unemployed (73.3%). In terms of nutritional status, one-third of the respondents were underweight, while the other third were in the normal nutrition category. A history of recurrent stroke was found in 44.4% of respondents, and 80.0% had no previous history of hypertension.

In the context of health risk management in coastal communities, most respondents with

stroke had their blood pressure under control (86.7%). However, total cholesterol levels showed an average of 210.33 mg/dL, which was relatively high, and fasting blood sugar levels showed an average of 147.66 mg/dL, which was above the normal limits. Food consumption patterns showed that 33.3% of respondents frequently consumed high-cholesterol foods and 24.0% often consumed high-fat foods. Efforts to prevent the risk of stroke were carried out by 60.0% of respondents, while access to health services dominated by the use of formal facilities such as health centers and clinics (66.7%), reflecting the still limited access to health services in coastal communities.

Evaluation of Measurement Model

Picture 1. Path diagram illustrating the measurement model of stroke disease management in coastal areas

Latent Construct	Indicators	Outer Loading	Information
Anthropometric status	BBADAN (Weight)	0.876	Valid
	LINGPER (Abdominal	0.951	Valid
	Circumference)		
Socioeconomic status	Economic status	1.000	Valid
Level of formal education	PDDKN (Education)	1.000	Valid
	RIW_STRK (Family history of	1.000	Valid
stroke Blood Glucose Status Blood Pressure	stroke) KDR_GDA (Blood Sugar Level)	1.000	Valid
Hypertension-Related	RIW_HT (Family History of	1.000	Valid
Needs Comprehensive Clinical Needs	Hypertension) KDR_KOLEST (Cholesterol Levels)	0.901	Valid
Chinical Needs	TD_SISTOLIK (Systolic Blood Pressure)	0.724	Valid
System Response to Risk	AKSES_LAYKES (Access to Health Services)	0.573	Valid
	GDA_TRKEN (Controlled Blood Sugar Status)	0.955	Valid
Stroke Disease Management	KOLEST_TRKEND (Controlled Cholesterol Status Levels)	0.876	Valid
	KONSM_BUAH (Fruit Consumption Status)	0.713	Valid
	KONSM_LMK (Fat	0.856	Valid
	Consumption Status) KONSM_SYR (Vegetable Consumption Status)	0.532	Valid
	TD_TRKEND (Controlled Blood Pressure Status)	0.492	Valid

The study variables were grouped into several latent constructs: anthropometric status (weight and abdominal circumference), socioeconomic status and formal education, family history of stroke and hypertension, comprehensive clinical needs (combined cholesterol levels and blood pressure), random blood sugar status, system response to risk (access to health services and control of GDA levels), and stroke disease management.

In this study, stroke disease management was defined as a series of structured efforts made by stroke survivors to independently control secondary and tertiary risk factors to prevent recurrence, accelerate recovery, and maintain an optimal quality of life. This concept includes managing blood pressure and cholesterol levels, consumption improving food patterns (especially fruit and vegetable consumption and reducing saturated fat), and making informed decisions regarding accessing health services when warning symptoms occur. This definition aligns with guidance from the American Stroke Association, which emphasizes the importance of post-stroke self-management as part of community-based tertiary prevention, as well as a rehabilitative approach that emphasizes lifestyle changes, medication adherence, and

ongoing monitoring.⁷ Each management indicator is encoded in a dichotomous form (good = 0, bad = 1).

As presented in Picture 1 and Table 2, all latent constructs in the measurement model indicators were measured using that demonstrated satisfactory outer loading values, all exceeding the minimum threshold of 0.40 (Hair et al., 2019). Constructs such as Socioeconomic Status, Formal Education Level, Family History of Stroke, and Blood Glucose Status showed perfect loading values (1.000), indicating very strong indicator reliability. Other constructs, including Anthropometric Status (0.876–0.951), Hypertension-Related Needs (0.901–1.000), Comprehensive Clinical Needs (0.724–0.901), System Response to Risk (0.573–0.955), and Stroke Disease Management (0.492–0.876), also exhibited acceptable levels of indicator validity. The researcher explored each variable based on theoretical foundations and appropriate indicator approaches used to construct the latent variables. However, the indicator variable Blood Glucose Status was found to be unsuitable for inclusion in the Comprehensive Clinical Needs because it demonstrated an outer loading value below 0.40, indicating that it was not a valid indicator for that construct.

Table 3. Evaluation of Reliability and Construct Validity in the PLS-SEM Measurement Model

	Composite Reliability
Comprehensive	0.799
Clinical Needs	

	Composite Reliability
Hypertension-	1.000
Related Needs	
Stroke Disease	0.830
Management	
System Response to	0.754
Risk	
Stoke Family History	1.000
Anthropometry	0.910
Status	
Status of Blood	1.000
Glycosis	
Socioeconomic	1.000
Status	
Formal Education	1.000
Level	

As shown in Table 3, the results of the construct reliability evaluation indicate that all latent variables in the measurement model achieved Composite Reliability (CR) values above the threshold of 0.70, demonstrating acceptable internal consistency (Hair et al., 2019). The highest CR values (1.000) were recorded for socioeconomic status, formal stroke family education level, history, hypertension-related needs, and status of blood glycosis. These were followed Anthropometry Status (0.910), Stroke Disease Management (0.830), Comprehensive Clinical Needs (0.799), and System Response to Risk (0.754). These findings confirm that all constructs in the model have good reliability and are suitable for further structural model analyses.

Structural Model Evaluation Social Inequality and Nutrition Fueling Blood Sugar Spikes: A Portrait of Double Risk Stroke Sufferers on the Coastal

Table 4. Social Inequality and Nutrition Trigger Blood Sugar Spikes

	Original Sample (O)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Anthropometric Status → of Hypertension- Related Needs	-0.225	0.101	2.280	0.013*
Anthropometric Status → of Stoke Family History	0.348	0.069	5.363	0.000*

	Original Sample	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Anthropometric Status → Status of Blood	-0.375	0.131	2.885	0.002*
Glycosis Socioeconomic Status → of Hypertension-	0.687	0.105	6.800	0.000*
Related Needs Socioeconomic Status→ Status of	-0.372	0.154	2.688	0.008*
Blood Glycosis Stoke Family	0.396	0.128	5.363	0.001*
History→ Formal Education Level				

^{**} Significant at p < 0.05 (two-tailed)

As shown in Table 4, the results of the structural pathway analysis indicated that anthropometric status had a significant negative effect on blood glucose levels ($\beta = -0.375$; p = 0.002). This suggests that individuals with better anthropometric profiles, representing a healthier nutritional status and body composition, tend to have lower blood glucose levels. Similarly, socioeconomic status was negatively associated with blood glucose ($\beta = -0.372$; p = 0.008), implying that respondents with socioeconomic conditions exhibited better glycemic control. These findings highlight the influence of social and nutritional inequalities as critical determinants of metabolic outcomes in stroke survivors living in coastal areas.

In addition, anthropometric status showed a significant positive association with family history of stroke ($\beta = 0.348$; P = 0.000), indicating a potential clustering of stroke related risk factors within families sharing both genetic and lifestyle patterns. Formal education level was also positively correlated with family history of stroke ($\beta = 0.396$; p = 0.001), suggesting that higher educational attainment may coincide with increased awareness and

diagnosis or reflect broader trends related to the epidemiological transition in which modern lifestyles elevate cardiovascular risk even among educated populations.

Furthermore, socioeconomic status exhibited a strong positive relationship with hypertensionrelated needs ($\beta = 0.687$; p = 0.000), suggesting a higher prevalence of hypertension among those with greater economic means, possibly due to sedentary behavior and changes in diet. Conversely, anthropometric status negatively affected hypertension-related needs ($\beta = -0.225$; p = 0.013), reinforcing the protective role of an optimal nutritional status. These structural relationships confirm that the interaction between socioeconomic conditions, education, nutrition, and family history plays a pivotal role in shaping metabolic risk and hypertension, ultimately influencing blood sugar regulation and stroke risk management in coastal communities.

The Hypercholesterolemia, Hypertension, and Hyperglycemia Problem Circle: A Portrait of Stroke Management Failures in Coastal Communities

Table 5. The Hypercholesterolemia, Hypertension, and Hyperglycemia Problem Circle: A
Portrait of Stroke Management Failures in Coastal Communities

	Original Sample (O)	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
Comprehensive Clinical Needs	0.844	0.072	11.675	0.000*

^{**}Significant at p < 0.10 (one-tailed).

	Original Sample	Standard Deviation (STDEV)	T Statistics (O/STDEV)	P Values
(cholesterol levels and			V	
blood pressure) →				
Stroke Disease				
Management				
Comprehensive	0.487	0.121	4.351	0.000*
Clinical Needs → of				
the Risk Response				
System (access to				
health services and				
blood sugar levels)				
Stroke Disease	-0.303	0.104	2.861	0.002*
Management → System				
Response to Risk				
Stroke Disease	-0.188	0.127	1.505	0.071*
Management → Status				
of Blood Glucose				
Status of Blood	0.911	0.087	12.462	0.000*
Glycosis → System				
Response To Risk				
Stoke Family History	0.173	0.132	1.328	0.096*
→ Stroke Disease				
Management				
Hypertension-Related				
Needs → Stroke	-0.301	0.156	2.075	0.027*
Disease Management				

As presented in Table 5, the analysis demonstrated that comprehensive clinical needs, represented by elevated cholesterol levels and systolic blood pressure, had a strong positive effect on both stroke disease management ($\beta = 0.844$; p = 0.000) and the system's response to risk ($\beta = 0.487$; p = 0.000). This finding suggests that as patients' clinical conditions become more severe, health systems tend to respond more actively, potentially through intensified monitoring, interventions, or referral pathways. Moreover, the severity of clinical needs may motivate individuals to improve their self-management practices, thus reinforcing the dual role of clinical severity in prompting both institutional and individual. level responses to stroke risk in coastal populations.

Interestingly, there are two contrasting relationship patterns related to family histories. First, a family history of stroke showed a tendency to be positively associated with stroke

management (β = 0.173; p = 0.096). However, in field and coastal contexts, respondents with a family history of stroke tended to have poorer stroke management skills. This phenomenon is suspected to be influenced by psychosocial factors such as excessive fear, anxiety, health fatalism, and poor stroke management practices in previous families.

In contrast, a hypertension-related needs (family history of hypertension) had a significant positive influence on stroke disease management ($\beta = -0.301$; p = 0,027). These findings show that respondents with family members with hypertension have a better ability to manage stroke. This can be explained by the fact that family experiences in dealing with hypertension, including blood pressure monitoring habits, dietary control, and health provide visits, protective educational effects for respondents in dealing with stroke.

In addition, stroke disease management had a significant negative effect on the system's response to risk ($\beta = -0.303$; p = 0.002), indicating that poor stroke management is the main factor in increasing the burden on health services, including the high number of visits to health centers. Meanwhile, blood glucose status also showed a very strong positive influence on the system's response ($\beta = 0.911$; p = 0.000), reinforcing the evidence that the health system only reacts when a patient's blood sugar levels are already high. The association between stroke management and blood glucose reduction remained insignificant ($\beta = -0.188$; p = 0.071), indicating that improvements in blood sugar levels were more due to health system interventions rather than the result of selfmanagement by stroke patients.

Causality Models and Strategies for Improving the Quality of Stroke Management in Coastal Communities

As illustrated in Figure 1, the results of the causality model analysis revealed that the quality of stroke disease management could be explained by several key constructs, with an R-squared value of 0.754. This indicates that 75.4% of the variance in stroke management is accounted for by the variables included in the model, namely, comprehensive clinical needs, blood glucose status, and system response to risk. The relatively high R-squared value demonstrates that the model possesses strong predictive power, confirming its adequacy in describing the dominant factors that influence stroke management among coastal populations.

Specifically, the main findings suggest that comprehensive clinical needs (based on cholesterol levels and systolic pressure) are the most dominant driving factors for improved stroke management ($\beta = 0.844$; p = 0.000). However, the paradox. The system's response to risk was triggered by poor stroke management ($\beta = -0.303$; p = 0.002) and high blood glucose levels ($\beta = 0.911$; p = 0.000). This shows that the new health system responds actively after a patient's clinical condition deteriorates, not as a result of good disease management at the individual level.

Based on these findings, effective stroke management quality improvement strategies in

communities should coastal focus strengthening the control of primary risk factors, such as cholesterol reduction, blood pressure control, and early blood sugar management, rather than relying solely on system responses after acute patient conditions. Communityinterventions, including based screening, health education, nutritional literacy, and hypertension and dyslipidemia control, are crucial. In addition, increasing early detection and regular monitoring of metabolic risk factors at health centers is also an important component in breaking the cycle of hypercholesterolemia, hypertension, and hyperglycemia, which have been the main obstacles to the success of stroke management in coastal areas.

Discussion

A. Descriptive Analysis of Respondent Characteristics

The results of this study show that the majority of stroke patients in coastal areas are men over 55 years old with low education levels to the middle to belong socioeconomic class. These findings are in line with studies by Loh et al. (2022) and Malaeb et which reported (2021)sociodemographic factors such as old age, gender, low education, and low economic status are associated with high rates of stroke incidence and barriers to accessing health services. 10,11 Education also affects incidence of hypertension.¹² The nutritional status of the patients in this study varied between undernourished and normal. addition, biochemical examinations showed that most patients had high cholesterol and blood sugar levels. These findings reinforce the report of Clancy et al. (2023) which suggests that metabolic disorders such hypercholesterolemia and hyperglycemia are common in stroke patients and can worsen functional status as well as quality of life. 13 The consumption of high-cholesterol and fat foods found in stroke patients in these coastal areas is also a concern, as explained by Haq et al. (2024) who highlight the adverse impact of a diet high in sodium and fat on the metabolic profile of stroke patients

Based on these results, an integrated stroke management model with a community-based approach is required. This model involves ongoing health education, strengthening the role of families in patient care, and improving access to primary and secondary healthcare services. Malaeb et al. (2021) emphasize the importance of family support in the management of post-stroke risk factors, while Clancy et al. (2023) advocate multidisciplinary interventions that include regular monitoring of clinical parameters such as blood pressure, cholesterol, and blood sugar. 11,13

Additionally, the use of simple technologies, such as medication reminder apps and remote consultations, can help patients stay connected to healthcare. Chang et al. (2022) also show that sociodemographic factors such as a patient's education level, income, and physical function play a significant role in determining the level of social participation and successful poststroke community integration, so it needs to be a key consideration in the planning of community-based rehabilitation programs in coastal areas.¹⁵

Overall, these findings confirm that improved stroke disease management in coastal areas requires a holistic and community-based approach that considers the sociodemographic characteristics of patients, nutritional status, and metabolic factors underlying their condition. With the implementation of an integrated management model involving health education, metabolic risk factor control, family support, and sustainable health services, it is hoped that the quality of life of stroke patients in coastal areas will be significantly improved.

B. Social Inequality and Nutrition Fueling Blood Sugar Spikes: A Portrait of Double Risk Stroke Sufferers on the Coastal

The results of the analysis showed that anthropometric and socioeconomic statuses had a significant negative relationship with blood glucose levels in stroke patients in coastal areas. The higher the anthropometric status of the respondent, which reflects better nutritional status and body composition, the lower was the blood glucose level. Similarly, the higher the socioeconomic status of the respondent, the more controlled their blood glucose levels.

These findings are in line with the results of a study by Jamal et al. (2021), which showed that individuals with low socioeconomic status and poor nutritional status tended to have poorer blood glucose control.

Epidemiologically, these results show that groups with low socioeconomic status and undernutrition in coastal areas are priority populations for stroke complication prevention programs. Limited access to nutritious food, low health awareness, and lack of routine blood sugar monitoring facilities worsen blood glucose levels. Song et al. (2022) in their study showed that nutritional status and blood glucose levels are important predictors of the occurrence of complications such as post-stroke pneumonia, which worsens the clinical prognosis. ¹⁶

epidemiological The management implications of these findings are importance of strengthening early detection programs for hyperglycemia and malnutrition in stroke patients in coastal communities through a community-based screening approach. This program can be carried out through the cadres, involvement of health nutrition education, and primary health services that can monitor and intervene quickly in changes in blood glucose levels in stroke patients. Yao et al. (2023) also emphasize that effective control of post-stroke hyperglycemia requires integration between clinical and social factors, including strengthening family and community support in the management of chronic diseases.¹⁷

Through a community-based epidemiological management approach that focuses on socioeconomic factors and nutritional status, it is hoped that blood glucose level control among stroke survivors in coastal areas can be more optimal. This effort is important for reducing the risk of long-term complications and improving the quality of life of stroke patients in populations with limited access to health services.

The results of the analysis showed that formal education level was positively correlated with a family history of stroke, suggesting that respondents with higher education levels had more family members who had experienced stroke. These findings are in line with research by Yu et al. (2021) which reported that individuals with higher education have a higher

risk of stroke in at-risk populations, likely due to sedentary lifestyles and consumption of high-fat foods. ¹⁸ Franc et al. (2021) also showed that in young populations with stroke, higher education levels may be related to unhealthy lifestyle behaviors such as lack of physical activity. ¹⁹

Socioeconomic status was also positively correlated with a history of hypertension, indicating that respondents with a higher economic status tended to have a greater prevalence of hypertension. Stulberg et al. (2024) show that the prevalence of stroke at the population level is strongly correlated with socioeconomic factors such as poverty rates and access to health services, which may mediate the incidence of hypertension as a major risk factor regions for stroke in with varying socioeconomic levels.²⁰

Meanwhile, anthropometric status had a negative relationship with a history hypertension, which meant that the better the nutritional status of the respondents, the lower was their tendency to have a history of hypertension. Koval and Rey (2023) support these findings by showing that better nutritional status, particularly related to optimal body mass index, is associated with a lower risk of hypertension, while groups with low socioeconomic status and education show a higher risk of hypertension.²¹

Epidemiologically, these findings confirm the importance of cardiovascular risk factor control strategies in coastal communities that consider the complex interactions between education, socioeconomic status, and nutritional status of individuals. Community-based interventions, such as hypertension screening, equitable nutrition education at all levels of education, and promotion of healthy lifestyles, are strategic steps in efforts to reduce the burden of primary and secondary strokes in vulnerable coastal areas.

C. The Hypercholesterolemia, Hypertension, and Hyperglycemia Problem Circle: A Portrait of Stroke Management Failures in Coastal Communities

The results of the structural model analysis showed that increased cholesterol levels and systolic blood pressure were the main factors that worsened the clinical condition of patients with stroke in coastal areas. The high elevation of these two parameters indicates a high metabolic risk burden in patients with stroke, which drives increased visits to primary health care facilities, such as health centers. Luo et al. (2022) reported that increased cholesterol levels, particularly triglyceride-rich lipoprotein fractions, were significantly associated with the risk of diabetes mellitus in stroke patients, suggesting the presence of a complex interaction between dyslipidemia and hyperglycemia in this population.²² In addition, Das et al. (2022) showed that prediabetes, dyslipidemia, and significantly elevated levels of C-Reactive Protein (CRP) were found in stroke patients, reinforcing the link between metabolic disorders and stroke incidence.²³

Although the number of healthcare visits is increasing, the quality of stroke management in coastal areas remains low, as demonstrated by the negative relationship between the system's response to risk and the quality of stroke management. This suggests that health services in coastal communities are more curative and reactive, with most patients accessing services only when their clinical conditions worsen. These findings are supported by Nowrin et al. (2023) in a systematic review showing that community-based interventions. including health education and community health worker engagement, are effective in lowering stroke risk factors such as blood pressure and levels cholesterol in resource-constrained countries.²⁴

Furthermore, high cholesterol levels and systolic pressure also contribute to increased blood glucose levels, which is thought to occur through insulin resistance mechanisms and endothelial dysfunction due to chronic metabolic stress. Sugar levels have an effect on the increase in blood pressure.²⁵ Li et al. (2024) support this by showing that the triglyceride-

glucose (TyG) index mediates the relationship between residual cholesterol and stroke incidence, indicating the importance of lipid and glucose control simultaneously in stroke populations. ²⁶ Diets high in fat, low in fiber, and limited access to healthy foods in coastal communities exacerbate metabolic disorders.

Epidemiologically, these findings reflect the paradox of health services in coastal areas, where the decline in blood glucose levels in stroke patients is more due to medical intervention after the condition has worsened than the result of sustainable management of risk factors. This confirms the importance of a paradigm shift from curative management to community-based primary prevention. Health education programs, periodic monitoring of risk factors, and the integration of promotive and preventive services at health centers are strategic steps that need to be strengthened to improve the quality of stroke management in coastal communities.

D. Causality Models and Strategies for Improving the Quality of Stroke Management in Coastal Communities

The results of the causality model analysis showed that the quality of stroke management in coastal communities is strongly influenced by the patient's clinical condition and the reactivity of the healthcare system. The determination value ($R^2 = 0.754$) indicates that approximately 75% of the variation in stroke management can be explained by variables such comprehensive clinical needs, blood glucose levels, and the system's response to risk. Unfortunately, the system responds more when the patient is already in a deteriorating condition rather than during the early stages of risk control. This shows the dominance of reactive curative approaches, which weaken effectiveness of tertiary prevention.

Tertiary prevention in epidemiology aims to prevent recurrence, complications, and long-term disabilities. In the context of stroke, this approach not only focuses on clinical treatment but also involves restoring function, psychosocial support, and improving overall quality of life. However, the reality in coastal communities suggests that patients with stroke are more likely to access the hospital only when

they are acute and rarely make regular visits or follow a consistent rehabilitation program. Maanoosi (2024) emphasized the need to build structured rehabilitation services in developing countries. Solutions include engaging families, leveraging low-cost technologies, and strengthening international collaboration for training and capacity building.²⁷ This illustrates the structural inequalities in the provision of tertiary prevention services.

Strategies to improve the quality of stroke management in coastal areas should focus on integrated and sustainable community-based interventions. This scheme places the health center as a central point for screening and monitoring of risk factors such as blood pressure, cholesterol, and blood glucose, which is complemented by home visits, health nutritional education. and counseling. Community health workers play an important role in bridging patients' limited access to specialist services. The training program developed by Scheffler & Mash (2023) was shown to improve the ability of cadres to provide effective post-stroke care in patients' homes, including functional monitoring and psychosocial support.²⁸ This reinforces the argument that community-based interventions are not only realistic to implement in coastal but epidemiologically areas also economically effective.

Furthermore, the effectiveness of community management programs is strengthened by *task-based self-rehabilitation* approaches, as proposed by Ibrahim et al. (2024). This model emphasizes functional and motor exercises that can be performed independently by patients at home with minimal supervision from family members or health cadres. In addition to being cost-effective, this approach has been shown to increase patient recovery capacity in resource-constrained regions.²⁹

Thus, the ideal tertiary stroke prevention model in coastal communities must be based on integration between the primary service system (puskesmas), the role of community cadres, family support, and simple technologies, such as teleconsultation. This model can address the challenge of limited access while improving the quality of life of stroke patients through

continuous monitoring, education, and early intervention on recurrence.

Conclusion

The findings of this study suggest that the Stroke Disease Management model in coastal regions should place post-stroke care as a key component in community management. Policies directed at strengthening *home care services*, family education, repeated risk monitoring, and the development of simple rehabilitation facilities at the primary level are very relevant strategies in reducing the burden of disability due to stroke and improving the quality of life of stroke survivors in coastal areas

Acknowledgments

We extend our sincere gratitude to the Puger Health Center and the residents of Puger Kulon Village and Puger Wetan Village for their cooperation and meaningful support in the implementation of field activities. The contribution of all parties, both in the form of permits, data access, and active community involvement, is very helpful in the development of a coastal community-based stroke epidemiology management model, which is the main focus of this study.

References

- 1. World Stroke Organization. World Stroke Organization. 2025. Leading global action on stroke.
- 2. https://www.worldlifeexpectancy.com/c ause-of-death/stroke/by-country/
 [Internet]. 2025. Stroke World Health Rankings.
- 3. Paliyama FP, Rinaldi FX, Silalahi PY, Nari JP. Epidemiological Study of Stroke Disease in the Southeast Maluku Islands Region in 2023. AKSONA [Internet]. 2025 Jan 29;5(1):6–11. Available from: https://e-journal.unair.ac.id/aksona/article/view/6 2824
- 4. Nakibuuka J, Nalubwama H, Nambalirwa E, Namusoke O, Byakika-Tusiime J, Sajatovic M, et al. Barriers to Secondary Stroke Prevention and Care in

- Urban and Rural Uganda: Lived Experiences of Stroke Survivors, Carers and Key Stakeholders. Clin Med Res (NY). 2021;10(3):59.
- 5. Kalkonde Y, Bang A, Jadhao S, Deshmukh M, Sen Gupta S. Gaps in secondary prevention among stroke survivors in rural Gadchiroli, India: A community-based cross-sectional study. Wellcome Open Res. 2020;5.
- 6. Tuli W, Teshome E, Jiru T. Knowledge of stroke risk factors and prevention among hypertensive patients on follow-up at Addis Ababa University Tertiary Hospital, Addis Ababa, Ethiopia: a cross-sectional study. BMJ Open. 2024 Nov 20;14(11):e089159.
- 7. Man S, Bruckman D, Uchino K, Chen BY, Dalton JE, Fonarow GC. Rural Hospital Performance in Guideline-Recommended Ischemic Stroke Thrombolysis, Secondary Prevention, and Outcomes. Stroke. 2024 Oct 1;
- 8. Hair JF, Hult GTM, Ringle C, Sarstedt M, Danks N, Ray S. Partial least squares structural equation modeling (PLS-SEM) using R: A workbook. Springer. 2021.
- 9. Kleindorfer DO, Towfighi A, Chaturvedi S, Cockroft KM, Gutierrez J, Lombardi-Hill D, et al. 2021 Guideline for the Prevention of Stroke in Patients With Stroke and Transient Ischemic Attack: A Guideline From the American Heart Association/American Stroke Association. Vol. 52, Stroke. Wolters Kluwer Health; 2021. p. E364–467.
- 10. Loh HC, Kwan JN, Ramlee SNL, Looi I. The Impact of Sociodemographic Variables on Risk Factors Associated with Ischaemic Stroke Patients by Age Group. Journal Of Cardiovascular, Neurovascular & Stroke. 2022 Mar 30;4(1):8–21.
- 11. Malaeb D, Hallit S, Dia N, Cherri S, Maatouk I, Nawas G, et al. Effects of sociodemographic and socioeconomic factors on stroke development in Lebanese patients with atrial fibrillation:

- a cross-sectional study. F1000Res. 2021 Aug 11;10:793.
- 12. Latar ZS, Muh F, Harriyani I. Analisis Determinan Hipertensi: Studi di Wilayah Urban Kabupaten Wonogiri. Jurnal Epidemiologi Kesehatan Komunitas [Internet]. 2025;10 (3):1–9. Available from: https://doi.org/10.14710/jekk.v10i3.2682
- 13. Clancy B, Bonevski B, English C, Callister R, Baker AL, Collins C, et al. Health risk factors in Australian Stroke Survivors: A latent class analysis. Health Promotion Journal of Australia. 2024 Jan 1;35(1):37–44.
- Haq AD, Harahap HS, Wahyudi S, 14. Susilawati NNA. Saltwater Fish Consumption and the Risk of Stroke in Population. MNJ Coastal (Malang Neurology Journal) [Internet]. 2024 Jan 1;10(1):59–63. Available from: https://mnj.ub.ac.id/index.php/mnj/articl e/view/635
- 15. Chang FH, Lin YN, Liou TH, Ni PS. Predicting trends of community participation after hospital discharge for younger adults after stroke. Ann Phys Rehabil Med [Internet]. 2023 Feb 1 [cited 2025 Jul 2];66(1):101644. Available from: https://www.sciencedirect.com/science/article/pii/S1877065722000173?via%3Dihub
- 16. Song X, He Y, Bai J, Zhang J. A nomogram based on nutritional status and A2DS2 score for predicting stroke-associated pneumonia in acute ischemic stroke patients with type 2 diabetes mellitus: A retrospective study. Front Nutr. 2022 Oct 13;9.
- 17. Chong CM, Chung CC, Merlino G, Ma D, Feng L. A review of stress-induced hyperglycaemia in the context of acute ischaemic stroke: Definition, underlying mechanisms, and the status of insulin therapy.

- 18. Yu YY, Lei D, He Q, Chen W. A cohort study on the relationship between education level and high-risk population of stroke. Ibrain. 2021 Sep 1;7(3):181–91.
- 19. Franc D, Šaňák D, Divišová P, Lysková L, Bártková A, Zapletalová J, et al. Socioeconomic Status and Lifestyle in Young Ischaemic Stroke Patients: a Possible Relationship to Stroke Recovery and Risk of Recurrent Event. Cent Eur J Public Health. 2021;29(3):223–9.
- 20. Stulberg EL, Lisabeth L, Schneider ALC, Skolarus L, Kershaw KN, Zheutlin AR, et al. Correlations of Socioeconomic and Clinical Determinants with United States County-Level Stroke Prevalence. Ann Neurol. 2024 Oct 1;
- 21. Koval S, Rieznik L, Penkova M, Mysnychenko O, Starchenko T, Lytvynov V, et al. Eposter's Section Global Burden of Hypertension Economical Aspects Changes in the Character of the Course Of Arterial Hypertension In Patients In War Zone In The Kharkiv Region Of Ukraine. 2023.
- 22. Luo R, Jiang H, Wang T, Xu Y, Qi X. Correlation of Triglyceride-Rich Lipoprotein Cholesterol and Diabetes Mellitus in Stroke Patients. Int J Endocrinol. 2022;2022.
- 23. Das M, Paul S, Roy S. Prediabetes, dyslipidemia and c-reactive protein levels among stroke patients: a hospital-based study in north-east India. Int J Res Med Sci. 2022 Dec 30;11(1):204.
- 24. Nowrin I, Mehareen J, Bhattacharyya DS, Saif-Ur-Rahman K. Community-based interventions to prevent stroke in low and middle-income countries: A systematic review. Health Sciences Review [Internet]. 2023 Dec 1 [cited 2025 Jul 2];9:100123. Available from: https://www.sciencedirect.com/science/article/pii/S2772632023000491?via%3Di hub
- 25. Syahri Rizki U, Ismah Z, Agustina R, Sahputra H. Pengaruh Kadar Gula Darah

- terhadap Hipertensi di RSUD Rantauprapat. Jurnal Epidemiologi Kesehatan Komunitas. 2023;8 (2):192– 200.
- 26. Li X, Hu JG, Liao Q, Wu Y, Huo RR. Triglyceride-glucose index mediates the association between residual cholesterol and stroke among middle-aged and older adults in China: a prospective, nationwide, population-based study. Front Cardiovasc Med. 2024;11.
- 27. Richard S, Maanoosi mehran Mahran Maanoosi mehran M. Stroke Series. South Sudan Medical Journal [Internet]. 2024;17(1). Available from: https://dx.doi.org/10.4314/

- 28. Scheffler E, Mash R. Evaluation of a stroke rehabilitation training programme for community-based primary healthcare. Afr J Disabil. 2023 Sep 8;12.
- 29. Ibrahim R, Joseph C, Stewart A, Lawal IU. Self-Rehabilitation Strategy for Rural Community-dwelling Stroke Survivors in a Lower-Middle Income Country: A Delphi Study [Internet]. 2024. Available from:
 - http://medrxiv.org/lookup/doi/10.1101/2 024.05.03.24306686