skip to main content

Utilization of chicken eggshell and chitosan as coagulants for microplastic removal from aquatic system

Department of Chemical Engineering, Diponegoro University, Jl. Prof. Sudarto, SH., Tembalang, Semarang, Central Java, Indonesia

Received: 17 Nov 2022; Revised: 16 Feb 2023; Accepted: 19 Feb 2023; Available online: 25 Feb 2025; Published: 1 Apr 2023.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2023 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract
Smaller size plastics known as microplastics are harmful for marine biota as well as humans. One of the common methods for the removal of microplastics from water is coagulation. Chicken eggshells and chitosan are two natural ingredients which contain useful content for the coagulation process. Therefore, this paper describes the effect of concentration of eggshells and chitosan as coagulants in the separation of microplastic from water using RSM (Response Surface Methodology). The effect of tannic acid concentration as coagulation aid was also analyzed in this paper. The coagulants were varied with concentration of 1.5-8.5 g/100 mL and tannic acid concentration was 3-17 mg/100 mL. The result of this study showed coagulation with the highest efficiency occurred when 8.5 g/100 mL of chicken eggshell coagulant (89.14%) and 10 g/100 mL chitosan coagulant (75.67%) was added. Optimum operation occurred after the addition of coagulant aid in the amount of 7 mg/100 mL with chicken eggshell and 15 mg/100 mL with chitosan. 
Fulltext View|Download
Keywords: Microplastic; coagulation; chicken eggshell; chitosan; tannic acid

Article Metrics:

  1. Arianto, A. (2014). Studi Kondisi Biofisik Penyu di Kelurahan Koto Jaya, Kecamatan Kota Mukomuko, Kabupaten Mukomuko Propinsi Bengkulu. Padang: Fakultas Perikanan dan Ilmu Kelautan, Universitas Bung Hatta
  2. Arossa, S., Martin, C., Rossbach, S., & Duarte, C. M. (2019). Microplastic removal by red sea giant clam (Tridacna maxima). Environ Pollut, 252, 1257-1266. https://doi.org/10.1016/j.envpol.2019.05.149
  3. Batool, A. & Valiyaveettil, S. (2020). Coprecipitation - An Efficient Method for Removal of Polymer Nanoparticles from Water. ACS Sustainable Chemical Engineering, 8, 13481-13487. https://doi.org/10.1021/acssuschemeng.0c04511
  4. Courtese-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O. M., Narayanaswamy, B. E. (2017). Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environmental Pollution, 231, 271-280. https://doi.org/10.1016/j.envpol.2017.08.026
  5. Dey, T. K., Uddin, M. E., & Jamal, M. (2021). Detection and removal of microplastics in wastewater: evolution and impact. Enviromental Science and Pollution Research, 28, 16925-16947. https://doi.org/10.1007/s11356-021-12943-5
  6. Ge, D., Zhang, W., Yuan, H., Zhu, N. (2019). Enhanced waste activated sludge dewaterability by tannic acid conditioning: Efficacy process parameters, role and mechanism studies. Journal of Cleaner Production, 241, 1-8. https://doi.org/10.1016/j.jclepro.2019.118287
  7. Gola, D., Tyagi, P. K., Arya, A., Chauhan, N., Agarwal, M., Singh, S. K., Gola, S. (2021). The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management, 16. https://doi.org/10.1016/j.enmm.2021.100552
  8. Grbic, J., Nguyen, B., Guo, E., You, J. B., Sinton, D., & Rochman, C. M. (2019). Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett, 6(2), 68-72. https://doi.org/10.1021/acs.estlett.8b00671
  9. Hanifah, H. N., Hadisoebroto, G., Turyati, Anggraeni, I. S. (2020). Efektivitas Biokoagulan Cangkang Telur Ayam Ras dan Kulit Pisang Kepok (Musa balbisiana ABB) dalam Menurunkan Turbiditas, TDS, dan TSS dari Limbah Cair Industri Farmasi. al-Kimiya, 7(1), 35-46. https://doi.org/10.15575/ak.v7i1.6615
  10. Hollman, P.C.H., H. Bouwmeester, and R.J.B. Peters. (2013). Microplastics in the aquatic food chain: Sources, measurement, occurrence and potential health risks. RIKILT Wageningen UR, Wageningen
  11. Lee, C. S., Robinson, J., Chong, M. F. (2014). A review on application of flocculants in wastewater treatment. Process Safety and Environmental Protection, 92, 489-508. https://doi.org/10.1016/j.psep.2014.04.010
  12. Li, Y., Zhang, Y., Chen, G., Xu, K., Gong, H., Huang, K., Yan, M., Wang, J. (2021). Microplastics in Surface Waters and Sediments from Guangdong Coastal Areas, South China. Sustainability, 13(2691). https://doi.org/10.3390/su13052691
  13. Ma, B., Xue, W., Ding, Y., Hu, C., Liu, H., & Qu, J. (2019). Removal characteristics of microplastics by Fe-based coagulants during drinking water treatment. J Environ Sci, 78, 267-275. https://doi.org/10.1016/j.jes.2018.10.006
  14. Martina, A., Effendy, D. S., Soetedjo, J. N. M. (2018). Aplikasi Koagulan Biji Asam Jawa dalam Penurunan Konsentrasi Zat Warna Drimaren Red pada Limbah Tekstil Sintetik pada Berbagai Variasi Operasi. Jurnal Rekayasa Proses, 12(2), 98-103. https://doi.org/10.22146/jrekpros.38948
  15. Murakami, F. S., Rodrigues, P. O., Campos, C. M. T. & Silva, M. A. S. (2007). Physicochemical study of CaCO3 from egg shells. Estudo físico-químico do carbonato de cálcio obtido a partir da casca de ovo. Ciênc. Tecnol. Aliment., Campinas, 27(3): 658-662. https://doi.org/10.1590/S0101-20612007000300035
  16. Paco, A., Duarte, K., da Costa, J. P., Santos, P. S., Pereira, R., Pereira, M., Freitas, A. C., Duarte, A. C., & Rocha-Santos, T. A. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Sci Total Environ, 586, 10-15. https://doi.org/10.1016/j.scitotenv.2017.02.017
  17. Patty, S. (2013). Distribusi Suhu, Salinitas dan Oksigen Terlarut di Perairan Kema, Sulawesi Utara. Jurnal Ilmiah Platax. 1 (3): 148-157. https://doi.org/10.35800/jip.1.3.2013.2580
  18. Perren, W., Wojtasik, A., & Cai, Q. (2018). Removal of microbeads from wastewater using electrocoagulation. ACS Omega, 3(3), 3357-3364. https://doi.org/10.1021/acsomega.7b02037
  19. Wardani, R.S., Iswanto, B. and Winarni, (2009). Pengaruh pH pada Proses Koagulasi dengan Koagulan Aluminium Sulfat dan Ferri Klorida, Indonesian Journal of Urban and Environmental Technology, 5(2), 40-45, 2009. https://doi.org/10.25105/urbanenvirotech.v5i2.676
  20. Ryan, P.G., Moore C.J., Van Franeker J.A., & Moloney C.L. 2009. Monitoring The Abundance of Plastic Debris in The Marine Environment. Philosophical Transactions of the Royal Society https://doi.org/10.1098/rstb.2008.0207
  21. Sundbaek, K. B., Koch, I. D. W., Villaro, C. G., Rasmussen, N. S., Holdt, S. L., & Hartmann, N. B. (2018). Sorption of fluorescent polystyrene microplastic particles to edible seaweed Fucus vesiculosus. J Appl Phycol, 30(5), 2923-2927. https://doi.org/10.1007/s10811-018-1472-8
  22. Suryono, D. D. (2019). Sampah Plastik di Perairan Pesisir dan Laut: Implikasi kepada Ekosistem Pesisir DKI Jakarta. Jurnal Riset Jakarta, 12(1), 17-23. https://doi.org/10.37439/jurnaldrd.v12i1.2
  23. Susanti, E. & Hartati, A. (2003) Koagulasi Flokulasi untuk Menurunkan Warna dengan Koagulan PAC pada Efluen Pengolahan Limbah Pencelupan Benang. Jurnal Purifikasi, 4(1), 37-42
  24. Talvitie, J., Mikola, A., Koistinen, A., & Setala, O. (2017). Solutions to microplastic pollution-removal of microplastics from wastewater effluent with advanced wastewater treatment technologies. Water Res, 123, 401-407. https://doi.org/10.1016/j.watres.2017.07.005
  25. Vidu, R., Matei, E., Predescu, A. M., Alhalaili, B., Pantilimon, C., Tarcea, C., Predescu, C. (2020). Removal of Heavy Metals from Wastewaters: A Challenge from Current Treatment Methods to Nanotechnology Applications. Toxics, 8(101), 1-37. https://doi.org/10.3390/toxics8040101
  26. Yang, X., Zeng, L., Huang, J., Mo, Z., Guan, Z., Sun, S., Liang, J., & Huang, S. (2022). Enhanced sludge dewaterability by a novel MnFe2O4-Biochar activated peroxymonosulfate process combined with Tannic acid. Chemical Engineering Journal, 429. https://doi.org/10.1016/j.cej.2021.132280
  27. Zhang, Y., Zhou, G., Yue, J., Xing, X., Yang, Z., Wang, X., Wang, Q., & Zhang, J. Enhanced removal of polyethylene terephthalate microplastics through polyaluminum chloride coagulation with three typical coagulant aids, Science of The Total Environment, 800, 149589, https://doi.org/10.1016/j.scitotenv.2021.149589
  28. Zhou Y, Xing XH, Liu Z, Cui L, Yu A, Feng Q, Yang H. (2008). Enhanced coagulation of ferric chloride aided by tannic acid for phosphorus removal from wastewater. Chemosphere. 72(2), 290-8. https://doi.org/10.1016/j.chemosphere.2008.02.028

Last update:

No citation recorded.

Last update:

No citation recorded.