
Journal of Biomedical Science and Bioengineering, 1 (2) 2021: 39-48

P a g e | 39

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

MoFlus: An Open-Source Android Software for Fluorescence-Based

Point of Care

Panji Wisnu Wirawan*, Adi Wibowo

 Department of Informatics, Diponegoro University, Indonesia

*Coresponding author : panji@lecturer.undip.ac.id

ABSTRACT. High-sensitivity fluorescence-based tests are utilized to monitor various activities in life science research. These tests are specifically used as

health monitoring tools to detect diseases. Fluorescence-based test facilities in rural areas and developing countries, however, remain limited. Point-of-care

(POC) tests based on fluorescence detection have become a solution to the limitations of fluorescence-based tools in developing countries. POC software for

smartphone cameras was generally developed for specific devices and tools, and it ability to select the desired region of interest (ROI) is limited. In this work,

we developed Mobile Fluorescence Spectroscopy (MoFlus), an open-source Android software for camera-based POC. We mainly aimed to develop camera-

based POC software that can be used for the dynamic selection of ROI; the number of samples; and the types of detection, color, data, and for communication

with servers. MoFlus facilitated the use of touch screens and data given that it was developed on the basis of the SurfaceView library in Android and Javascript

object notation applications. Moreover, the function and endurance of the app when used multiple times and with different numbers of images were tested.

Keywords: Point of Care, Android, SurfaceView, Fluorescence, ROI

Article History: Received 06 July 2021; Received in revised form 21 December 2021; Accepted 26 December 2021; Available online: 28 December 2021

DOI: 10.14710/jbiomes2021.v1i2.39-45

1. INTRODUCTION

 High-sensitivity fluorescence-based tests are widely

used to monitor various activities, such as molecular

dynamics and interactions; enzymatic activity; signal

transduction; cell health; and molecule, organelle, or cell

distribution, in life science research[1]. Various

fluorescence-based health condition monitoring tools have

been useful for resolving disease detection problems. These

tools include real-time thermal cyclers, fluorescence

microscopes, and fluorescence spectrophotometers. They

are used for various purposes, such as quantitative gene

expression analysis, SNP analysis, fluorescence

immunoassay, and drug target validation, as well as the

genotypic quantification of antigens, such as viral particles

and bacteria[2]. However, facilities for these analyses are

limited in remote areas and in developing countries.

Diseases that are often faced by developing countries include

diabetes, heart disease, cancer, malaria, pneumonia,

diarrhea, and HIV/AIDS. These diseases are estimated to

cause the deaths of more than 15 million people each year.

Fluorescence-based point-of-care (POC) tests can be a

solution to the lack of facilities in developing countries. The

contribution of POC tests to the health sector has exerted a

crucial impact on disease prevention or detection. Previous

work has focused on developing simple, inexpensive, and

reliable POC tools for rapid diagnosis. POC devices involve

the use of affordable, portable, and efficient materials. They

can be easily transported and can be used at any time to meet

the needs of rapid health care. The development of

smartphone technology has enabled the construction of

fluorescence-based and smartphone-based POC for disease

detection[3].

The smartphone camera has a dominant role in disease

detection[3]. Smartphone cameras can be used not only to

capture images but also to process images and detect objects

in the captured image. Smartphones have been selected as

POC tools given their wireless connectivity, high-resolution

photography, and good portability [4]. Camera-based POC

devices have undergone extensive development in recent

years. In 2015, the Ozcan research group[5] developed a

smartphone-based POC device for reading fluorescent

signals in enzyme-linked immunosorbent assays for

measles, mumps, and herpes (HSV-1 and HSV-2). The

developed software could be used to monitor 96 walls by

observing 15 pixels with a fixed radius in each wall through

the thresholding method. The whole image is then analyzed

through machine learning outside of the smartphone.

Machine learning frameworks such as Learning-to-rank can

be used to analyze the resulting image[6]. An enzyme-free

nucleic acid amplification method for detecting influenza

virus DNA and miR-316 microRNA was developed in

2018[7]. In 2017, Priye et al.[8] developed a POC

fluorescence device based on reverse-transcription loop-

mediated isothermal amplification for ZIKA virus detection.

The developed software (LAMP2GO) could be used to

control focal length, exposure time, and ISO during image

acquisition. Moreover, sample selection from multiple

regions of interest (ROIs) could be conducted after image

acquisition. In 2017, Chen et al.[9] developed a smartphone-

based POC device with the help of long pass filters and

P a g e | 40 Wirawan et al. (2021), MoFlus: An Open-Source Android Software for Fluorescence-Based Point of Care

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

macro lenses with magnifications of up to 12.5×. Chen did

not use viruses that attack humans as inputs and instead

applied viruses that attack horses (S. Equi, S. Zoo, EHV-1,

and EHV-4). The output of the device is fluorescence. In the

same year, Jalal et al.[10] developed a paper-based reagent

strip POC device with a lab-on-chip scheme with urine as an

input for the detection of urine components and

characteristics, including glucose, protein, pH, and red blood

cells, through hue colorimetric information extraction. Song

et al.[11] developed a smart cup system in 2018. They

conducted image processing analysis to detect

bioluminescence signals emitted by the ZIKV virus in urine

and HIV in the blood. Lin[12] combined dsDNA with SYBR

Green1 to detect green fluorescence signals emitted by

streptomycin in food. Chan et al.[13] utilized a repurposed

3D printer to extract and purify MP-based NA to detect

ZIKV in human urine samples. In this assay, fluorescence

signals are emitted upon the irradiation of sample tubes with

blue LED. The signals are then recorded by a smartphone

camera with an orange plastic filter. Akraa et al.[14]

developed a POC device for the detection of chronic kidney

diseases based on urine albumin analysis. It also used a

smartphone device to detect fluorescence.

The development of POC technology focuses on the use

of smartphone cameras. Smartphone cameras on POC

devices can be operated by using default or specific

applications that can control extreme focal lengths, exposure

time, and ISO settings Berg et al.[5] captured images by

using the NOKIA Lumia 1020 application. Priye et al.[8]

developed applications that could control focal length,

exposure time, and ISO. However, smartphone-based POC

technologies are specific for certain devices and tools, and

their ability to choose the desired ROI is limited. Thus, users

or medical personnel are unable to select the desired ROI. In

addition, most of the developed POC devices have a limited

number of points. These technologies also cannot

dynamically determine the number of points. POCs are also

limited by their inability to store and process data and to

apply data as a repository for the source of decisions. Thus,

each POC device must take measurements of its own.

In this work, we developed a universal application for a

camera-based POC device. We mainly focused on

developing camera-based POC software to complement the

limitations of existing applications. The technology was

developed on the basis of SurfaceView libraries in Android

applications. SurfaceView enables the dynamic

development of multitarget detection by using touch screens.

This paper was organized in reference to Chondros et al.[15]

Part 2 begins with a system description of the POC system.

This section presents the required requirements and design

details of the system. The implementation and application

testing of the system are discussed in succeeding sections.

2. 2. SYSTEM DESCRIPTION

2.1 Requirement

Mobile Fluorescence Spectroscopy (MoFlus) is an

Android-based application that can read color expression

values from the observations of samples on the basis of

color. The smartphone camera is used to acquire images of

samples that will be perceived as expression level values.

The user can determine the spots to be selected for the color

expression value. The results of observing the selected color

values will be saved. The fluorescence of a sample might be

taken as a color expression value. The color expression

processing of images can be performed in real time or in

batch. In real-time processing, the image of the observed

object is obtained directly from the camera and is utilized to

support the retrieval of reaction data from the sample. The

user needs to specify a certain range of duration for image

acquisition with MoFlus to obtain the color expression value

of the sample. The changes in the fluorescence intensity of

the sample can be observed by using the time-series data

obtained through real-time observation. In batch processing,

previously acquired photographs are subjected to color

extraction. Thus, this strategy can be used to analyze various

samples from different photos.

MoFlus outputs color expression in the form of red

green blue (RGB) and hue saturation value (HSV) color

models. These results can be stored and can be sent for

further processing given the computation limitations of

smartphones.

MoFlus has the following requirements:

a) More than one observation point should be

determined to enable the observation of additional

samples. In contrast to taking observations from

only one sample or one photo at a time, taking

observations from numerous samples prevents the

excessive repetition of observations.

b) Multiple points should be observed simultaneously.

Numerous samples should be observed

simultaneously. Simultaneous processing can be

conducted with multithreading programming

techniques.

c) Color expression should be captured with RGB and

HSV color models. The choice of different color

expressions allows the user to select the color

expression that is in accordance with the analysis

that must be performed next.

d) Color expression must be captured through real-

time live imaging and batch imaging from

previously acquired images.

e) Observations that are ready for further processing

must be saved such that they can be taken at any

time when needed in the future.

The defined requirements are then used as the basis for

software design by mapping requirements into software

components.

2.2.Design

This section focuses on the design of the components in

MoFlus. The representation of components and their

relationships is illustrated in Figure 1. Architectural

depictions were generated by using component diagrams

with connectors and connections in reference to Ozkaya[16].

The constructed components are derived on the basis of

the previously described requirements. Each requirement

Journal of Biomedical Science and Bioengineering, 1 (2) 2021: 39-48 P a g e | 41

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052.All rights reserved

represents a component. Thus, four main components for

handling smartphone camera access, data modeling, storage

processing, and data transmission to the server exist. Each

successive component is called the Detection Camera,

DetectionModel, DetectionStorage, and Server. The four

components are organized into a component called the Main

component, which is also tasked with real-time or batch

color expression processing. The Helper component is used

to facilitate computation by other components. It is

responsible for facilitating various processes, such as image

processing and CSV file formation. Figure 1 illustrates the

overall MoFlus architecture.

Figure 1. MoFlus Architecture

Each component can be described as follows:

a) DetectionCamera manages detection with the camera by

utilizing the SurfaceView Android library. SurfaceView

is used to shoot media per frame in real-time mode or

per image in batch mode. RGB or HSV values are taken

in this component, wherein each frame of the captured

image will be changed to the bitmap matrix form. Each

location of the sample ROI point will be squared in

accordance with the specified size, and color expression

value is calculated.

b) DetectionModel is used for components that

accommodate all required modeling classes, such as

sample ROI position, data samples, color models,

observational graphs, and several classes needed for

data storage and processing in the cloud.

c) DetectionStorage regulates storage. The local and

online storage media used by MoFlus are SQLite and

MongoDB Database, respectively.

d) Server regulates the transmission of observations to

classification servers by making observations in the

form of Javascript object notation (JSON).

e) Helper facilitates image conversion, folder

management, and CSV formation. This component is a

new component. Although it is not a requirement, it is

useful for providing computation facilities to other

components.

Each component will be assembled and employed by

the Main component on Android to shape overall software

performance. Each component will communicate with each

other in accordance with their specific functions, which are

coordinated by the Main component. Communication

among each component is described in Figure 2.

Figure 2. Interaction between components

P a g e | 42 Wirawan et al. (2021), MoFlus: An Open-Source Android Software for Fluorescence-Based Point of Care

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

As depicted in Figure 2, the Main component acts as the

main coordinator that will call on the other components to

take color descriptions. As stated in the above description,

the DetectionModel, will be called by the Main component

to identify detection settings, such as color selection and

sample number settings. The Main Component will access

and activate SurfaceView setting on the DetectionCamera

component to handle image acquisition in the real-time

mode. Therefore, the batch mode does not require

SurfaceView settings for image processing. Image

processing during observation will be assisted by Helper and

DetectionCamera components. The Helper component

provides assistance to image processing by the

DetectionCamera component. Processing will be taken

within the specified period (finish time). Observations will

be stored by the DetectionStorage component. Detection

results can also be processed through transmission to an

external server with Server components, which are not

discussed in detail in this paper.

2.3.Design for Multisample Observation

This work presents a technique for how a software

application can observe numerous samples for obtaining

color expressions. The application is designed to be

implemented specifically as an Android-based application.

MoFlus users can make observations by selecting

desired spots from the sample objects observed on the

smartphone screen. The user selects a sample by selecting

(touching) a sample of observations on display. The pixel

sizes of observations can be set from 1 pixel to 200 pixels.

Many of these points are also selected for flexible

observation. Thus, the user can change previously selected

observation points.

The image acquisition period can be set in milliseconds

in real-time mode. The duration of the observation can also

be set in addition to the shooting interval to enable the

application to observe the reaction movements of the

observed samples. The observations are displayed as a line

chart to show the changes in the color intensity of the

observed sample. The GraphView library on Android is used

to develop these features.

SurfaceView is an Android library class that is derived

from the View class. This class is used because of its ability

to update the screen quickly. The ability to update the screen

quickly is needed because real-time observation requires

continuous and simultaneous image acquisition and

processing specific areas in the image until the end of the set

duration. If this capability is only charged to the View class,

the processing will be heavy because the View class is a

graphical user interface (GUI) thread that handles all user

interactions.

Using only the SurfaceView library will fail to meet the

requirements of MoFlus because sample image processing is

required. SurfaceView's ability to handle further sample

image processing must be improved. The SurfaceView class

used by MoFlus is an extension class that was specifically

developed to enable SurfaceView to handle sample image

processing. The extension class is named

DetectionSurfaceView (Figure 3). In addition to the

capabilities for image processing, the DetectionSurfaceView

class is also designed to have the ability to show the sample

spots chosen by the user.

DetectionSurfaceView overrides several standard

methods in the SurfaceView class. These methods include

onMeasure, onDraw, and onPreviewFrame. onMeasure

controls the resolution of SurfaceView on smartphone

screens. onDraw is used to draw spots on SurfaceView. The

onPreviewFrame is overriden to enable the supporting

DetectionHelper to acquire and process images.

DetectionHelper is created to help several processes during

image acquisition and processing.

Other methods, such as changeDotPosition,

startDetection, and startAutoFocus, are added to extend the

capabilities of SurfaceView. changeDotPosition is used to

move the position of observation points. startDetection is

used to initiate observation, and startAutoFocus is used to

direct the camera to capture images to the point of

observation

Figure 3. DetectionSurfaceView is inherited from

SurfaceView

3. IMPLEMENTATION

This section focuses on implementation, especially the

implementation of designs for multisample observations and

the storage of observations. Implementation is carried out

using the Java programming language on the Android

version of the SDK minimum of 19. The application is

deployed on a Samsung Galaxy J5 Pro smartphone. Our

source code is available on Github[17] with the address

https://github.com/bowoadi/MobileFluorescenceSpectrosco

py.

Implementation is completed by making components

that are important for object detection. These components

include DetectionCamera, DetectionModel, Helper, and

Main. DetectionStorage and Server were created after the

development of the components for object detection. Each

component contains important classes or key classes, which

will be discussed in the next section. We do not use semi-

https://github.com/bowoadi/MobileFluorescenceSpectroscopy
https://github.com/bowoadi/MobileFluorescenceSpectroscopy

Journal of Biomedical Science and Bioengineering, 1 (2) 2021: 39-48 P a g e | 43

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052.All rights reserved

automatic method[18] to select the key classes, but we select

the important classes manually. The discussion follows the

order of development and starts from sample observation

and continues to saving results.

3.1.Sample Observation

3.1.1.Sample Selection

MoFlus has the ability to observe multiple samples on a

smartphone screen display. The user selects the spots on the

samples to be occupied for the acquisition of color

expression value, and the location of the observation points

can be stored for further observations. Prior to observations,

some parameters need to be set, such as the duration of

observation, time interval of observation, pixel size, and

color type to be observed (RGB or HSV). The display for the

observation setting is shown in Figure 4 [a].

A preview picture will be displayed through a dialog

message at the time of observation (Figure 4 [b]). The

preview picture is used to select the sample to be observed.

The user selects the sample by touching the smartphone

screen. The selected samples will be marked with points.

These points are formed by using custom drawing, which is

an approach for drawing certain patterns on an object. This

approach utilizes the Android Canvas and Paint library. The

Canvas object is used to set what will be drawn, whereas the

Paint class sets image properties, such as color, thickness,

and stroke.

A preview image is generated in Bitmap format to

support the use of Canvas. The Copy method is used to

remove the effect of spot position on preview images. The

succeeding images will note the effect on the basis of spot

position. The copy image from the Copy method is

converted to ARGB_8888 format to obtain the best image

results. This format can store each color channel in 8 bits.

Code construction is shown in Figure 5.

Object paint (Figure 5) is used to adjust the color of the

dot formed when the user selects the observed dots. The

color settings use setColor, where the color used is red. A

dot is formed when the user selects the observation point. It

is made in the form of a circle with a radius that is calculated

as the height of the preview image divided by 100 to ensure

that the dot image that is formed is visible such that the

selected location is clearly visible to the user. The user-

selected location is stored in the DotLocation class, wherein

several attributes for storage locations exist. The drawCircle

method that is set in accordance with the obtained location

and other properties, such as the Paint object and variable

radius, is used to draw the dot. This process sequence is

completed by setting the imageView with an image that has

been given a detection location.

The user selects the sample observation location in a

preview image. The preview image is an image that has been

transformed (resized) from the original image. The

transformation of original images into preview images

involves an Android library from the

android.graphics.Matrix package.

[a]

[b]

[c]

Figure 4. Observation in the MoFlus application

Bitmap previewPicture =

((BitmapDrawable) imageView.

getDrawable()).getBitmap().copy(

Bitmap.Config.ARGB_8888, true);

Canvas canvas = new

Canvas(previewPicture);

Paint paint = new Paint();

Figure 5. Preview of picture construction code

P a g e | 44 Wirawan et al. (2021), MoFlus: An Open-Source Android Software for Fluorescence-Based Point of Care

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

paint.setColor(Color.RED);

canvas.drawBitmap(previewPicture,

 new Matrix(), null);

int radius =

CameraSettings.PREVIEW_HEIGHT/100;

canvas.drawCircle(dotLocation.getX()

 ,dotLocation.getY(), radius,

 paint);

imageView.setImageBitmap(

 previewPicture);

Figure 6. Additional settings for Paint and Canvas objects

public void onClick(View view) {

. . .

detectionSurfaceView.

startDetection(countdown_textview,

start_delay);

. . .

}

Figure 7. StartDetection method to start detection

if (((int) imageView.getTag()) ==

 graphDatas.size())

{

 //code for additional settings.

 //startDetection method called here

}

Figure 8. Checking before detection begin

dataResult.getGraphDatas().

 clear();

dataResult.getGraphDatas().

 addAll(graphDatas);

detectionHelper.setDataResult(

 dataResult,

 getApplicationContext());

enableProcessProgress();

pixel_location_imageview.setImageBitmap(

 BitmapHelper.

 getBitmapPixelLocation(

 dotLocations));

dialog.dismiss();

Figure 9. Additional settings to start detection

OnTouch will record the dot position, and OnClick will

identify the dot position for the selected sample and draw a

red dot in accordance with the chosen position during the

selection of the detection location in the preview image

(Figure 6). The drawing work shown in Figure 7 and Figure

8 is an implementation of onClick. Detection starts when the

location has been selected and the user presses the "Start”

button in the dialog message. Calling the startDetection of

the DetectionSurfaceView class will initiate detection.

Several components related to the components on the

detection page, namely graph data, must be checked prior to

detection.

Detection locations are selected on the basis of the

prearranged sample requirements. Each sample has one

detection location. During implementation, the sample is

reallocated into a class called Sample. Checking the

suitability of the sample selected with the

graph.imageView.getTag() before detection yields the

memory that is obtained when selecting the sample location.

Detection can begin by checking available memory and

graphs of available data.

Several additional settings are needed to manage

existing data after detection as shown in Figure 9. The

DataResult class is used to store data obtained after

detection. All data are deleted with the clear() method and

overwritten with the new data graph with the addAll()

method to prevent collision with the results of the previous

data graph. Both methods are the default method of

ArrayList objects from Android. Data in graphical form are

formed into ArrayList objects given the requirement for

more than one sample.

enableProcess() is an additional method for changing the

appearance of the process. A setImageBitmap method is

used to arrange dot-marked bitmap images to ImageView.

Merging implementation in Figures 3, 4, and 5 will complete

the implementation of the OnClick method for the "START"

button and will immediately start detection.

3.1.2.Sample Observation

Starting detection will automatically activate Surface

View, a derivative of the View class on Android that can

update the screen quickly. All processes are charged to the

GUI thread that handles all user interactions when the simple

View is used. Processes that require excessive rendering will

be handled by SurfaceView.

DetectionSurfaceView is the class that will play

additional roles during detection. This class includes an

onPreviewFrame method, which must be implemented

(overriden) when using the Camera.PreviewCallback class.

The onPreviewFrame method runs when the view surface is

active. Processing time must be checked to ensure that

processing does not exceed the specified duration before

initiating processing. If processing exceeds the set duration,

the finishProcess () method, a method in the

DetectionSurfaceView class, will be added. Processing will

continue when the current time is still less than the set

duration.

The UI (user interface) is updated, and user interactions

are handled during detection. Updating the UI in MoFlus

involves updating data graphs and camera previews.

Handling user interaction occurs when a user changes the

location position. The Handler class is used to handle threads

on Android. As shown in Figure 10, the Handler constructor

uses the getMainLooper method to obtain the main thread

from the application because the UI must be updated from

the application's main thread.

Journal of Biomedical Science and Bioengineering, 1 (2) 2021: 39-48

P a g e | 45

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

private Handler handler = new Handler(Looper.getMainLooper());

. . .

public void onPreviewFrame(byte[] bytes, final Camera camera) {

if (detectionHelper.isProcess()) {

handler.post(new Runnable() {

@Override

public void run() {

try {

 camera.takePicture(null, null, jpegCallback);

} catch (RuntimeException e) {

 Log.d("CameraError", e.getMessage());

 }

 }

 });

 }

}

Figure 10. The use of Handler in MoFlus.

3.2.Chart Display

Each line chart depicted in Figure 4 (c) reflects the

color expression value from each sample point. The x axis

shows the time when the point value was taken and the y axis

shows the sum of the values of the red, green, and blue

values. Graph display is set in the detection method. The

graph does not yet exist and only exists when detection

occurs during the beginning of detection page formation.

The values on the graph are obtained in real time. Value

retrieval based on color detection begins when SurfaceView

and surfaceHolder are initiated. The onPictureTaken method

will run the imageProcessing method in the DetectionHelper

class. imageProcessing will take the byte that has been

converted to the bitmap and then take the value. The value is

an array of RGBValue objects taken in accordance with the

selected color detection method. The resulting value is

mapped to the graph in the recycler view. The

camera.startPreview method updates the preview of

SurfaceView. The preview must begin before the image is

taken in accordance with Android documentation.

3.3.Saving Results

The detection results will be stored in the

DataResult class. This class structure is shown in Figure 11.

The use of classes is intended to encapsulate the details of

the saved observation result. The variables stored are in id,

name of detection results, preview picture in the form of a

bitmap and its URL, date and time of storage, the color

detection method used, the results of graph data, and the

results of cloud computing (cloudComputingResult). The

methods in this class are constructors, getters, and setters.

Detection results can be stored for future use by

using the DataResult class. The main process that occurs

when saving detection results is illustrated in Figure 13. The

SQLiteAsynTask is an artificial class located in the Server

package. This class is derived from Android's AsyncTask.

The AsyncTask class is used to perform behind-the-scenes

operations and to publish results to UI threads without

having to manipulate threads or handlers. AsyncTask should

be used for operations that last for only a few seconds.

Figure 11. Class structure for DataResult

Figure 12.DataResult Display Results

P a g e | 46 Wirawan et al. (2021), MoFlus: An Open-Source Android Software for Fluorescence-Based Point of Care

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

Figure 12 displays the data results that have been

obtained through detection in CSV form. createFile

(dataResult) which is located in the CSVHelper class,

participates in CSV creation. The CSVHelper class is

located in the package helper. CSV can be created by using

the OpenCSV external library, which can be accessed at

http://opencsv.sourceforge.net/. The implementation in the

CSV Helper class is illustrated in Figure 14.

Detection results can also be processed using several

methods. Processing occurs on the server. The transmission

of detection results to the server is assisted by a

ClassificationRequest class located within the Server

component. The Classification Request constructor converts

the Data Result class into JSON format, as shown in the

schema provided in Figure 15. The JSON scheme format is

compiled in reference to Barbaglia et al.[19] The JSON

format is selected for the use of REST web services that are

highly bandwidth efficient in sending data[20].

The JSON data scheme in MoFlus (Figure 15) consists

of a classification_method attribute and an array of data from

observations. The classification_method attribute contains a

classification method that will be run on the server side for

sample classification. The array of observation data is

composed of the elements of the observation in the form of

the sample name and observation values. JSON schemes are

compiled to validate JSON data sent by smartphones. The

JSON scheme is shown in Figure 14, and the JSON

document sent from the MoFlus application is shown in

Figure 16.

The Instance generated from MoFlus has been validated

by using the JSON Schema Validator[21]. The validation

results show the JSON generated by the MoFlus application

in accordance with the schema used for validation.

new SQLiteAsyncTask(

 context,

 moflusSQLiteHelper,

 dataResult,

 alertDialog).execute();

Figure 13. SQLiteAsyncTask implementation

public static String

createFile(DataResult dataResult)

throws IOException{

 ...

 CSVWriter writer = new

 CSVWriter(new

 FileWriter(filePath));

 writer.writeAll(text);

 writer.close();

 return filePath;

}

Figure 14. MoFlus createFile method

{

 "type": "object",

 "$schema": "http://json-

schema.org/draft-07/schema#",

 "properties": {

 "classification_method": {

 "type": "string"

 },

 "data": {

 "type": "array",

 "items": {

 "type": "object",

 "properties": {

 "sample_name": {

 "type": "string"

 },

 "value": {

 "type": "integer"

 }

 }

 }

 }

 }

}

Figure 15. JSON Schema for MoFlus

{

 "classification_method":

"backpropagation",

 "data": [

 {

 "sample_name": "sample-A",

 "value": 250

 },

 {

 "sample_name": "sample-B",

 "value": 250

 }

]

}

Figure 16. JSON documents sent by moflus

3.5. Batch Process

The batch process does not use the SurfaceView class

in image processing. The image has already been taken

through the folder on the smartphone or can be taken by

using a camera in the MoFluS application. Image processing

begins when the user is asked to touch the screen to select

the sample position to be observed (sample selection). The

process mechanism in the sample selection activity is the

same as that illustrated in Figures 5 and 6. The difference in

the process in batches of images is taken not in real time but

is already stored in the application folder. Thus, processing

does not require SurfaceView.

The SurfaceView class is used when the user wants to

take pictures through the camera in the MoFluS application.

The class responsible for shooting is CameraController and

CameraSurfaceView. The CameraController class organizes

activities from the view camera, whereas the

CameraSurfaceView class manages image processing

through SurfaceView.

Journal of Biomedical Science and Bioengineering, 1 (2) 2021: 39-48 P a g e | 47

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052.All rights reserved

4. EVALUATION

The evaluation conducted in this work aims to measure

the effect of the number of observation samples on memory

consumption. Testing is conducted by using Samsung

Galaxy J5 Pro, an Android smartphone with an Octa-core 1.6

GHz processor, 32GB internal memory, and API level 21.

The phone is set up to work with API level 19 as its

minimum level. MoFlus can be deployed on any Android

device with API level 19 in this configuration.

Android Profiler is used in Android Studio 3.2 to

measure memory usage by MoFlus when run on a

smartphone that is connected to a PC. Memory usage is

monitored through Android Studio. Tests are carried out for

real time and batch processing. A printed microarray is used

as an observation source in both processes. Pixel size,

sample point number, intervals, and duration are used as

variables in real-time testing. Pixel size and the numbers of

sample points and images are used as variables in batch

testing. Memory changes during observation are observed

on Android Profiler.

Real-time processing testing is conducted to identify the

correlation of the memory footprint of the MoFlus

application with the pixel size of the observation and the

number of sample points. The test is conducted by changing

the pixel size of the observations (1 pixel, 5 pixels, 10 pixels,

50 pixels, 100 pixels, and 200 pixels). The number of

observation sample points is varied for each point (1, 8, 16,

48, and 96 points). The results of this test are illustrated in

Figure 17. The size of the memory footprint tends to be

constant for the same number of sample points but slightly

increases when 200 pixels are used because MoFlus requires

additional color processing given that the acquired sample

has a large pixel number.

The real-time processing feature is also tested by

evaluating the ability of MoFlus to perform sample

monitoring for a long duration on the memory used. We have

tested the performance of MoFlus in real-time processing for

a period of 1 min to 360 min or 6 h with a 15 s delay between

acquisitions. The test results are shown in Figure 18. Figure

18 shows the memory usage of MoFlus based on usage time

in real-time mode. The results of the experiment show that

memory usage is relatively constant. Memory usage

negligibly increases when observation is prolonged to 6 h

because MoFlus observes samples from the camera that have

been converted to the matrix. Thus, the shooting time does

not cause changes in memory. DetectionCamera Testing

component is crucial for long-term testing.

Figure 19 and Figure 20 shows the results for batch

processing testing. Batch processing testing involves using

previously acquired photos. The number of sample points

used for batch testing is the same as that used for real-time

testing.

As shown in Figure 20, testing is performed to

determine the effect of the number of images on the

application's footprint memory and total time. The number

of images used in the test are 10, 50, 100, 500, and 1000.

This test uses the same number of sample points for each

variation in the number of images, i.e., 96 sample points. The

result shows that the same number of sample points for all

variations in the number of images tends to produce a

constant memory footprint. The total time needed for

processing tends to increase when the memory footprint is

stable.

Figure 17. MoFlus real-time test results with variable

testing pixel size and number of sample points.

Figure 18. Result of the second real-time processing test.

Figure 19. Results of batch testing with variable testing

pixel size and number of sample.

0

50

100

150

200

1 8 16 48 96

M
em

o
ry

 c
o

n
su

m
ti

o
n

(M

B
)

Number of Spots

1

5

10

50

100

200

0

20

40

60

80

100

120

140

160

180

1 5 15 30 60 120 360

M
em

o
ry

 (
M

B
)

Duration (in minutes)

0

50

100

150

200

250

300

1 8 16 48 96

M
em

o
ry

 c
o

n
su

m
ti

o
n

Number of Spots

1

5

10

50

100

200

P a g e | 48 Wirawan et al. (2021), MoFlus: An Open-Source Android Software for Fluorescence-Based Point of Care

Website: https://ejournal2.undip.ac.id/index.php/jbiomes © JBIOMES – ISSN: 2776-4052. All rights reserved

Figure 20. MoFluS batch test results with variable number

of images for 96 points

5. CONCLUSION AND FUTURE WORK

This paper discusses MoFlus, an Android-based

software project that can be used to observe numerous

samples using a smartphone camera. Observations are made

by forming observation points on the smartphone preview

display. This function is established through extension to the

SurfaceView Android library. MoFlus can observe up to 96

samples. The memory used by the application is still

acceptable for most current smartphones. MoFlus can be

used to observe a number of samples by determining the

observation points in accordance with sample position.

Observations can be done in real time or in batch.

Observations require further processing because processing

numerous samples by using a smartphone is impossible.

Other services, such as mobile cloud computing, are needed

to provide computation service[22]. Several components

related to mobile computing and data management are

interesting issues for future study. Data management is a

particularly interesting topic because the use of MoFlus by

many users will involve massive data and processing load.

Data and processing management is necessary to prevent

mixing among the results of different processes. Thus,

studying the appropriate architecture for managing sample

data, such as those used in MoFlus, is necessary.

REFERENCES

[1] W. F. An, “Fluorescence-based assays,” in Cell-Based Assays for

High-Throughput Screening, Springer, 2009, pp. 97–107.

[2] A. Hatch et al., “A rapid diffusion immunoassay in a T-sensor,” Nat.

Biotechnol., vol. 19, no. 5, p. 461, 2001.

[3] A. Bourouis, A. Zerdazi, M. Feham, and A. Bouchachia, “M-health:

Skin disease analysis system using smartphone’s camera,” in Procedia

Computer Science, 2013, vol. 19, pp. 1116–1120, doi:

10.1016/j.procs.2013.06.157.

[4] W. K. Tam and H. J. Lee, “Accurate shade image matching by using a

smartphone camera,” J. Prosthodont. Res., vol. 61, no. 2, pp. 168–

176, 2017, doi: 10.1016/j.jpor.2016.07.004.

[5] B. Berg et al., “Cellphone-based hand-held microplate reader for

point-of-care testing of enzyme-linked immunosorbent assays,” ACS

Nano, vol. 9, no. 8, pp. 7857–7866, 2015.

[6] A. Rahangdale and S. Raut, “Machine Learning Methods for

Ranking,” Int. J. Softw. Eng. Knowl. Eng., vol. 29, no. 06, pp. 729–

761, Jun. 2019, doi: 10.1142/S021819401930001X.

[7] D. Kim et al., “Enzyme-Free Nucleic Acid Amplification Assay

Using a Cellphone-Based Well Plate Fluorescence Reader,” Anal.

Chem., vol. 90, no. 1, pp. 690–695, 2017.

[8] A. Priye, S. W. Bird, Y. K. Light, C. S. Ball, O. A. Negrete, and R. J.

Meagher, “A smartphone-based diagnostic platform for rapid

detection of Zika, chikungunya, and dengue viruses,” Sci. Rep., vol.

7, p. 44778, 2017.

[9] W. Chen et al., “Mobile platform for multiplexed detection and

differentiation of disease-specific nucleic acid sequences, using

microfluidic loop-mediated isothermal amplification and smartphone

detection,” Anal. Chem., vol. 89, no. 21, pp. 11219–11226, 2017.

[10] U. M. Jalal, G. J. Jin, and J. S. Shim, “Paper--Plastic Hybrid

Microfluidic Device for Smartphone-Based Colorimetric Analysis of

Urine,” Anal. Chem., vol. 89, no. 24, pp. 13160–13166, 2017.

[11] J. Song et al., “Smartphone-Based Mobile Detection Platform for

Molecular Diagnostics and Spatiotemporal Disease Mapping,” Anal.

Chem., vol. 90, no. 7, pp. 4823–4831, 2018.

[12] B. Lin et al., “Point-of-care testing for streptomycin based on aptamer

recognizing and digital image colorimetry by smartphone,” Biosens.

Bioelectron., vol. 100, pp. 482–489, 2018.

[13] K. Chan, P.-Y. Wong, C. Parikh, and S. Wong, “Moving toward rapid

and low-cost point-of-care molecular diagnostics with a repurposed

3D printer and RPA,” Anal. Biochem., vol. 545, pp. 4–12, 2018.

[14] S. Akraa et al., “A smartphone-based point-of-care quantitative

urinalysis device for chronic kidney disease patients,” J. Netw.

Comput. Appl., vol. 115, pp. 59–69, 2018.

[15] N. Chondros and M. Roussopoulos, “Developing IntegrityCatalog, a

software system for managing integrity-related metadata in digital

repositories,” Softw. Pract. Exp., vol. 48, no. 1, pp. 45–64, Jan. 2018,

doi: 10.1002/spe.2515.

[16] M. Ozkaya, “Do the informal & formal software modeling notations

satisfy practitioners for software architecture modeling?,” Inf. Softw.

Technol., vol. 95, pp. 15–33, Mar. 2018, doi:

10.1016/j.infsof.2017.10.008.

[17] “Github.” https://github.com.

[18] L. do Nascimento Vale and M. de Almeida Maia, “Key Classes in

Object-Oriented Systems: Detection and Assessment,” Int. J. Softw.

Eng. Knowl. Eng., vol. 29, no. 10, pp. 1439–1463, Oct. 2019, doi:

10.1142/S0218194019500451.

[19] G. Barbaglia, S. Murzilli, and S. Cudini, “Definition of REST web

services with JSON schema,” Softw. Pract. Exp., vol. 47, no. 6, pp.

907–920, Jun. 2017, doi: 10.1002/spe.2466.

[20] M. A. Paredes-Valverde, G. Alor-Hernández, A. Rodríguez-González,

R. Valencia-García, and E. Jiménez-Domingo, “A systematic review

of tools, languages, and methodologies for mashup development,”

Softw. Pract. Exp., vol. 45, no. 3, pp. 365–397, Mar. 2015, doi:

10.1002/spe.2233.

[21] “JSON Schema Validator.” https://www.jsonschemavalidator.net/.

[22] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, “Journal of

Network and Computer Applications Mobile cloud computing :

Challenges and future research directions,” J. Netw. Comput. Appl.,

vol. 115, no. January, pp. 70–85, 2018, doi: 10.1016/j.jnca.2018.04.018

 © 2021. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/)

175

230 222

170
153

0

50

100

150

200

250

10 50 100 500 1000

M
em

o
ry

Number of Spots

