skip to main content

The Effect of NaHCO3 and Mg2+ Addition in Haematococcus pluvialis Cultivation by Carbon Injection Method

Department of Chemical Engineering, Diponegoro University, Indonesia

Received: 8 Jun 2022; Revised: 14 Jul 2022; Accepted: 24 Jul 2022; Available online: 30 Jul 2022; Published: 1 Dec 2022.
Editor(s): Marcelinus Christwardana
Open Access Copyright (c) 2022 The Author(s). Published by Centre of Biomass and Renewable Energy (CBIORE)
Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License.

Citation Format:
Abstract

The emission of carbon dioxide has been continuously rising year by year. Many efforts that have been used with aim of climate recovery, such as capturing CO2 with the Carbon Capture Storage (CCS) method, which is the CCS technology is one of the effective tactics for reducing carbon emissions by utilizing energy from biomass of microalgae. This research will discuss about carbon capture using microalgae Haematococcus pluvialis in a lab scale photobioreactor (PBR), and resulting the optimum biomass productivity for Haematococcus pluvialis has occurred in the H2 variable (50 ppm Mg2+). This happens because of addition of Mg ions above 50 ppm can decrease the yield of biomass productivity, since Haematococcus pluvialis cannot live in high salinity concentrations. Further research should make a calculation of optimal cost incurred at the optimal carbon concentration that can be captured by microalgae, also the results of increasing value of the microalgae biomass produced for the comprehensive use of the microalgae.

Fulltext View|Download
Keywords: CO2 Capture; Microalgae; Haematococcus pluvialis

Article Metrics:

  1. Ahmad, I., Yuzir, A., Mohamad, S. E., Iwamoto, K., & Abdullah, N. (2021). Role of microalgae in sustainable energy and environment. IOP Conference Series: Materials Science and Engineering, 1051(1), 012059. https://doi.org/10.1088/1757-899X/1051/1/012059
  2. Assunção, J., & Malcata, F. X. (2020). Enclosed “non-conventional” photobioreactors for microalga production: A review. Algal Research, 52, 102107. https://doi.org/10.1016/j.algal.2020.102107
  3. Atwoli, L., Baqui, A. H., Benfield, T., Bosurgi, R., Godlee, F., Hancocks, S., Horton, R., Laybourn-Langton, L., Monteiro, C. A., Norman, I., Patrick, K., Praities, N., Rikkert, M. G. M. O., Rubin, E. J., Sahni, P., Smith, R., Talley, N., Turale, S., & Vázquez, D. (2021). Call for emergency action to limit global temperature increases, restore biodiversity, and pro-tect health: Wealthy nations must do much more, much faster. Nutrition Reviews, 79(11), 1183-1185. https://doi.org/10.1093/nutrit/nuab067
  4. Chua, S. Y., Cheng, Y. W., Lam, M. K., Dasan, Y. K., Kadir, W. N. A., Rosli, S. S., Lim, J. W., & Lim, S. (2022). Microalgae cultivation for sustainable biofuel production. In Value-chain of biofuels (pp. 137-158). Elsevier. https://doi.org/10.1016/B978-0-12-824388-6.00006-3
  5. de Souza, D. S., Valadão, R. C., de Souza, E. R. P., Barbosa, M. I. M. J., & de Mendonça, H. V. (2022). Enhanced Arthrospi-ra platensis biomass production combined with anaerobic cattle wastewater bioremediation. Bioenergy research, 15(1), 412-425. https://doi.org/10.1007/s12155-021-10258-4
  6. Ermis, H., Guven-Gulhan, U., Cakir, T., & Altinbas, M. (2020). Effect of iron and magnesium addition on population dy-namics and high value product of microalgae grown in anaerobic liquid digestate. Scientific reports, 10(1), 1-12. https://doi.org/10.1038/s41598-020-60622-1
  7. Hilmi, N., Chami, R., Sutherland, M. D., Hall-Spencer, J. M., Lebleu, L., Benitez, M. B., & Levin, L. A. (2021). The role of blue carbon in climate change mitigation and carbon stock conservation. Frontiers in Climate, 102. https://doi.org/10.3389/fclim.2021.710546
  8. Jiang, F., Ju, W., He, W., Wu, M., Wang, H., Wang, J., ... & Chen, J. M. (2022). A 10-year global monthly averaged terrestrial net ecosystem exchange dataset inferred from the ACOS GOSAT v9 XCO2 retrievals (GCAS2021). Earth System Sci-ence Data, 14(7), 3013-3037. https://doi.org/10.5281/zenodo.5829774
  9. Kassim, M. A., Adnan, M. F. I. M., Tan, K. M., Bakar, M. H. A., Lalung, J., & Mohamed, M. S. (2020). Carbonic anhydrase (CA) activity by Chlorella sp. in immobilised matrix under carbon dioxide rich cultivation condition. In IOP Con-ference Series: Materials Science and Engineering, 716(1), 012015). https://doi.org/10.1088/1757-899X/716/1/012015
  10. Kim, Y. E., Matter, I. A., Lee, N., Jung, M., Lee, Y. C., Choi, S. A., Lee, S. Y., Kim, J. R., & Oh, Y. K. (2020). Enhancement of astaxanthin production by Haematococcus pluvialis using magnesium aminoclay nanoparticles. Bioresource tech-nology, 307, 123270. https://doi.org/10.1016/j.biortech.2020.123270
  11. Lane, T. W. (2022). Barriers to microalgal mass cultivation. Current Opinion in Biotechnology, 73, 323-328. https://doi.org/10.1016/j.copbio.2021.09.013
  12. Liu, S. Y., Zhao, R. Z., Qiu, X. C., & Guo, Q. (2022). Optimization Analysis to Evaluate the Relationships between Differ-ent Ion Concentrations and Prymnesium parvum Growth Rate. Water, 14(6), 928. https://doi.org/10.3390/w14060928
  13. Lucakova, S., Branyikova, I., Branyik, T., Matoulkova, D., & Krausova, G. (2022). Wastewater from the demineralization of cheese whey for cost-efficient cultivation of spirulina. Journal of Applied Phycology, 34(1), 89-99. https://doi.org/10.1007/s10811-021-02644-4
  14. Masojídek, J., Ranglová, K., Lakatos, G. E., Silva Benavides, A. M., & Torzillo, G. (2021). Variables governing photosyn-thesis and growth in microalgae mass cultures. Processes, 9(5), 820. https://doi.org/10.3390/pr9050820
  15. Merlo, S., Gabarrell Durany, X., Pedroso Tonon, A., & Rossi, S. (2021). Marine microalgae contribution to sustainable de-velopment. Water, 13(10), 1373. https://doi.org/10.3390/w13101373
  16. Mikunda, T., Brunner, L., Skylogianni, E., Monteiro, J., Rycroft, L., & Kemper, J. (2021). Carbon capture and storage and the sustainable development goals. International Journal of Greenhouse Gas Control, 108, 103318. https://doi.org/10.1016/j.ijggc.2021.103318
  17. Mustapa, N. S., Mansor, M. A., & Serri, N. A. (2020). Design and development of centred-light photobioreactor for micro-algae cultivation system. IOP Conference Series: Materials Science and Engineering, 716(1), 012009. https://doi.org/10.1088/1757-899X/716/1/012009
  18. Nielsen, S. L., & Hansen, B. W. (2019). Evaluation of the robustness of optical density as a tool for estimation of biomass in microalgal cultivation: The effects of growth conditions and physiological state. Aquaculture research, 50(9), 2698-2706. https://doi.org/10.1111/are.14227
  19. Nunes, N. S. P., Oliveira, I. G. S., Ansilago, M., & de Carvalho, E. M. (2021). Analysis of functional relationships between the cell quantification variables in the microalgae Chlorella sorokiniana. Revista Ibero-Americana de Ciências Ambi-entais, 12(1), 453-460. https://doi.org/10.6008/CBPC2179-6858.2021.001.0036
  20. Oslan, S. N. H., Shoparwe, N. F., Yusoff, A. H., Rahim, A. A., Chang, C. S., Tan, J. S., ... & Mohamed, M. S. (2021). A review on Haematococcus pluvialis bioprocess optimization of green and red stage culture conditions for the production of natural astaxanthin. Biomolecules, 11(2), 256. https://doi.org/10.3390/biom11020256
  21. Pires da Mata Costa, L., Micheline Vaz de Miranda, D., Couto de Oliveira, A. C., Falcon, L., Stella Silva Pimenta, M., Guilherme Bessa, I., Wouters, S. J., Andrade, M. H. S., & Pinto, J. C. (2021). Capture and reuse of carbon dioxide (CO2) for a plastics circular economy: A review. Processes, 9(5), 759. https://doi.org/10.3390/pr9050759
  22. Polat, E., Yüksel, E., & Altınbaş, M. (2020). Mutual effect of sodium and magnesium on the cultivation of microalgae Auxenochlorella protothecoides. Biomass and bioenergy, 132, 105441. https://doi.org/10.1016/j.biombioe.2019.105441
  23. Pourjamshidian, R., Abolghasemi, H., Esmaili, M., Amrei, H. D., Parsa, M., & Rezaei, S. (2019). Carbon dioxide biofixa-tion by Chlorella sp. in a bubble column reactor at different flow rates and CO2 concentrations. Brazilian Journal of Chemical Engineering, 36, 639-645. https://doi.org/10.1590/0104-6632.20190362s20180151
  24. Prasad, R., Gupta, S. K., Shabnam, N., Oliveira, C. Y. B., Nema, A. K., Ansari, F. A., & Bux, F. (2021). Role of microalgae in global CO2 sequestration: physiological mechanism, Recent Development, Challenges, and Future Prospective. Sustainability, 13(23), 13061. https://doi.org/10.3390/su132313061
  25. Rinawati, M., Sari, L. A., & Pursetyo, K. T. (2020). Chlorophyll and carotenoids analysis spectrophotometer using meth-od on microalgae. IOP Conference Series: Earth and Environmental Science, 441(1), 012056. https://doi.org/10.1088/1755-1315/441/1/012056
  26. Shaikh, S. M., Hassan, M. K., Nasser, M. S., Sayadi, S., Ayesh, A. I., & Vasagar, V. (2021). A comprehensive review on harvesting of microalgae using Polyacrylamide-Based Flocculants: Potentials and challenges. Separation and Puri-fication Technology, 277, 119508. https://doi.org/10.1016/j.seppur.2021.119508
  27. Shaw, R., & Mukherjee, S. (2022). The development of carbon capture and storage (CCS) in India: A critical review. Car-bon Capture Science & Technology, 2, 100036. https://doi.org/10.1016/j.ccst.2022.100036
  28. Subsamran, K., Mahakhan, P., Vichitphan, K., Vichitphan, S., & Sawaengkaew, J. (2019). Potential use of vetiver grass for cellulolytic enzyme production and bioethanol production. Biocatalysis and Agricultural Biotechnology, 17, 261-268. https://doi.org/10.1016/j.bcab.2018.11.023
  29. Vaz Jr, S., de Souza, A. P. R., & Baeta, B. E. L. (2022). Technologies for carbon dioxide capture: A review applied to energy sectors. Cleaner Engineering and Technology, 8, 100456. https://doi.org/10.1016/j.clet.2022.100456
  30. Wang, J., Sun, K., Ni, J., & Xie, D. (2021). Evaluation and Factor Analysis of Industrial Carbon Emission Efficiency Based on “Green-Technology Efficiency”—The Case of Yangtze River Basin, China. Land, 10(12), 1408. https://doi.org/10.3390/land10121408
  31. Wang, Q., Yu, Z., & Wei, D. (2020). High-yield production of biomass, protein and pigments by mixotrophic Chlorella pyrenoidosa through the bioconversion of high ammonium in wastewater. Bioresource Technology, 313, 123499. https://doi.org/10.1016/j.biortech.2020.123499
  32. Yoro, K. O., & Daramola, M. O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Ad-vances in carbon capture (pp. 3-28). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819657-1.00001-3
  33. Yousuf, A. (2020). Fundamentals of microalgae cultivation. In Microalgae cultivation for biofuels production (pp. 1-9). Academic Press. https://doi.org/10.1016/B978-0-12-817536-1.00001-1
  34. Zhu, C., Zhai, X., Xi, Y., Wang, J., Kong, F., Zhao, Y., & Chi, Z. (2020). Efficient CO2 capture from the air for high micro-algal biomass production by a bicarbonate Pool. Journal of CO2 Utilization, 37, 320-327. https://doi.org/10.1016/j.jcou.2019.12.023

Last update:

No citation recorded.

Last update:

No citation recorded.