Genetic Background of β Thalassemia Modifier: Recent Update

Lantip Rujito¹, Teguh Haryo Sasongko²

¹Department of Molecular Biology, Jenderal Soedirman University, Purwokerto, Indonesia
²Division of Human Biology School of Medicine, International Medical University, Kuala Lumpur, Malaysia

Abstract
Thalassemia has become major health problem among developing countries. Genetic background which contains enormous mutations and variations have lead in clinical problem differences.

The genetic basis of thalassemia, beta specifically, is mutations of the gene encoding the β chain of the hemoglobin (Beta-Globin, HBB). However, today it is known that abnormalities in this gene do not necessarily determine the clinical appearance of β thalassemia patients. Currently there are several genetics and non genetics factor that are influence clinical manifestation such as the type of β globin, gene mutation, co-inheritance with α thalassemia and HPFH and also non genetic factor that worsen the clinical symptom i.e infection, nutritional status, and oxidation state such as iron overload. Several genetic studies are still notable to explain the cause of inconsistency between genotype and phenotype of β thalassemia.

A set of genes that can modify the primary β thalassemia disorder has been founded. Secondary modifier contains genes that have been associated with elevated levels of HbF or continuous production of γ chain and improvement ratio of α / non α globin chain. The genes involved are HBA, HBG, BCL11A, HBS1L-MYB and other cofactor genes regulating erythropoiesis. Tertiary genetic modifier comes from other genes related to the disease severity including iron metabolism, redox activity, and clinical complications. The review aims to provide the latest updates regarding the known β thalassemiamodifier genes and some other genes involved in the changes of the clinical manifestations.

Keywords: thalassemia; β thalassemia; genetic modifiers; BCL11A; HBS1L-MYB; XmnI

INTRODUCTION
Thalassemia is a hereditary hemolytic disease with the highest prevalence and incidence in the world. It is one of the most serious health problems given that thousands of children suffer from it each year. Thalassemia is most prevalent in the areas known as the Thalassemia Belt, such as the Mediterranean, Middle East, Southern Asia, China Peninsula, Southeast Asia, and Pacific Islands¹. Recent reports suggested that Thalassemia has rapidly spread to America, Europe, and Australia due to migration and inter-marriage of different ethnic groups. The World Health Organization (WHO) estimates that 7% of the global populations (80 – 90 million people) are carriers of β thalassemia where most of them from developing countries.

The high frequency of Thalassemia in these regions is strongly associated with the spread of Plasmodium falciparum. Of the population who are endemic with malaria, about 3 – 40% carries the variant hemoglobin, with thalassemia major prevalence at about 0.3 – 25 per 1000 births. The literature suggests that from the numbers, only about 200,000 patients with the major symptoms of Thalassemia that are registered and receive regular governance². The data from Indonesia reported that β thalassemia carriers were 3 - 5% population and in some areas this numbers even reaches 10%. It is estimated that there will be 2500 children born with thalassemia annually. This number is far below the real number found in the population. This discrepancy
is thought to be caused by several factors including the\nvariety of clinical features that range from extremely mild symptoms that do not\nrequire transfusion to the severe ones that need regular transfusion.\n
Molecular Pathophysiology
1. Primary Modifier of β thalassemia

It has been shown that clinical heterogeneity in β\nthalassemia primary is caused by variations of genetic\nlesions in β globin gene. Patient severity and the\namount of produced globin protein are directly\nassociated with a mutation on the β globin gene. More than 300 point mutations in β globin gene have\nbeen identified and deletion is very rare. However,\ngenotype variability in β globin gene only is often not\nought to explain the different phenotypes when the\npatients show the same genotype. Wahidiyat, 2009\nhad reported a family who had two βthalassemia/HbE\nchildren, one of them need 6-8 timestransfusion per\nyears, while the other does not require transfusion.\nThe hemoglobin and DNA analysis showed the same\nmutation, β* severe thalassemia/HbE was present in\nboth children. This case shows how patients with the\nsamgenetics and non genetics (environmental)\nfactors may show different clinical manifestations.\n
β thalassemia occurs due to the disappearance of the\nβ globin chain (β thalassemia*) or the disruption of β\nchain (β thalassemia*) on blood globin structure. In β\nthalassemia, there is an imbalance of production\nbetween the globin α chain and globin β chain that\nwould normally form A hemoglobin (Adult). The\ndisruption in the synthesis of β globin in β thalassemia\npatients lead to an excess of the globin α chain, so\nthere is α chain precipitation inside the red blood cell\nprecursor in the bone marrow and also in the\nderivatives of peripheral circulation. The erythroid\nnuisance induces an ineffective erythropoiesis shown\nby the proliferation of bone marrow cells and extra\nmedullary erythropoiesis. Furthermore, products\nlike heme, hemin, hemichrome, and loose iron can\ncause a pathological change in red blood cells due to\noxidative damage of the cell membrane that leads to\napoptosis. A further study suggested that the erythroid\nprecursor of a Thalassemia patient showed 3-4 times\nhigher apoptosis level than the erythroid in a normal\nperson. Mechanism, able to reduce the a/non a chain\nimbalance is the co-inheritance with a thalassemia,\ncontinuous production of y chain which binding the\nexcess of achain result in a persistent fetal\nhaemoglobin (HbF) production.

The clinical phenotypes of β thalassemia patients\nvary depending on the requirement of blood\ntransfusion. The phenotype is associated with the\ndegree of imbalance and the surplus of the globin α\nand β chain. This clinical spectrum involves many\nfactors, including the type of mutation in the β gene as\na primary modifier, a secondary modifier that leads to\nthe improvements of the balance ratio of α and β\nglobin chain, and also a tertiary modifier which is both\ngenetic and non-genetic that ameliorates or\naggravates with the disease appearances and\ncomplication.\n
β Globin Mutations.

Clinical variability of β thalassemia patients\ncorrelates with the mutation type contained in the\nglobin β gene. Allele classification is distinguished\nto two major classes that are a severe allele with\ntotal absence of the globin chain, and the mild allele\nwhich produces a globin chain that is inheritable. The\nalleles are notated as β0 and β*, respectively. Most of\nthe mutations that cause these types are point\nmutations. Another type involves a deletion.

Today, more than 300 unique mutations have been\nwell characterized. There are four known major\nmutsants of β thalassemia: a promoter mutant, RNA\nsplicing, RNA capping/tailing mutant, and a\ntranslation mutant. Another form of molecular\nabnormality is a frameshift mutation that can\ntransform the reading frame, thus resulting in a short\nand unstable polypeptide or the formation of a codon\nstop (nonsense mutation) that results in a premature\ntermination of translation process. A variation of these\nkinds mutations will affect on the first\ntransfusion time, transfusion requirements, and\nclinical appearances in the patient’s life.

The mutation that interferes with the transcription\nprocess can happen in the 5’ untranslated region (5’\nUTR) of the globin β gene as well as in the proximal\nCACC box. An example of the mutation is -90 C>T, -\n88 C>T, -88 C>A. Moreover, the mutation can also\nhappen in the TATA box region such as -31 A>G and\n-30 T>A. Generally, the mutations interfere with the\nproduction of the globin chain on a basic level thus\nsuggests a picture of mild clinical diagnosis of β+ or\neven silent β**. The mutation that involves the RNA\nsplicing process can happen on the splice donor site such as IVS2-2’T or\nsplice acceptor site such as IVS2-850 G>T that\nleads to a clinical picture of severe Thalassemia (β0)\ndue to non-formation of the normal RNA. The\nmutation that is located between those areas can lead\nto the decrease of varied RNA which raises the\nThalassemia phenotype from mild to severe. One of\nthe mutations is IVS2 -5 G>T. A variant structure of\nHbE (Cd26 GAG>AAG) is the general form in the\nSoutheast Asian population which can result in the\nmild type (β+) Thalassemia phenotype because it\ncould activate cryptic splicing of the GTGGTGAGG\ndonor in codon 24-27 of exon 1. The activation which\ncauses the normal production of HbE is reduced so the\nclinical manifestation of Thalassemia can occur.

The mutation that involves the start codon can\ninterfere with the initiation of the transcription process\nand results in the β0 phenotype; for instance, the\nATG>AGG mutation. The mRNA elongation process\ncan be interrupted by nonsense mutation like Cd17\nAAG> TAG or a frameshift mutation like Cd41/42 –\nTTCT. These mutations cause a premature\ntermination of the mRNA and result in a severe\nThalassemia phenotype (β0). Some of the β+ and β**
phenotypes are caused by a mutation in the polyadenylation region (AATAAA) at 3’ position in the end of the globin β gene that can destabilize the mRNA chain. An example of this mutation is AATAAA>CATAAA. The full set of common mutations in β thalassemia is depicted in figure 1.

Some of the mutants show a dominant reduction nature. On the mutant that produces a premature termination codon (PTC) of mRNA that is caused by the frameshift mutation or nonsense mutation, this mRNA will be degraded by nonsense-mediated mRNA decay (NMD) so the presence of the mRNA is at a minimum level. If the PTC mutation occurs in exon 3 of the globin β gene, NMD does not function well and abandons the chain, so the mRNA can be translated and produces variant globin protein that can cause a precipitation in the erythroid precursor.

2. Secondary Modifier of β thalassemia

The clinical pictures of Thalassemia that are caused by a primary mutation of the β globin can be modified by another gene outside the β globin gene. This secondary genetic factor modifies the Thalassemia phenotype by repairing the imbalance of the globin chain and the surplus of globin chain. HbF which is normally expressed in the fetus period is able to modify the clinical picture by binding the surplus of α chain on β thalassemia.11 The surplus of an α chain on β thalassemia can cause a precipitation of the erythrocyte membrane as a hallmark of the disease that can be modified by some conditions like a coinheritance with an α mutation and the increase of HbF.12,13

a/β Globin Ratio Modifier.

It has been reported that homozygous β thalassemia or a heterozygote compound that carries a deletion allele of α gene show less severe phenotype. The mechanism of this modification effect depends on the severity level of the mutation allele type on the β gene and the number of functionalities of the α gene.15 The coinheritance from a single deletion of the α gene on β thalassemia has a minimum impact while the deletion of two α genes shows a less severe phenotype.22 The occurrence of an α gene deletion causes a balance between α and β chains on β thalassemia and the patient recovers. With a heterozygote β thalassemia patient, a single deletion of the α gene shows an absence of hypochromic microcytic blood pictures, while the addition (extra copy) to the α gene causes a more severe clinical picture in β thalassemia patients. Some of the heterozygote β thalassemia patients with a triplication of α genes (α α / α α) show a phenotype spectrum from asymptomatic to intermediate Thalassemia. Another study also reported that quadriplication of α genes in simple heterozygosis and in carriers of suspected silent β thalassemia, may result in symptomatic thalassemia. The recent reports shows that this kind of genotype constitution is not rare in case of thalassemia intermedia. The balance abnormalities of α and β chains on β thalassemia are also related with major α globin gene regulator. Homozygous deletion on these regulator may produce Hb H disease appearance, but in coinherence with β thalassemia could modify α and β chain ratio, impacting to a better condition.

Increasing of HbF as Modifier

The ratio of α and β chains on β thalassemia can also be modified by an increase of HbF production. Though in normal adults the production of HbF is stopped when they were born, the HbF is still minimally produced (±1 %). In the case of β thalassemia, HbF is relatively increased due to the selective survival from the erythroid precursor that synthesizes the γ chain. A normal adult has 0.5–1% of HbF which is concentrated at F-erythrocyte total. However, the β thalassemia patients have a different ability in terms of the number of synthesized γ chains.13 The enhancement of HbF in the adult can occur in the cases of Hereditary Persistence of Fetal Hemoglobin (HPFH) and through the Quantitative Traits Locus (QTL). The deletion of seven areas within the locus of β globin has been characterized and associated with HPFH. These HPFH deletions show the enhancement of HbF by 30% of total hemoglobin expressed on all of the erythrocytes (pancellular HbF).29 The basis mechanism of the
abnormality may be caused by the inability of normal γ globin gene to function due to juxtaposition from the enhancer distal element in the proximal area of the γ globin gene as a result of the deletion.17

Different from the deletion HPFH type, where both αγ and γ genes run into overexpression, non-deletion HPFH expresses only a single globin γ gene. The identification of a point mutation in a non-deleted HPFH case is 5 mutation types that have been found on GC rich -200 Gγ, -202 C>T, -198T>C, -196C>T, -195 C>G from A γ gene.30 HPFH expressed only a single globin γ chain is limited to XmnI polymorphism. Pathomechanism of HbF enhancement on the non-deletion HPFH is still a controversial topic. The affinity enhancement of Spl protein is reported to have a correlation with the HbF enhancement in the case of HPFH on several point mutations that are -202 C>G, -198 T>C and -195 C>G.31 Recent studies found that this kind of mutation is a de novo binding site from the Stage Selector Protein (SSP) which is a protein complex that causes an adhesion with the proximal promoter, while -198T>C creates a novel CA/C box in the globin A γ promoter.32

In addition to HPFH, the increased production of HbF involves genes that are included in the Quantitative Traits Locus (QTL) of HbF Inducer. There are at least three main loci that are associated with the increased production of HbF and affect the phenotype of β thalassemia patients. Those loci are Gγ, promoter, chromosome 6q, and chromosome 2.33

Quantitative Traits Locus (QTL) of Xmn1, BCL11A, and HBS1L-MYB

A -158 C>T point mutation on Gγ promoter, noted as Xmn1locus, is known to play a role in the relative overproduction of HbF. In a non-anemic population in Northern Europe, Xmn1 inside of the locus is correlated with the increase of HbF on the level of 13-32 % F cells.34 Another study suggested that the Xmn1 locus played a role in determining the prognosis in Sickle Cell Disease.35 A more detailed study from Lettre et al.36 suggested that SNP rs7482144 (Xmn1 locus) explained the 2.2 % increase in HbF production variety in an SCD case. In some cases of β thalassemia, the SNP suggests a Linkage Disequilibrium with mutations like 6 –A codon and 8 –AA codon that is consistently associated with the increase of HbF, resulting in an intermediate Thalassemia phenotype.37 Another study suggests that the Xmn1 genotype (+/+) can be used as a phenotype predictor of β thalassemia cases.38 However, the role of SNP rs7482144 for the relative increase of HbF is inconsistent in normal adults and heterozygote Thalassemia.39

A central role of SNP rs7482144 has been confirmed in Genome Wide Association Study (GWAS). In a European study, the traits variance of the locus is 10.2 %.38 The Xmn1 locus is further reported as having a role in the increase of HbF in intermediate Thalassemia.39 In India, the genotype (+/+) suggests a meaningful correlation with the clinical occurrence of β thalassemia patient,39 while the population study on heterozygote Thalassemia patients in China suggests that the Xmn1 locus is associated with the increase of 9 % HbF and 13 % of F-cell.40 However, in the African population in America with SCD, SNP rs10128556 is more strongly correlated than the rs7482144 / Xmn1, indicating that the Xmn1 locus in this ethnic group is not a causal variant.41 The data from Indonesia reported that genotypes (-/-) and (+/) of the Xmn1 locus is not related with the absolute amount of HbF in HbE/ β thalassemia patients.42 The same group reported that β thalassemia mutation type is not a factor that influence clinical manifestation, apartfrom the IVSI-nt 5 (G>C) that is related to severe clinical features, co-inheritance of a globin deletion type 3.7 kbp (co/o-) is related to mild clinical manifestation, while α-globin chain triplication did not exist both mild and severe groups and therefore its relation with clinical manifestation could not be assessed. Study also showed that Xmn1 heterozygote polymorphisms (polymorphism in-150 γ globin gene, C>T) were both in the mild and severe groups, therefore this kind of polymorphism is not a factor that influences clinical manifestations. From three SNPs, only bg200 was related to clinical manifestations the CC genotype atSNP bg200 is related to low HbF level and severe clinical manifestations, and have 4.15times greater risk of having severe manifestation that those without.

In addition to the β gene cluster, a study of Asian-Indian patients with β thalassemia that was accompanied by a sample segregation with rising HbF, found that the locus of the 6q23-q24 chromosome is correlated with the increase of HbF. The locus shows an association where the genome-wide linkage analysis (GWLA) is meaningful in the less severe β thalassemia phenotype.35 Further studies suggest that the areas along 1.5 Mb in 6q23-q24, there is an intergenic area of HBS1L and MYB genes.36,43,44 The locus is associated with ~19 % of the natural variety of the population in Europe.38 The research found that 3 SNPs were the main markers that have the highest correlation to HbF and F-cells level: rs9399137, rs5209090, and rs6929404. A Population study in China and African-American suggest that the two main SNPs correlated with this are rs9399137 and rs7775698.45 Homozygosity for the 3-bp deletion in HMIP and heterozygosity for the HbF a-thalassemia mutation in HBA2 were also reported as the two genetic determinants found only in the asymptomatic of FSC8 homogygote twins and not found in other FSC8 typical transfusion dependent patients.46

With the marker from BCL11A rs4671393, HBS1L-MYB rs9399137, rs28384513, and rs4895441, and rs7482144 Xmn1 locus, Lettre et al.34 suggested that SNPs is responsible for >20 % of HbF phenotype varieties and is associated with a better clinical prognosis. Genetic variety in the area of HBS1L-MYB is significantly different between the individual with high HbF and normal individuals.41 The basis mechanism from the situation is possibly related with the role of MYB in the erythropoiesis process. MYB gene overexpression inhibits the γ
globin in erythroleukemia cells. Furthermore, research data suggests that the low level of MYB protein in the initiation of erythropoiesis is correlated with rising HbF levels.47

The BCL11A locus in chromosome 2 is known to be associated with the increase of HbF based on the findings that the gene is responsible for the Hb transition mechanism.48,49 Fine mapping on the BCL11A locus in the African-American population with SCD found three independent SNPs that are related to HbF. Haplotype analysis (based on SNP) suggests that the haplotype in this locus describes a better phenotypic variance on the cumulative amount than the three SNPs when taken individually (18.1 vs. 14.7 %).41

The findings are confirmed in the normal population of Chinese and Thai descent carriers of β thalassemia50 and patients with sickle cell anemia from the USA, Brazil, and the UK.51 It was suggested that the SNP rs766432 minor allele (C) has the strongest association with the increase of HbF and F-cell in the Chinese, Thai, and African-American populations50, while the SNP rs11886868 is associated with the increase of HbF in the Caucasian population in lower levels.52 The study on another population in China suggested that rs11886868 has a strong association with the increase of HbF in Thalassemia patients53, while in Thailand, rs766432 on BCL11A has a strong association to the level of HbF 52, as well as in Indonesia.53 A very recent study found that the LRF/ZBTB7A transcription factor occupies fetal γ-globin genes and maintains the nucleosome density necessary for γ-globin gene silencing in adults, and that LRF confers its repressive activity through a NuRD repressor complex independent of the fetal globin repressor BCL11A.54

Quantitative Traits Locus of HBG, BCL11A and HBS1L-Myb in ameliorating β thalassemia through elevating HbF have been known and ready to implement in thalassemia management. The Thalassemia Severity Score web-tool (http://tss.unica.it) is available now to calculate and predict the severity of clinical phenotype based on prominent marker; β type mutations, α deletion, HBG2:g.-158C>T, BCL11A rs1427407, BCL11A rs10189857, and HBS1L-Myb rs9399137. Validation of the model was conducted by Dan jou and colleagues.55

Element factors of EKLF, GATA, GDF11, GDF15, and AHSP

The Kruppel-like factor 1 (KLF1), a key factor for primitive and definitive erythropoiesis has been reported to have significant rule in ameliorating clinical phenotype of β Thalassemia. Individual with a dominant missense mutation in the KLF1 zinc-finger domain has ineffective erythropoiesis picture leading to congenital diserythropoietic anemia (CDA).56 β Thalassemia patient who has this kind of mutation can be fall into severe condition. Conversely, there are sequence alterations that result in HPFH may actually ameliorate the disease severity. A high HbF levels of up to 40% of total hemoglobin (Hb) was already found in individual with compound heterozygotes for class 2 and 3 KLF1.57 Recent study also reveal that class 2 or 3 KLF1 variants are associated with moderately increased levels of HbA2, making attention to β Thalassemia carrier screening program.58

Cofactor FOG-1 (freind of GATA-1) primarily regulates erythropoiesis and megakaryocytopenias. Mutations in the FOG-1 binding sites of its N-terminal zinc finger are responsible for dyserythropoietic anemia with thrombocytopenia, facing to severe phenotype.59 It has been shown that elevated Epo production is associated with high levels of Jak2 phosphorylation. This kind action promotes escalation of erythroid progenitors which contribute to extramedullary hematopoiesis. Literature review of these studies proposed that acute administration of a Jak2 inhibitor (JAK2i) could reverse the splenomegaly in thalassemic patients avoiding the need for splenectomy.60 Other findings were also interesting. Growth differentiation factor 11 (GDF11), a factor responsible for rejuvenation of stem cell is promising. Ongoing clinical trial is showing amelioration of the anemia in NTDT patients and a potential reduction of the transfusion regimen in patients affected by β-thalassemia major.60 Another factor is GDF15. An abundant expression of GDF15 inhibited hepcidin expression, contributing to iron overload process in thalassemia syndrome.61 Reducing GDF15 factor may decrease toxicity of iron and contribute to clinical improvement.
Another genetic determinant reported as having a link with the milder phenotype of β Thalassemia is the α-hemoglobin-stabilizing protein (AHSP), the active molecular chaperon which binds to the free α chain. AHSP protein can act as a stabilizer for the α chain at the time of globin chain binding and prevents a precipitation. Mice knocked-down on AHSP protein have an abnormal red blood cell production and showed shorter lifespan, allegedly caused by a relative surplus of unused globin chains. Furthermore, the phenotype was aggravated upon testing with the intermediate Thalassemia genotype, corresponding to the loss of AHSP.

By using K562 cells, it was suggested that AHSP can be a candidate genetic modifier in thalassemia patients. It was also reported that an individual in Southern Asia with an AHSP mutation homozygote (Val56>Gly), in the initial year of life shows a clinical syndrome similar to a Thalassemia patient. Research on Thalassemia patients suggested that the effect of mutations or polymorphisms in AHSP is still controversial. Previous studies suggested that the mutation on the gene is not significantly associated with the severity of the β thalassemia patient population in China and Thailand.

3. Tertiary Modifier of β thalassemia
The course of the Thalassemia clinical syndrome can be affected by many factors including genetics that are associated with a blood component, genetics outside of the blood component, or non-genetic conditions. The oxidative stress in Thalassemia patients occurs due to hemoglobin instability, the surplus of iron, and hemolysis. In normal conditions, red blood cells degrade the reactive oxygen species (ROS) through the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities. In the thalassemia cell, there is heme release that induces the amplification of the oxidative pathway. The excess iron can also act as a catalyst of fat peroxidase. Moreover, the hypochromic condition can cause an acceleration of the oxidative process due to a lessening of buffer protection by hemoglobins. It has been reported that the accumulation and auto-oxidation from the unpaired α globin chain will produce superoxide (O_2^-) and hydrogen peroxide (H_2O_2) that leads to accelerated apoptosis and ineffective erythropoiesis.

Several studies reported that the oxidative activity is associated with the level of iron levels in the body. By using a curcuminoid as an antioxidant, Kalpravidh and colleagues suggested that malondialdehyde, superoxide dismutase, and GPx enzyme significantly decrease with 12 months of therapy. In these studies, it was reported that curcuminoid can also be an alternative iron chelator that can decrease the ferritin levels. The excess accumulation of iron can increase the free radicals in the circulation. An individual’s ability to parse is controlled by a genetic mechanism that is appropriate with the involved enzyme.

Glutathione and Catalase are two enzymes that initiated the regulation of the free radicals. Glutathione S transferase (GST) is a superfamily enzyme from multifactorial isoenzymes that play role in detoxification and excretion of toxic molecules. Evidence suggests that the expression level of GST is a key factor in determining the cell sensitivity in a wide spectrum towards the toxic chemicals. The enzyme is coded by 16 polymorphic genes that are divided into five classes: α (GSTA), π (GSTP), μ (GSTM), θ (GSTT), ζ (GSTZ).

GSTM1 and GSTT1 loci are very polymorphic and the deletion of both alleles (null genotype) eliminates the role of the enzyme and enhances the vulnerability towards oxidative stress. It was reported that GSTT1 and GSTM1 polymorphisms affect the degree of cardiac siderosis as one of the factors that causes death in Thalassemia patients. A “Null” genotype of the GST genes can lead to an enhancement of susceptibility to oxidative reactions, with the result of increased risk of tumor, prostates or cardiac disorders. As well as CAT (coding gene of Catalase enzyme) polymorphism in exon 9 on the rs769217 locus is allegedly associated with low activity of Catalase enzyme which result in lower protection of catalase against free radicals.

Osteopenia and osteoporosis are some of key factors in the morbidity of Thalassemia Major (TM) patients. There are some factors leading to a reduction of bone density in TM, one of them could be mutations in gene for I collagen type. COL1A1 allele is the most abundant protein in bone matrix. Polymorphism of the gene is associated with bone mineral density (BMD). Mutation in SP1 binding site (G>T mutation) is reported as having a strong association with osteoporosis in TM patients. A study revealed that 19% of β thalassemia patients have a homozygous (G/G) genotype, 40% are heterozygous (T/G) and 43% are homozygous (T/T) genotype.

Hyperbilirubinemia and a propensity to the gallstones formation are general complications of β thalassemia patients. The complication is caused by ineffective erythropoiesis and shortening of the erythrocyte age. TA sequence polymorphism in the gene promoter of uridine diphasphate-glucuronosyltransferase 1A (UGT1A), where the product is involved in bilirubin glucoronidation inside the liver also plays a role in the formation of gallstones. In normal individuals, the UGT1A gene promoter has six replications of TA sequence at G>T mutation is reported as having a strong association with osteoporosis in TM patients. A study revealed that 19% of β thalassemia patients have a homozygous (G/G) genotype, 40% are heterozygous (T/G) and 43% are homozygous (T/T) genotype.

β Thalassemia patients, especially major and intermedia can develop complications in adult state such as hypercoagulable states, including deep venous thrombosis and pulmonary embolism as well as arterial thrombosis and stroke. Study also reported that Thromboembolic events (TEE) were frequently developed in splenectomized patients. Genetics features involved in TEE should be considered such as Factor V Leiden (FVL) rs6025, Prothrombin
G20210A rs1799963, PAI-1 -675 4G/5G, and MTHFR mutations.86 The interaction with the gene mutation that causes a deficiency of pyrimidine-5 nucleotides-1 (PSN-I) can cause a severe hemolytic anemia due to the susceptibility of the individual to free radicals.87 In addition, clinical complications of β thalassemia patients is also affected by a set of genes related to iron metabolism such as Human hemochromatosis (HFE), transferrin receptor 2 (TFR2), ferroportin (FPN), Hepcidin (HAMP) and Hemojuvelin (HJV) genes.88

CONCLUSION

The studies of the genetic modifiers in thalassemia have been growing very rapidly. Some of the latest findings have good impact on clinical practices. The research on genetic of β thalassemia was needed for improvement in management patient in the future. MGP investigation should be done in high risk couples to predict whether the newborn will have mild or severe clinical manifestation.

CONFLICT OF INTEREST: The authors declare that they have no conflict of interest. There is no funding support for this kind submission.

REFERENCES

25. Origa R, Sollaino MC, Borgna-Pignatti C, Piga A, Feliu Torres A, Musile V, et al. α-β-Globin Gene Quadruplication and Heterozygous β-Thalassemia: A Not So Rare Cause of

50. Sedgewick AE, Timofeev N, Sebastiani P, So JC, Ma ES, Chan LC, et al. BCL11A is a major HbF

Polymorphism in Glutathione-S-Transferase Mu (GSTM1) and/or Theta (GSTT1) Is Associated with an Increased Risk of Toxicity after Autologous Blood and Marrow Transplantation. Biology of Blood and Marrow Transplant. 2010;16:801-8.

