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ABSTRACT. High-sensitivity fluorescence-based tests are utilized to monitor various activities in life science research. These tests are specifically used as 

health monitoring tools to detect diseases. Fluorescence-based test facilities in rural areas and developing countries, however, remain limited. Point-of-care 

(POC) tests based on fluorescence detection have become a solution to the limitations of fluorescence-based tools in developing countries. POC software for 

smartphone cameras was generally developed for specific devices and tools, and it ability to select the desired region of interest (ROI) is limited. In this work, 

we developed Mobile Fluorescence Spectroscopy (MoFlus), an open-source Android software for camera-based POC. We mainly aimed to develop camera-

based POC software that can be used for the dynamic selection of ROI; the number of samples; and the types of detection, color, data, and for communication 

with servers. MoFlus facilitated the use of touch screens and data given that it was developed on the basis of the SurfaceView library in Android and Javascript 

object notation applications. Moreover, the function and endurance of the app when used multiple times and with different numbers of images were tested. 
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1. INTRODUCTION 

 High-sensitivity fluorescence-based tests are widely 

used to monitor various activities, such as molecular 

dynamics and interactions; enzymatic activity; signal 

transduction; cell health; and molecule, organelle, or cell 

distribution, in life science research[1]. Various 

fluorescence-based health condition monitoring tools have 

been useful for resolving disease detection problems. These 

tools include real-time thermal cyclers, fluorescence 

microscopes, and fluorescence spectrophotometers. They 

are used for various purposes, such as quantitative gene 

expression analysis, SNP analysis, fluorescence 

immunoassay, and drug target validation, as well as the 

genotypic quantification of antigens, such as viral particles 

and bacteria[2]. However, facilities for these analyses are 

limited in remote areas and in developing countries. 

Diseases that are often faced by developing countries include 

diabetes, heart disease, cancer, malaria, pneumonia, 

diarrhea, and HIV/AIDS. These diseases are estimated to 

cause the deaths of more than 15 million people each year. 

Fluorescence-based point-of-care (POC) tests can be a 

solution to the lack of facilities in developing countries. The 

contribution of POC tests to the health sector has exerted a 

crucial impact on disease prevention or detection. Previous 

work has focused on developing simple, inexpensive, and 

reliable POC tools for rapid diagnosis. POC devices involve 

the use of affordable, portable, and efficient materials. They 

can be easily transported and can be used at any time to meet 

the needs of rapid health care. The development of 

smartphone technology has enabled the construction of 

fluorescence-based and smartphone-based POC for disease 

detection[3]. 

The smartphone camera has a dominant role in disease 

detection[3]. Smartphone cameras can be used not only to 

capture images but also to process images and detect objects 

in the captured image. Smartphones have been selected as 

POC tools given their wireless connectivity, high-resolution 

photography, and good portability [4]. Camera-based POC 

devices have undergone extensive development in recent 

years. In 2015, the Ozcan research group[5] developed a 

smartphone-based POC device for reading fluorescent 

signals in enzyme-linked immunosorbent assays for 

measles, mumps, and herpes (HSV-1 and HSV-2). The 

developed software could be used to monitor 96 walls by 

observing 15 pixels with a fixed radius in each wall through 

the thresholding method. The whole image is then analyzed 

through machine learning outside of the smartphone. 

Machine learning frameworks such as Learning-to-rank can 

be used to analyze the resulting image[6]. An enzyme-free 

nucleic acid amplification method for detecting influenza 

virus DNA and miR-316 microRNA was developed in 

2018[7]. In 2017, Priye et al.[8] developed a POC 

fluorescence device based on reverse-transcription loop-

mediated isothermal amplification for ZIKA virus detection. 

The developed software (LAMP2GO) could be used to 

control focal length, exposure time, and ISO during image 

acquisition. Moreover, sample selection from multiple 

regions of interest (ROIs) could be conducted after image 

acquisition. In 2017, Chen et al.[9] developed a smartphone-

based POC device with the help of long pass filters and 
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macro lenses with magnifications of up to 12.5×. Chen did 

not use viruses that attack humans as inputs and instead 

applied viruses that attack horses (S. Equi, S. Zoo, EHV-1, 

and EHV-4). The output of the device is fluorescence. In the 

same year, Jalal et al.[10] developed a paper-based reagent 

strip POC device with a lab-on-chip scheme with urine as an 

input for the detection of urine components and 

characteristics, including glucose, protein, pH, and red blood 

cells, through hue colorimetric information extraction. Song 

et al.[11] developed a smart cup system in 2018. They 

conducted image processing analysis to detect 

bioluminescence signals emitted by the ZIKV virus in urine 

and HIV in the blood. Lin[12] combined dsDNA with SYBR 

Green1 to detect green fluorescence signals emitted by 

streptomycin in food. Chan et al.[13] utilized a repurposed 

3D printer to extract and purify MP-based NA to detect 

ZIKV in human urine samples. In this assay, fluorescence 

signals are emitted upon the irradiation of sample tubes with 

blue LED. The signals are then recorded by a smartphone 

camera with an orange plastic filter. Akraa et al.[14] 

developed a POC device for the detection of chronic kidney 

diseases based on urine albumin analysis. It also used a 

smartphone device to detect fluorescence. 

The development of POC technology focuses on the use 

of smartphone cameras. Smartphone cameras on POC 

devices can be operated by using default or specific 

applications that can control extreme focal lengths, exposure 

time, and ISO settings Berg et al.[5] captured images by 

using the NOKIA Lumia 1020 application. Priye et al.[8] 

developed applications that could control focal length, 

exposure time, and ISO. However, smartphone-based POC 

technologies are specific for certain devices and tools, and 

their ability to choose the desired ROI is limited. Thus, users 

or medical personnel are unable to select the desired ROI. In 

addition, most of the developed POC devices have a limited 

number of points. These technologies also cannot 

dynamically determine the number of points. POCs are also 

limited by their inability to store and process data and to 

apply data as a repository for the source of decisions. Thus, 

each POC device must take measurements of its own. 

In this work, we developed a universal application for a 

camera-based POC device. We mainly focused on 

developing camera-based POC software to complement the 

limitations of existing applications. The technology was 

developed on the basis of SurfaceView libraries in Android 

applications. SurfaceView enables the dynamic 

development of multitarget detection by using touch screens. 

This paper was organized in reference to Chondros et al.[15] 

Part 2 begins with a system description of the POC system. 

This section presents the required requirements and design 

details of the system. The implementation and application 

testing of the system are discussed in succeeding sections. 

2. 2. SYSTEM DESCRIPTION 

2.1 Requirement 

Mobile Fluorescence Spectroscopy (MoFlus) is an 

Android-based application that can read color expression 

values from the observations of samples on the basis of 

color. The smartphone camera is used to acquire images of 

samples that will be perceived as expression level values. 

The user can determine the spots to be selected for the color 

expression value. The results of observing the selected color 

values will be saved. The fluorescence of a sample might be 

taken as a color expression value. The color expression 

processing of images can be performed in real time or in 

batch. In real-time processing, the image of the observed 

object is obtained directly from the camera and is utilized to 

support the retrieval of reaction data from the sample. The 

user needs to specify a certain range of duration for image 

acquisition with MoFlus to obtain the color expression value 

of the sample. The changes in the fluorescence intensity of 

the sample can be observed by using the time-series data 

obtained through real-time observation. In batch processing, 

previously acquired photographs are subjected to color 

extraction. Thus, this strategy can be used to analyze various 

samples from different photos. 

MoFlus outputs color expression in the form of red 

green blue (RGB) and hue saturation value (HSV) color 

models. These results can be stored and can be sent for 

further processing given the computation limitations of 

smartphones.  

MoFlus has the following requirements: 

a) More than one observation point should be 

determined to enable the observation of additional 

samples. In contrast to taking observations from 

only one sample or one photo at a time, taking 

observations from numerous samples prevents the 

excessive repetition of observations. 

b) Multiple points should be observed simultaneously. 

Numerous samples should be observed 

simultaneously. Simultaneous processing can be 

conducted with multithreading programming 

techniques. 

c) Color expression should be captured with RGB and 

HSV color models. The choice of different color 

expressions allows the user to select the color 

expression that is in accordance with the analysis 

that must be performed next. 

d) Color expression must be captured through real-

time live imaging and batch imaging from 

previously acquired images.  

e) Observations that are ready for further processing 

must be saved such that they can be taken at any 

time when needed in the future. 

The defined requirements are then used as the basis for 

software design by mapping requirements into software 

components. 

 

2.2.Design 

This section focuses on the design of the components in 

MoFlus. The representation of components and their 

relationships is illustrated in Figure 1. Architectural 

depictions were generated by using component diagrams 

with connectors and connections in reference to Ozkaya[16].  

The constructed components are derived on the basis of 

the previously described requirements. Each requirement 



 

Journal of Biomedical Science and Bioengineering, 1 (2) 2021: 39-48 P a g e  | 41 

 

Website: https://ejournal2.undip.ac.id/index.php/jbiomes  © JBIOMES – ISSN: 2776-4052.All rights reserved 

represents a component. Thus, four main components for 

handling smartphone camera access, data modeling, storage 

processing, and data transmission to the server exist. Each 

successive component is called the Detection Camera, 

DetectionModel, DetectionStorage, and Server. The four 

components are organized into a component called the Main 

component, which is also tasked with real-time or batch 

color expression processing. The Helper component is used 

to facilitate computation by other components. It is 

responsible for facilitating various processes, such as image 

processing and CSV file formation. Figure 1 illustrates the 

overall MoFlus architecture. 

 

 

Figure 1. MoFlus Architecture 

 

Each component can be described as follows:  

a) DetectionCamera manages detection with the camera by 

utilizing the SurfaceView Android library. SurfaceView 

is used to shoot media per frame in real-time mode or 

per image in batch mode. RGB or HSV values are taken 

in this component, wherein each frame of the captured 

image will be changed to the bitmap matrix form. Each 

location of the sample ROI point will be squared in 

accordance with the specified size, and color expression 

value is calculated.  

b) DetectionModel is used for components that 

accommodate all required modeling classes, such as 

sample ROI position, data samples, color models, 

observational graphs, and several classes needed for 

data storage and processing in the cloud. 

c) DetectionStorage regulates storage. The local and 

online storage media used by MoFlus are SQLite and 

MongoDB Database, respectively.  

d) Server regulates the transmission of observations to 

classification servers by making observations in the 

form of Javascript object notation (JSON). 

e) Helper facilitates image conversion, folder 

management, and CSV formation. This component is a 

new component. Although it is not a requirement, it is 

useful for providing computation facilities to other 

components. 

 

Each component will be assembled and employed by 

the Main component on Android to shape overall software 

performance. Each component will communicate with each 

other in accordance with their specific functions, which are 

coordinated by the Main component. Communication 

among each component is described in Figure 2. 

 

 

 

Figure 2. Interaction between components 
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As depicted in Figure 2, the Main component acts as the 

main coordinator that will call on the other components to 

take color descriptions. As stated in the above description, 

the DetectionModel, will be called by the Main component 

to identify detection settings, such as color selection and 

sample number settings. The Main Component will access 

and activate SurfaceView setting on the DetectionCamera 

component to handle image acquisition in the real-time 

mode. Therefore, the batch mode does not require 

SurfaceView settings for image processing. Image 

processing during observation will be assisted by Helper and 

DetectionCamera components. The Helper component 

provides assistance to image processing by the 

DetectionCamera component. Processing will be taken 

within the specified period (finish time). Observations will 

be stored by the DetectionStorage component. Detection 

results can also be processed through transmission to an 

external server with Server components, which are not 

discussed in detail in this paper.  

2.3.Design for Multisample Observation 

This work presents a technique for how a software 

application can observe numerous samples for obtaining 

color expressions. The application is designed to be 

implemented specifically as an Android-based application. 

MoFlus users can make observations by selecting 

desired spots from the sample objects observed on the 

smartphone screen. The user selects a sample by selecting 

(touching) a sample of observations on display. The pixel 

sizes of observations can be set from 1 pixel to 200 pixels. 

Many of these points are also selected for flexible 

observation. Thus, the user can change previously selected 

observation points.  

The image acquisition period can be set in milliseconds 

in real-time mode. The duration of the observation can also 

be set in addition to the shooting interval to enable the 

application to observe the reaction movements of the 

observed samples. The observations are displayed as a line 

chart to show the changes in the color intensity of the 

observed sample. The GraphView library on Android is used 

to develop these features. 

SurfaceView is an Android library class that is derived 

from the View class. This class is used because of its ability 

to update the screen quickly. The ability to update the screen 

quickly is needed because real-time observation requires 

continuous and simultaneous image acquisition and 

processing specific areas in the image until the end of the set 

duration. If this capability is only charged to the View class, 

the processing will be heavy because the View class is a 

graphical user interface (GUI) thread that handles all user 

interactions. 

Using only the SurfaceView library will fail to meet the 

requirements of MoFlus because sample image processing is 

required. SurfaceView's ability to handle further sample 

image processing must be improved. The SurfaceView class 

used by MoFlus is an extension class that was specifically 

developed to enable SurfaceView to handle sample image 

processing. The extension class is named 

DetectionSurfaceView (Figure 3). In addition to the 

capabilities for image processing, the DetectionSurfaceView 

class is also designed to have the ability to show the sample 

spots chosen by the user.  

DetectionSurfaceView overrides several standard 

methods in the SurfaceView class. These methods include 

onMeasure, onDraw, and onPreviewFrame. onMeasure 

controls the resolution of SurfaceView on smartphone 

screens. onDraw is used to draw spots on SurfaceView. The 

onPreviewFrame is overriden to enable the supporting 

DetectionHelper to acquire and process images. 

DetectionHelper is created to help several processes during 

image acquisition and processing.  

Other methods, such as changeDotPosition, 

startDetection, and startAutoFocus, are added to extend the 

capabilities of SurfaceView. changeDotPosition is used to 

move the position of observation points. startDetection is 

used to initiate observation, and startAutoFocus is used to 

direct the camera to capture images to the point of 

observation 

 

 

Figure 3. DetectionSurfaceView is inherited from 

SurfaceView 

 

3. IMPLEMENTATION 

This section focuses on implementation, especially the 

implementation of designs for multisample observations and 

the storage of observations. Implementation is carried out 

using the Java programming language on the Android 

version of the SDK minimum of 19. The application is 

deployed on a Samsung Galaxy J5 Pro smartphone. Our 

source code is available on Github[17] with the address 

https://github.com/bowoadi/MobileFluorescenceSpectrosco

py. 

Implementation is completed by making components 

that are important for object detection. These components 

include DetectionCamera, DetectionModel, Helper, and 

Main. DetectionStorage and Server were created after the 

development of the components for object detection. Each 

component contains important classes or key classes, which 

will be discussed in the next section. We do not use semi-

https://github.com/bowoadi/MobileFluorescenceSpectroscopy
https://github.com/bowoadi/MobileFluorescenceSpectroscopy
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automatic method[18] to select the key classes, but we select 

the important classes manually. The discussion follows the 

order of development and starts from sample observation 

and continues to saving results. 

 

3.1.Sample Observation  

3.1.1.Sample Selection 

MoFlus has the ability to observe multiple samples on a 

smartphone screen display. The user selects the spots on the 

samples to be occupied for the acquisition of color 

expression value, and the location of the observation points 

can be stored for further observations. Prior to observations, 

some parameters need to be set, such as the duration of 

observation, time interval of observation, pixel size, and 

color type to be observed (RGB or HSV). The display for the 

observation setting is shown in Figure 4 [a]. 

A preview picture will be displayed through a dialog 

message at the time of observation (Figure 4 [b]). The 

preview picture is used to select the sample to be observed. 

The user selects the sample by touching the smartphone 

screen. The selected samples will be marked with points. 

These points are formed by using custom drawing, which is 

an approach for drawing certain patterns on an object. This 

approach utilizes the Android Canvas and Paint library. The 

Canvas object is used to set what will be drawn, whereas the 

Paint class sets image properties, such as color, thickness, 

and stroke. 

A preview image is generated in Bitmap format to 

support the use of Canvas. The Copy method is used to 

remove the effect of spot position on preview images. The 

succeeding images will note the effect on the basis of spot 

position. The copy image from the Copy method is 

converted to ARGB_8888 format to obtain the best image 

results. This format can store each color channel in 8 bits. 

Code construction is shown in Figure 5. 

Object paint (Figure 5) is used to adjust the color of the 

dot formed when the user selects the observed dots. The 

color settings use setColor, where the color used is red. A 

dot is formed when the user selects the observation point. It 

is made in the form of a circle with a radius that is calculated 

as the height of the preview image divided by 100 to ensure 

that the dot image that is formed is visible such that the 

selected location is clearly visible to the user. The user-

selected location is stored in the DotLocation class, wherein 

several attributes for storage locations exist. The drawCircle 

method that is set in accordance with the obtained location 

and other properties, such as the Paint object and variable 

radius, is used to draw the dot. This process sequence is 

completed by setting the imageView with an image that has 

been given a detection location. 

The user selects the sample observation location in a 

preview image. The preview image is an image that has been 

transformed (resized) from the original image. The 

transformation of original images into preview images 

involves an Android library from the 

android.graphics.Matrix package. 

 

 

 
[a] 

 

 
[b] 

 

 
[c] 

 

Figure 4. Observation in the MoFlus application 

 

 
Bitmap previewPicture = 

((BitmapDrawable) imageView. 

getDrawable()).getBitmap().copy( 

Bitmap.Config.ARGB_8888, true); 

 

Canvas canvas = new 

Canvas(previewPicture); 

 

Paint paint = new Paint(); 

 

Figure 5. Preview of picture construction code 
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paint.setColor(Color.RED);                  

canvas.drawBitmap(previewPicture,   

  new Matrix(), null); 

 

int radius = 

CameraSettings.PREVIEW_HEIGHT/100; 

                    

canvas.drawCircle(dotLocation.getX() 

 ,dotLocation.getY(), radius,  

 paint); 

imageView.setImageBitmap(    

 previewPicture); 

 

Figure 6. Additional settings for Paint and Canvas objects 

 

 
public void onClick(View view) { 

. . .  

detectionSurfaceView. 

startDetection( countdown_textview, 

start_delay); 

. . . 

} 

Figure 7. StartDetection method to start detection 

 
if (((int) imageView.getTag()) ==  

   graphDatas.size())  

{                   

 //code for additional settings. 

 //startDetection method called here  

} 

Figure 8. Checking before detection begin 

  
dataResult.getGraphDatas(). 

  clear(); 

 

dataResult.getGraphDatas(). 

  addAll(graphDatas); 

 

detectionHelper.setDataResult(  

  dataResult, 

  getApplicationContext()); 

 

enableProcessProgress(); 

 

pixel_location_imageview.setImageBitmap(   

  BitmapHelper. 

  getBitmapPixelLocation(     

  dotLocations)); 

 

dialog.dismiss(); 

Figure 9. Additional settings to start detection 

 

OnTouch will record the dot position, and OnClick will 

identify the dot position for the selected sample and draw a 

red dot in accordance with the chosen position during the 

selection of the detection location in the preview image 

(Figure 6). The drawing work shown in Figure 7 and Figure 

8 is an implementation of onClick. Detection starts when the 

location has been selected and the user presses the "Start” 

button in the dialog message. Calling the startDetection of 

the DetectionSurfaceView class will initiate detection. 

Several components related to the components on the 

detection page, namely graph data, must be checked prior to 

detection.  

Detection locations are selected on the basis of the 

prearranged sample requirements. Each sample has one 

detection location. During implementation, the sample is 

reallocated into a class called Sample. Checking the 

suitability of the sample selected with the 

graph.imageView.getTag() before detection yields the 

memory that is obtained when selecting the sample location. 

Detection can begin by checking available memory and 

graphs of available data.  

Several additional settings are needed to manage 

existing data after detection as shown in Figure 9. The 

DataResult class is used to store data obtained after 

detection. All data are deleted with the clear() method and 

overwritten with the new data graph with the addAll() 

method to prevent collision with the results of the previous 

data graph. Both methods are the default method of 

ArrayList objects from Android. Data in graphical form are 

formed into ArrayList objects given the requirement for 

more than one sample.  

enableProcess() is an additional method for changing the 

appearance of the process. A setImageBitmap method is 

used to arrange dot-marked bitmap images to ImageView. 

Merging implementation in Figures 3, 4, and 5 will complete 

the implementation of the OnClick method for the "START" 

button and will immediately start detection. 

 

3.1.2.Sample Observation 

Starting detection will automatically activate Surface 

View, a derivative of the View class on Android that can 

update the screen quickly. All processes are charged to the 

GUI thread that handles all user interactions when the simple 

View is used. Processes that require excessive rendering will 

be handled by SurfaceView. 

DetectionSurfaceView is the class that will play 

additional roles during detection. This class includes an 

onPreviewFrame method, which must be implemented 

(overriden) when using the Camera.PreviewCallback class. 

The onPreviewFrame method runs when the view surface is 

active. Processing time must be checked to ensure that 

processing does not exceed the specified duration before 

initiating processing. If processing exceeds the set duration, 

the finishProcess () method, a method in the 

DetectionSurfaceView class, will be added. Processing will 

continue when the current time is still less than the set 

duration.  

The UI (user interface) is updated, and user interactions 

are handled during detection. Updating the UI in MoFlus 

involves updating data graphs and camera previews. 

Handling user interaction occurs when a user changes the 

location position. The Handler class is used to handle threads 

on Android. As shown in Figure 10, the Handler constructor 

uses the getMainLooper method to obtain the main thread 

from the application because the UI must be updated from 

the application's main thread. 
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private Handler handler = new Handler(Looper.getMainLooper()); 

. . . 

 

public void onPreviewFrame(byte[] bytes, final Camera camera) { 

 . . . . 

if (detectionHelper.isProcess()) { 

handler.post(new Runnable() { 

@Override 

public void run() { 

try { 

                camera.takePicture(null, null, jpegCallback); 

} catch (RuntimeException e) { 

                     Log.d("CameraError", e.getMessage()); 

                  }         

                } 

            }); 

        }  

} 

Figure 10. The use of Handler in MoFlus. 

 

3.2.Chart Display 

Each line chart depicted in Figure 4 (c) reflects the 

color expression value from each sample point. The x axis 

shows the time when the point value was taken and the y axis 

shows the sum of the values of the red, green, and blue 

values. Graph display is set in the detection method. The 

graph does not yet exist and only exists when detection 

occurs during the beginning of detection page formation. 

The values on the graph are obtained in real time. Value 

retrieval based on color detection begins when SurfaceView 

and surfaceHolder are initiated. The onPictureTaken method 

will run the imageProcessing method in the DetectionHelper 

class. imageProcessing will take the byte that has been 

converted to the bitmap and then take the value. The value is 

an array of RGBValue objects taken in accordance with the 

selected color detection method. The resulting value is 

mapped to the graph in the recycler view. The 

camera.startPreview method updates the preview of 

SurfaceView. The preview must begin before the image is 

taken in accordance with Android documentation.  

 

3.3.Saving Results 

The detection results will be stored in the 

DataResult class. This class structure is shown in Figure 11. 

The use of classes is intended to encapsulate the details of 

the saved observation result. The variables stored are in id, 

name of detection results, preview picture in the form of a 

bitmap and its URL, date and time of storage, the color 

detection method used, the results of graph data, and the 

results of cloud computing (cloudComputingResult). The 

methods in this class are constructors, getters, and setters.  

Detection results can be stored for future use by 

using the DataResult class. The main process that occurs 

when saving detection results is illustrated in Figure 13. The 

SQLiteAsynTask is an artificial class located in the Server 

package. This class is derived from Android's AsyncTask. 

The AsyncTask class is used to perform behind-the-scenes 

operations and to publish results to UI threads without 

having to manipulate threads or handlers. AsyncTask should 

be used for operations that last for only a few seconds. 

 

Figure 11. Class structure for DataResult 

 

Figure 12.DataResult Display Results 
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Figure 12 displays the data results that have been 

obtained through detection in CSV form. createFile 

(dataResult) which is located in the CSVHelper class, 

participates in CSV creation. The CSVHelper class is 

located in the package helper. CSV can be created by using 

the OpenCSV external library, which can be accessed at 

http://opencsv.sourceforge.net/. The implementation in the 

CSV Helper class is illustrated in Figure 14. 

Detection results can also be processed using several 

methods. Processing occurs on the server. The transmission 

of detection results to the server is assisted by a 

ClassificationRequest class located within the Server 

component. The Classification Request constructor converts 

the Data Result class into JSON format, as shown in the 

schema provided in Figure 15. The JSON scheme format is 

compiled in reference to Barbaglia et al.[19] The JSON 

format is selected for the use of REST web services that are 

highly bandwidth efficient in sending data[20].  

The JSON data scheme in MoFlus (Figure 15) consists 

of a classification_method attribute and an array of data from 

observations. The classification_method attribute contains a 

classification method that will be run on the server side for 

sample classification. The array of observation data is 

composed of the elements of the observation in the form of 

the sample name and observation values. JSON schemes are 

compiled to validate JSON data sent by smartphones. The 

JSON scheme is shown in Figure 14, and the JSON 

document sent from the MoFlus application is shown in 

Figure 16.  

The Instance generated from MoFlus has been validated 

by using the JSON Schema Validator[21]. The validation 

results show the JSON generated by the MoFlus application 

in accordance with the schema used for validation.  

 

 
new SQLiteAsyncTask( 

  context, 

  moflusSQLiteHelper, 

  dataResult, 

  alertDialog).execute(); 

 

Figure 13. SQLiteAsyncTask implementation 

 
public static String 

createFile(DataResult dataResult) 

throws IOException{  

  ... 

  CSVWriter writer = new  

   CSVWriter(new    

   FileWriter(filePath)); 

                

  writer.writeAll(text); 

  writer.close(); 

  return filePath; 

} 

 

Figure 14. MoFlus createFile method 

   

 

{ 

  "type": "object", 

  "$schema": "http://json-

schema.org/draft-07/schema#", 

  "properties": { 

    "classification_method": { 

      "type": "string" 

    }, 

    "data": { 

      "type": "array", 

      "items": { 

        "type": "object", 

        "properties": { 

          "sample_name": { 

            "type": "string" 

          }, 

          "value": { 

            "type": "integer" 

          } 

        } 

      } 

    } 

  } 

} 

 

Figure 15. JSON Schema for MoFlus 

{ 

  "classification_method": 

"backpropagation", 

  "data": [ 

    { 

      "sample_name": "sample-A", 

      "value": 250 

    }, 

    { 

      "sample_name": "sample-B", 

      "value": 250 

    } 

  ] 

} 

 

Figure 16. JSON documents sent by moflus 

3.5. Batch Process  

The batch process does not use the SurfaceView class 

in image processing. The image has already been taken 

through the folder on the smartphone or can be taken by 

using a camera in the MoFluS application. Image processing 

begins when the user is asked to touch the screen to select 

the sample position to be observed (sample selection). The 

process mechanism in the sample selection activity is the 

same as that illustrated in Figures 5 and 6. The difference in 

the process in batches of images is taken not in real time but 

is already stored in the application folder. Thus, processing 

does not require SurfaceView. 

The SurfaceView class is used when the user wants to 

take pictures through the camera in the MoFluS application. 

The class responsible for shooting is CameraController and 

CameraSurfaceView. The CameraController class organizes 

activities from the view camera, whereas the 

CameraSurfaceView class manages image processing 

through SurfaceView.  
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4. EVALUATION 

The evaluation conducted in this work aims to measure 

the effect of the number of observation samples on memory 

consumption. Testing is conducted by using Samsung 

Galaxy J5 Pro, an Android smartphone with an Octa-core 1.6 

GHz processor, 32GB internal memory, and API level 21. 

The phone is set up to work with API level 19 as its 

minimum level. MoFlus can be deployed on any Android 

device with API level 19 in this configuration. 

Android Profiler is used in Android Studio 3.2 to 

measure memory usage by MoFlus when run on a 

smartphone that is connected to a PC. Memory usage is 

monitored through Android Studio. Tests are carried out for 

real time and batch processing. A printed microarray is used 

as an observation source in both processes. Pixel size, 

sample point number, intervals, and duration are used as 

variables in real-time testing. Pixel size and the numbers of 

sample points and images are used as variables in batch 

testing. Memory changes during observation are observed 

on Android Profiler. 

Real-time processing testing is conducted to identify the 

correlation of the memory footprint of the MoFlus 

application with the pixel size of the observation and the 

number of sample points. The test is conducted by changing 

the pixel size of the observations (1 pixel, 5 pixels, 10 pixels, 

50 pixels, 100 pixels, and 200 pixels). The number of 

observation sample points is varied for each point (1, 8, 16, 

48, and 96 points). The results of this test are illustrated in 

Figure 17. The size of the memory footprint tends to be 

constant for the same number of sample points but slightly 

increases when 200 pixels are used because MoFlus requires 

additional color processing given that the acquired sample 

has a large pixel number.    

The real-time processing feature is also tested by 

evaluating the ability of MoFlus to perform sample 

monitoring for a long duration on the memory used. We have 

tested the performance of MoFlus in real-time processing for 

a period of 1 min to 360 min or 6 h with a 15 s delay between 

acquisitions. The test results are shown in Figure 18. Figure 

18 shows the memory usage of MoFlus based on usage time 

in real-time mode. The results of the experiment show that 

memory usage is relatively constant. Memory usage 

negligibly increases when observation is prolonged to 6 h 

because MoFlus observes samples from the camera that have 

been converted to the matrix. Thus, the shooting time does 

not cause changes in memory. DetectionCamera Testing 

component is crucial for long-term testing. 

Figure 19 and Figure 20 shows the results for batch 

processing testing. Batch processing testing involves using 

previously acquired photos. The number of sample points 

used for batch testing is the same as that used for real-time 

testing.  

As shown in Figure 20, testing is performed to 

determine the effect of the number of images on the 

application's footprint memory and total time. The number 

of images used in the test are 10, 50, 100, 500, and 1000. 

This test uses the same number of sample points for each 

variation in the number of images, i.e., 96 sample points. The 

result shows that the same number of sample points for all 

variations in the number of images tends to produce a 

constant memory footprint. The total time needed for 

processing tends to increase when the memory footprint is 

stable.  

 

 

Figure 17. MoFlus real-time test results with variable 

testing pixel size and number of sample points. 

 

 

Figure 18. Result of the second real-time processing test. 

 

 

Figure 19. Results of batch testing with variable testing 

pixel size and number of sample. 

 

 

0

50

100

150

200

1 8 16 48 96

M
em

o
ry

 c
o

n
su

m
ti

o
n

 
(M

B
)

Number of Spots

1

5

10

50

100

200

0

20

40

60

80

100

120

140

160

180

1 5 15 30 60 120 360

M
em

o
ry

 (
M

B
)

Duration (in minutes)

0

50

100

150

200

250

300

1 8 16 48 96

M
em

o
ry

 c
o

n
su

m
ti

o
n

Number of Spots

1

5

10

50

100

200



 

P a g e  | 48 Wirawan et al. (2021), MoFlus: An Open-Source Android Software for Fluorescence-Based Point of Care 

 

Website: https://ejournal2.undip.ac.id/index.php/jbiomes   © JBIOMES – ISSN: 2776-4052. All rights reserved 

 

Figure 20. MoFluS batch test results with variable number 

of images for 96 points 

 

5. CONCLUSION AND FUTURE WORK 

This paper discusses MoFlus, an Android-based 

software project that can be used to observe numerous 

samples using a smartphone camera. Observations are made 

by forming observation points on the smartphone preview 

display. This function is established through extension to the 

SurfaceView Android library. MoFlus can observe up to 96 

samples. The memory used by the application is still 

acceptable for most current smartphones.  MoFlus can be 

used to observe a number of samples by determining the 

observation points in accordance with sample position. 

Observations can be done in real time or in batch. 

Observations require further processing because processing 

numerous samples by using a smartphone is impossible. 

Other services, such as mobile cloud computing, are needed 

to provide computation service[22]. Several components 

related to mobile computing and data management are 

interesting issues for future study. Data management is a 

particularly interesting topic because the use of MoFlus by 

many users will involve massive data and processing load. 

Data and processing management is necessary to prevent 

mixing among the results of different processes. Thus, 

studying the appropriate architecture for managing sample 

data, such as those used in MoFlus, is necessary. 
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