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ABSTRACT. A wheelchair is a tool used to assist people with physical limitations in their legs. The most widely used are standard 

wheelchairs with a manual operating system by being pushed by hand. However, people with disabilities who have paralysis or suffer 

from neuromuscular and neurological conditions cannot use this wheelchair. Because of this, in this study focuses on implementing the 

Brain Computer Interface system to generate five commands to move a wheelchair. There are five important stages in the BCI system, 

that is signal acquisition, pre-processing, feature extraction, classification, and applications interface. Fast Fourier Transform (FFT) 

method used to extract brainwave features. The results of FFT are alpha (8-12Hz) and beta (12-30 Hz) waves in the frequency domain. 

For classifying brain waves into six classes as input commands to drive a DC motor used Support Vector Machine (SVM) method. Based 

on the test results, the average accuracy of the classification for the whole class reached 93,1%, the accuracy of class 0 (77,3%), class 1 

(95,7%), class 2 (97,8%), class 3 (98,0%), and class 4 (97,5%). 
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1. INTRODUCTION 

A wheelchair is a tool to assist people with physical 

limitation in their legs, either due to illness, injury, or 

congenital disabilities [1]. The most widely used 

wheelchairs are standard wheelchairs with a manual 

operating system by being pushed by hand or another 

person’s help [2]. Along with the times and technology, 

manual wheelchairs were modified by adding DC motor as 

a driver that can be controlled with a joystick [3], wheelchair 

instructed by head gesture[4], and voice commands [5]. So 

that, the user can move the wheelchair easily without power 

or another person’s help. However, wheelchair with joystick 

controller used hand movements to operate it [6] and 

wheelchair with voice commands controller need clear 

pronunciations to operate it [5], so that people who have 

speech and hand disabilities e.g. who have paralysis or suffer 

from neuromuscular and neurological conditions such as 

amyotrophic lateral sclerosis, stroke, and spinal cord injuries 

cannot operate that wheelchairs. Because of this, in this 

research, the author develops the ability of a wheelchair that 

can move with brain wave commands by implementing a 

BCI (Brain-Computer Interface) system. 

In this era, Brain Computer Interface (BCI) has become 

a very interesting topic among researchers in the fields of 
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medicine, rehabilitation, health care, robotics, and 

entertainment [7]. BCI is a direct interface system from the 

brain to a computer or machine, which can receive 

commands directly from the brain. BCI converts electrical 

waves automatically extracted from EEG signals that can 

operate computers to control hardware that can be used to 

help people with motor dysfunction [8]. There are five 

important stages in the BCI system, namely signal 

acquisition, pre-processing, feature extraction, 

classification, and application interface [9]. The signal 

acquisition stage is capturing brain signals and performing 

noise reduction and artefact processing. Pre-processing is the 

stage to prepare the signal in a suitable form for further 

processing. Feature extraction is the stage to identify 

discriminative information on the brain that has been 

recorded. Classification is the stage of classifying signals 

into predetermined classes that take feature vectors into 

account [6]. The last stage is the application interface, which 

is the process of translating the classified signal into 

commands for connected devices such as bionic arms and 

wheelchairs [10]. To control a device that utilizes BCI, the 

subject must produce a pattern of brain activity with 

different characteristics. The pattern will be recognized and 

translated into commands. Most of the introduction of BCI 

relies on algorithms [11], where the algorithm is represented 
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by feature vectors [12]. In addition to classification, the 

selection of the EEG channel used and the selection of brain 

activity patterns are also important in developing BCI. 

In a previous study on brain activity recognition patterns 

by Ivan Halim et al who conducted research on a fast brain 

control system for electric wheelchairs using the support 

vector machine (SVM) method. In this research, used of 

alpha (8-12 Hz) and beta (12-35 Hz) waves by using the 

EMOTIV sensor with 14 channels, the classification success 

rate reaches 83-86% in distinguishing 5 types of imagery 

motors. However, the implementation is a bit complicated 

and inefficient in terms of channel usage which can be 

reduced further [7]. Other previous research on brain activity 

patterns were also conducted by Munawar et al. In this 

research used Muse brain sensing which has four channels 

with the FFT method for feature extraction and the SVM 

method for classification which successfully classified five 

states to drive a wheeled robot with an accuracy rate of 

91.78% [13]. Based on previous research, in this paper 

discusses the implementation of the BCI system which 

produces 5 classification classes for smart wheelchair 

motion commands using the Muse brain sensing sensor 

which has fewer channels than previous studies. 

2. MATERIALS AND METHODS 

2.1 System Design  

The system design consists of hardware design that 

shown in Figure 1. 

 

Fig. 1 Hardware design for implementing of BCI 

In this research using Muse brain sensing to acquisition 

EEG signals. That is a product from Interaxon, Canada 

which is equipped with 5 channels (TP9, AF7, Fpz, AF8, 

TP10) with a sampling frequency of 256 Hz on each channel. 

The data acquired by Muse brain sensing include raw EEG, 

raw accelerometer, raw spectra (delta (1-4 Hz), theta (4-8 

Hz), alpha (8-13 Hz), beta (13-30 Hz), gamma (30-44 Hz)), 

total power, artefact (eye blink, jaw clench), and Fast Fourier 

Transform (FFT) coefficients.  

Raspberry Pi 3b is a mini computer that is used to 

perform signal processing that is feature extraction and 

classification. After signal computation is complete, 

raspberry pi will send the classification data to the 

microcontroller serially which is a wheelchair motion 

command. 

2.2 Brain Computer Interface System 

In this research focuses on the application of the BCI 

system to controlled wheelchair. as shown in Figure 2 that is 

flowchart of BCI system. 

 

 

Fig. 2 BCI system   

Signal acquisitions to stream EEG signals using the 

muse-lsl.py program that has been provided by the developer 

of Muse brain sensing, Alexander Barachant. Muse-lsl.py 

uses a function from the Streaming Layer Lab (LSL) adopted 

from the Python library that is pylsl. The program will 

scan and pair with the EEG Muse brain sensing that has been 

connected to the device via Bluetooth. After paired the 

program will send the detected EEG Muse brain sensing type 

and perform EEG data retrieval with a sampling frequency 

of 256 Hz. Then the data taken will be forwarded by opening 

a port using the function 
outlet.push_sample(data[:, ii], 

timestamps[ii].  

Then, the EEG signal will be windowed to reduce the 

discontinuity at the end of each frame due to the frame-based 

process. The type of window used in this study is the 

hamming window. The windowing process is done by 

multiplying the result of the window type with the frame-

based result using equations: 

𝑤(𝑛) = 0.54 − 0.46 cos
2𝜋𝑛

𝑁−1
    (1) 

𝑧(𝑛) = 𝑥(𝑛)𝑤(𝑛)    (2) 

Where z(n) is window value N-sample, N is number of 

samples per frame, n is result of sample index of a frame, (n) 

is sample windowing result signal to n, x(n) is sample signal 

to N, w(n) is window type value to n.  

After windowing process, signal will be extracted using 

FFT (Fast Fourier Transform). FFT used to convert the EEG 

signal from the time domain to the frequency domain using 

equations: 

𝐹(𝑢) =
1

𝑁
∑ 𝑓𝑥𝑁−1

𝑥=0 [(𝑐𝑜𝑠
2𝜋𝑢𝑥

𝑁
) − 𝑗 (𝑠𝑖𝑛

2𝜋𝑢𝑥

𝑁
)] (3) 

The FFT calculation produces a power spectral density 

for each brain wave namely, alpha, beta, gamma, and theta 

waves. Then the result of FFT becomes input for the 

classification process. 

The next process after feature extraction is classification. 

In this study, a support vector machine (SVM) is used to 

classify EEG signals. SVM method can identify an object by 
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finding the best hyperplane that serves as a separator 

between classes. hyperplane is a linear separator function, 

but non-linear hyperplane can be used for problems that 

cannot be solved using linear hyperplane. for a non-linear 

hyperplane, the data is transformed to a new feature space 

with a higher dimension so that the data can be separated 

linearly as shown in Figure 3. 

The results of the classification are in the form of integer 

data 0,1,2,3,4 which are then sent to the microcontroller for 

wheelchair motion commands. 

 

 

Fig. 3 Transformation from input vector to feature space 

3. RESULT AND DISCUSSION 

3.1 Signal Acquisition  

The recording was done using a Muse brain sensing 

brainwave sensor with four channels, namely TP9, AF7, 

AF8, TP10. In the EEG data recording process, participants 

will be given 5 different motor imagery and combination of 

eye movements for approximately 4 minutes with details, 

recording duration for each condition for 40 seconds and a 

pause for each condition for 10 seconds. 

The following are the requirements for participants in 

testing this Research: 

1. Has no limitation of motion in the neck and eye 

muscles. 

2. In a relaxed and focus state. 

 

3.2 Pre-Processing and Feature Extractions  

 

 

Fig. 4 The result of feature extraction 

The results of pre-processing and feature extraction are 

in the form of certain types of waves that will be used as 

input for the classification process. In this research, 2 types 

of brain wave signals are used, namely alpha (8-12 Hz) and 

beta (12-35 Hz). Where, alpha and beta waves are EEG 

features that are active when humans perform motor 

movements. The results of pre-processing and feature 

extraction from the implementation of the program in this 

Research can be seen in Figure 4. 

3.2 Classifications  

Brain wave classification testing is carried out after 

obtaining the type of wave to be used and the combination 

of movements to determine certain wave characteristics for 

each class to be built. This research uses a combination of 

beta and gamma waves, as well as a combination of eye 

movements. During the testing process, participants are only 

allowed to carry out predetermined activities. In the test 

there was a "beep" sound for 2 times a sign to get ready 

before the recording process started, for the transfer of 

pattern recording, and at the end of the classification 

recording process there was a "beep" sound once. 

 

Table 1 

Overall Accuracy of Classifications 

 

Participants Iterations Accuracy F-Score 

1 
1 92,0% 0,917 

2 90,0% 0,898 

2 
1 96,9% 0,969 

2 93,8% 0,938 

Average: 93,1% 0.930 

 

In Table 1 shows the results of the overall classification 

test, it can be seen that the average overall classification 

success rate is 93,1%. The success rate of classification 

second participant is lower than the first participant, the 

accuracy rate of first participant is 94,4%, while the accuracy 

of second participant is 91,9%. The difference in success 

rates can be caused by the characteristics of the brain waves 

produced by each person differently. This type of eye motor 

movement is suitable for recognizing the pattern of brain 

wave activity for the first participant, but not suitable for 

second participant. So, from the results of these data, it can 

be said that the SVM algorithm as a brain wave signal 

classifier for wheelchair motion commands is able to classify 

brain wave patterns that appear with varying degrees of 

success reaches 93,1%. To increase the accuracy of the 

classifier, it can be done by looking for a combination of 

motor movements that are suitable for participants. 

 

Table 2 

Accuracy of Each Class 

 

Partici-

pants 

Iter

atio

ns 

Accuracy of Each Class % 

0 1 2 3 4 

1 
1 70,0 90,0 100 100 100 

2 70,0 100 90,0 100 90,0 

2 
1 92,3 92,3 100 100 100 

2 76,9 100 100 92,3 100 

Average: 77,3 95,7 97,8 98,0 97,5 



P a g e  | 17 Yuliana et al. (2022), Implementation of Brain Computer Interface (BCI) as a Smart Wheelchair Motion Commands 

Website: https://ejournal2.undip.ac.id/index.php/jbiomes  © JBIOMES – ISSN: 2776-4052. All rights reserved 

Table 2 shows the average success rate of EEG 

classification for each class. The success rate for class 0 is 

77,3%, class 1 is 95,7%, class 2 is 97,8%, class 3 is 98,0%, 

and class 4 is 97,5%. From these data, the accuracy level of 

class 1 tends to be low, this is due to the characteristics of 

the brain waves that are captured for class 1 are less than 

optimal. Factors that affect the less than optimal detection of 

the EEG signal in each class are the user's lack of focus or 

fatigue. To improve classification accuracy, it can be done 

by combining motor movements that are more suitable for 

each class. 

 

4.   CONCLUSION 

Best on the test result, the implementation of brain 

computer interface (BCI) system as a smart wheelchair 

motion command in the classification of real-time EEG 

signals. The level of accuracy generated in the classification 

of EEG reaches 93,1%. This means that the applied SVM 

algorithm can perform EEG classification quite well. The 

difference in accuracy in each class of EEG classification 

results is influenced by motor movements of the eye 

muscles, user concentration, and sweat attached to the Muse 

brain sensing sensor which can also reduce the level of 

accuracy. To get good accuracy in each class, the EEG 

classification can be done by looking for certain 

combinations of motor movements to produce certain 

activity patterns. 
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