skip to main content

Task and Kinematic Parameters for Upper Limb Stroke Patient: A Review

Yosua Wijaya orcid  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275", Indonesia
*Rifky Ismail  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia
Toni Prahasto  -  Department of Mechanical Engineering, Universitas Diponegoro, Jl. Prof. Sudarto, SH, Tembalang, Semarang, Indonesia 50275, Indonesia

Citation Format:
Abstract

The development of robotics technology has now been used to assist the rehabilitation therapy process of stroke patients.  This far, the progress of therapy patients has been observed qualitatively and quantitatively with several clinical assessments such as Fuegl Meyer, Barthel Index, Motor Function Index, etc. This paper aims to provide a review of stroke patient progress evaluation measurements using kinematic parameters using elbow and shoulder robotic therapy devices and provide an overview of the types of exercises performed on the robotic therapy interface on the motor and cognitive development of stroke patients. Thirty publications that used kinematic parameters as the basis for assessing the development of stroke patients were included, there were 81 kinematic parameters from all the studies reviewed, based on ICF 53 of which were included in the Body Functions and Structures (BFS) classification, and 28 others were included in the Activities and Participation (AP) classification. Several studies showed a good correlation between the measurement of kinematic parameters and clinical assessment (P<0.05), in addition to good correlation some kinematic parameters also showed good reliability (ICC, r>0.7; P<0.05).

Fulltext View|Download
Keywords: Kinematic Parameters, Robotic Therapy, Assessment, Stroke, Upper Limb

Article Metrics:

  1. N. E. M. Œ et al., “Disablement following stroke,” 1999
  2. T. Askim, J. Bernhardt, Ø. Salvesen, and B. Indredavik, “Physical Activity Early after Stroke and Its Association to Functional Outcome 3 Months Later,” J. Stroke Cerebrovasc. Dis., vol. 23, no. 5, pp. e305–e312, 2014, doi: 10.1016/j.jstrokecerebrovasdis.2013.12.011
  3. G. Avenue, “The online version of this article, along with updated information and services, is located on the World Wide Web at:,” pp. 383–385, 2014, doi: 10.1161/01.STR.0000115937.94104.76
  4. H. S. Jorgensen et al., “Outcome and Time Course of Recovery in Stroke . Part I : Outcome . The Copenhagen Stroke Study,” vol. 76, no. May, pp. 399–405, 1995
  5. G. Kwakkel et al., “Effects of Augmented Exercise Therapy Time After Stroke: A Meta Analysis,” 2004, doi: 10.1161/01.STR.0000143153.76460.7d
  6. S. A. Billinger et al., “Physical activity and exercise recommendations for stroke survivors: A statement for healthcare professionals from the American Heart Association/American Stroke Association,” Stroke, vol. 45, no. 8, pp. 2532–2553, 2014, doi: 10.1161/STR.0000000000000022
  7. J. F. Nepveu et al., “A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals with Stroke,” Neurorehabil. Neural Repair, vol. 31, no. 8, pp. 726–735, 2017, doi: 10.1177/1545968317718269
  8. R. A. Geiger, J. B. Allen, J. O’Keefe, and R. R. Hicks, “Balance and mobility following stroke: Effects of physical therapy interventions with and without biofeedback/forceplate training,” Phys. Ther., vol. 81, no. 4, pp. 995–1005, 2001, doi: 10.1093/ptj/81.4.995
  9. E. Taub, J. E. Crago, and G. Uswatte, “Constraint-induced movement therapy: A new approach to treatment in physical rehabilitation,” Rehabil. Psychol., vol. 43, no. 2, pp. 152–170, 1998, doi: 10.1037/0090-5550.43.2.152
  10. Z.-S. Hosseini, H. Peyrovi, and M. Gohari, “The Effect of Early Passive Range of Motion Exercise on Motor Function of People with Stroke: a Randomized Controlled Trial,” J. Caring Sci., vol. 8, no. 1, pp. 39–44, 2019, doi: 10.15171/jcs.2019.006
  11. V. S. Huang and J. W. Krakauer, “Robotic neurorehabilitation : a computational motor learning,” no. March 2009, 2014, doi: 10.1186/1743-0003-6-5
  12. R. This, C. C. Attribution-noncommercial-noderivs, C. C. By-nc-nd, T. If, and W. Rose, “Recent Development of Mechanisms and Control Strategies for Robot-assisted Lower Limb Rehabilitation,” 2015
  13. E. Otaka et al., “Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients,” J. Neuroeng. Rehabil., vol. 12, no. 1, pp. 1–10, 2015, doi: 10.1186/s12984-015-0059-8
  14. C. R. A. Rticle et al., “Assessment of upper extremity impairment , function , and activity after stroke : foundations for clinical decision making,” J. Hand Ther., vol. 26, no. 2, pp. 104–115, 2013, doi: 10.1016/j.jht.2012.06.005
  15. P. W. Duncan, M. Propst, and S. G. Nelson, “Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident,” Phys. Ther., vol. 63, no. 10, pp. 1606–1610, 1983, doi: 10.1093/ptj/63.10.1606
  16. M. B. Smith, “Interrater Reliability of a Modified Ashworth Scale of Muscle Spasticity,” pp. 1986–1987, 2000
  17. Y. Iwamoto et al., “Clinical Prediction Rule for Identifying the Stroke Patients who will Obtain Clinically Important Improvement of Upper Limb Motor Function by Robot-Assisted Upper Limb,” J. Stroke Cerebrovasc. Dis., vol. 31, no. 7, p. 106517, 2022, doi: 10.1016/j.jstrokecerebrovasdis.2022.106517
  18. D. Moher, A. Liberati, J. Tetzlaff, and D. G. Altman, “Academia and Clinic Annals of Internal Medicine Preferred Reporting Items for Systematic Reviews and Meta-Analyses :,” Ann. Intern. Med., vol. 151, no. 4, pp. 264–269, 2009
  19. S. Balasubramanian, R. Colombo, I. Sterpi, V. Sanguineti, and E. Burdet, “Robotic Assessment of Upper Limb Motor Function After Stroke,” Am. J. Phys. Med. Rehabil., pp. 255–269, 2012, doi: 10.1097/PHM.0b013e31826bcdc1
  20. WHO, “World Health Organization, Geneva,” World Rep. Child Inj. Prev., 2001, [Online]. Available: https://apps.who.int/iris/bitstream/handle/10665/42407/9241545429.pdf
  21. M. Goffredo et al., “Kinematic Parameters for Tracking Patient Progress during Upper Limb Robot-Assisted Rehabilitation : An Observational Study on Subacute Stroke Subjects,” vol. 2019, 2019
  22. P. Kiper, C. Zucconi, M. Agostini, and A. Baba, “Assessment of virtual teacher feedback for the recovery of the upper limb after a stroke . Study protocol for a randomized controlled trial . Ocena wp ł ywu wzrokowej informacji zwrotnej na popraw ę funkcji ko ń czyny górnej po udarze mózgu . Protokó ł ba,” vol. 20, no. 3, pp. 13–20, 2016, doi: 10.5604/01.3001.0009.5010
  23. N. Brihmat, I. Loubinoux, E. C. Lacanal, P. Marque, and D. Gasq, “Kinematic parameters obtained with the ArmeoSpring for upper ‑ limb assessment after stroke : a reliability and learning effect study for guiding parameter use,” J. Neuroeng. Rehabil., pp. 1–12, 2020, doi: 10.1186/s12984-020-00759-2
  24. G. Lopes, E. Shirley, S. Id, K. Desloovere, and T. L. Russo, “Effects of elastic tape on kinematic parameters during a functional task in chronic hemiparetic subjects : A randomized sham- controlled crossover trial,” pp. 1–19, 2019
  25. M. Goffredo et al., “Kinematic Parameters for Tracking Patient Progress during Upper Limb Robot-Assisted Rehabilitation: An Observational Study on Subacute Stroke Subjects,” Appl. Bionics Biomech., vol. 2019, 2019, doi: 10.1155/2019/4251089
  26. M. Fan, J. Luo, L. Le, D. Feng Huang, Y. Zhan, and S. Rong, “Kinematic Analysis of Trajectory Dimension-Dependent Sensorimotor Control in Arm Tracking,” vol. 7, 2019, doi: 10.1109/ACCESS.2019.2891132
  27. H. Grip, L. Ro, C. K. Ha, M. Sandlund, and E. Domello, “Training of goal directed arm movements with motion interactive video games in children with cerebral palsy – A kinematic evaluation,” vol. 8423, no. 5, pp. 318–326, 2014, doi: 10.3109/17518423.2013.776124
  28. E. Otaka, Y. Otaka, S. Kasuga, A. Nishimoto, K. Yamazaki, and M. Kawakami, “Clinical usefulness and validity of robotic measures of reaching movement in hemiparetic stroke patients,” pp. 1–10, 2015, doi: 10.1186/s12984-015-0059-8
  29. A. Coderre-ball, S. P. Dukelow, K. D. Moore, and T. M. Herter, “Neurorehabilitation and Neural Repair,” no. May 2014, 2010, doi: 10.1177/1545968309356091
  30. L. Bai, M. G. Pepper, Y. Yan, M. Phillips, and M. Sakel, “Quantitative measurement of upper limb motion pre- and post-treatment with Botulinum Toxin,” Measurement, vol. 168, no. June 2020, p. 108304, 2021, doi: 10.1016/j.measurement.2020.108304
  31. Y. Huang et al., “A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke : A randomized controlled trial,” Biomed. Signal Process. Control, vol. 56, p. 101723, 2020, doi: 10.1016/j.bspc.2019.101723
  32. T. Koeppel and O. Pila, “TEST - RETEST RELIABILITY OF KINEMATIC ASSESSMENTS FOR UPPER LIMB ROBOTIC REHABILITATION,” vol. 4320, no. c, 2020, doi: 10.1109/TNSRE.2020.3013705
  33. M. Goffredo, S. Pournajaf, S. Proietti, A. Gison, F. Posteraro, and M. Franceschini, “Retrospective Robot-Measured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers,” Front. Neurol., vol. 12, no. December, pp. 1–11, 2021, doi: 10.3389/fneur.2021.803901
  34. M. Goffredo et al., “Kinematic Parameters for Tracking Patient Progress during Upper Limb Robot-Assisted Rehabilitation : An Observational Study on Subacute Stroke Subjects,” vol. 2019, 2019, doi: 10.1155/2019/4251089
  35. O. Pila, C. Duret, F. Laborne, J. Gracies, N. Bayle, and E. Hutin, “Pattern of improvement in upper limb pointing task kinematics after a 3-month training program with robotic assistance in stroke,” pp. 1–10, 2017, doi: 10.1186/s12984-017-0315-1
  36. A. Panarese, E. Pirondini, P. Tropea, B. Cesqui, F. Posteraro, and S. Micera, “Model-based variables for the kinematic assessment of upper-extremity impairments in post-stroke patients,” J. Neuroeng. Rehabil., pp. 1–15, 2016, doi: 10.1186/s12984-016-0187-9
  37. M. A. Murphy, C. Willén, and K. S. Sunnerhagen, “Neurorehabilitation and Neural Repair,” 2013, doi: 10.1177/1545968313491008
  38. S. Mazzoleni, R. Crecchi, F. Posteraro, and M. . Carrozza, “Effects of robot-assisted wrist therapy in chronic stroke patients: a kinematic approach,” pp. 1978–1982, 2012
  39. C. Adans-dester et al., “Can kinematic parameters of 3D reach-to- target movements be used as a proxy for clinical outcome measures in chronic stroke rehabilitation ? An exploratory study,” vol. 1, pp. 1–14, 2020
  40. M. Butt, G. Naghdy, F. Naghdy, G. Murray, H. Du, and S. Member, “Effect of Robot-Assisted Training on EEG-Derived Movement-Related Cortical Potentials for Post-Stroke Rehabilitation – A Case Series Study,” IEEE Access, vol. 9, pp. 154143–154155, 2021, doi: 10.1109/ACCESS.2021.3127939
  41. R. Colombo et al., “Robotic Techniques for Upper Limb Evaluation and Rehabilitation of Stroke Patients,” vol. 13, no. 3, pp. 311–324, 2005
  42. H. Kim et al., “Kinematic Data Analysis for Post-Stroke Patients Following Bilateral Versus Unilateral Rehabilitation With an Upper Limb Wearable Robotic System,” vol. 21, no. 2, pp. 153–164, 2013
  43. M. Goffredo, S. Pournajaf, S. Proietti, and A. Gison, “Retrospective Robot-Measured Upper Limb Kinematic Data From Stroke Patients Are Novel Biomarkers,” vol. 12, no. December, pp. 1–11, 2021, doi: 10.3389/fneur.2021.803901
  44. B. R. Ballester, F. Antenucci, M. Maier, A. C. C. Coolen, and P. F. M. J. Verschure, “Estimating upper ‑ extremity function from kinematics in stroke patients following goal ‑ oriented computer ‑ based training,” J. Neuroeng. Rehabil., vol. 8, pp. 1–17, 2021, doi: 10.1186/s12984-021-00971-8
  45. N. Hussain, K. S. Sunnerhagen, and M. A. Murphy, “End-point kinematics using virtual reality explaining upper limb impairment and activity capacity in stroke,” vol. 7, pp. 1–9, 2019
  46. Z. Chen, C. He, M. Gu, J. Xu, and X. Huang, “Kinematic Evaluation via Inertial Measurement Unit Associated with Upper Extremity Motor Function in Subacute Stroke : A Cross-Sectional Study,” vol. 2021, 2021
  47. A. Schwarz, J. M. Veerbeek, J. P. O. Held, and J. H. Buurke, “Measures of Interjoint Coordination Post-stroke Across Different Upper Limb Movement Tasks,” vol. 8, no. January, pp. 1–17, 2021, doi: 10.3389/fbioe.2020.620805
  48. S. M. Mostafavi, S. H. Scott, and S. P. Dukelow, “Reduction of Assessment Time for Stroke-Related Impairments Using Robotic Evaluation,” vol. 4320, no. c, pp. 1–11, 2017, doi: 10.1109/TNSRE.2017.2669986
  49. H. Igo Krebs, N. Hogan, M. L. Aisen, and B. T. Volpe, “Robot-aided neurorehabilitation,” IEEE Trans. Rehabil. Eng., vol. 6, no. 1, pp. 75–87, 1998, doi: 10.1109/86.662623
  50. M. Saes et al., “Smoothness metric during reach ‑ to ‑ grasp after stroke : part 2 . longitudinal association with motor impairment,” J. Neuroeng. Rehabil., pp. 1–10, 2021, doi: 10.1186/s12984-021-00937-w
  51. S. S. Mahmoud, Z. Cao, J. Fu, X. Gu, and Q. Fang, “Occupational Therapy Assessment for Upper Limb Rehabilitation : A Multisensor-Based Approach,” vol. 3, no. December, pp. 1–15, 2021, doi: 10.3389/fdgth.2021.784120
  52. B. Rohrer et al., “Movement smoothness changes during stroke recovery,” J. Neurosci., vol. 22, no. 18, pp. 8297–8304, 2002, doi: 10.1523/jneurosci.22-18-08297.2002
  53. M. Garcia-Munoz and G. W. Arbuthnott, “Basal ganglia—thalamus and the ‘crowning enigma,’” Front. Neural Circuits, vol. 9, no. November, pp. 1–10, 2015, doi: 10.3389/fncir.2015.00071
  54. M. Gilliaux et al., “Using the robotic device REAplan as a valid, reliable, and sensitive too l to quantify upper limb impairments in stroke patients,” J. Rehabil. Med., vol. 46, no. 2, pp. 117–125, 2014, doi: 10.2340/16501977-1245
  55. S. Mazzoleni, M. Filippi, M. C. Carrozza, F. Posteraro, L. Puzzolante, and E. Falchi, “Robot-aided therapy on the upper limb of subacute and chronic stroke patients: A biomechanical approach,” IEEE Int. Conf. Rehabil. Robot., 2011, doi: 10.1109/ICORR.2011.5975422
  56. R. Colombo et al., “Assessing mechanisms of recovery during robot-aided neurorehabilitation of the upper limb,” Neurorehabil. Neural Repair, vol. 22, no. 1, pp. 50–63, 2008, doi: 10.1177/1545968307303401
  57. M. Sivan et al., “Investigating the International Classification of Functioning , Disability , and Health ( ICF ) Framework to Capture User Needs in the Concept Stage of Rehabilitation Technology Develo ... Systematic review of outcome measures used in the evaluation of ro,” no. December, 2014, doi: 10.2340/16501977-0674

Last update:

No citation recorded.

Last update:

No citation recorded.