Kualitas Tempe Menggunakan Rhizopus delemar TB 26 dan R. delemar TB 37 yang Diisolasi dari Inokulum Tradisional Tempe "daun waru"

*Tati - Barus -  Program Studi Magister Bioteknologi, Fakultas Teknobiologi, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
Dika Putri Salim -  Program Studi Biologi, Fakultas Teknobiologi, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
Anastasia Tatik Hartanti -  Program Studi Teknologi Pangan, Fakultas Teknobiologi, Universitas Katolik Indonesia Atma Jaya, Jakarta, Indonesia
Received: 1 Aug 2019; Revised: 19 Sep 2019; Accepted: 8 Nov 2019; Published: 16 Nov 2019; Available online: 8 Nov 2019.
Open Access Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Citation Format:
Article Info
Section: Artikel Penelitian (Research Article)
Language: ID
Full Text:
Statistics: 25 28

Abstract

Mikroorganisme utama dalam pembuatan tempe ialah Rhizopus. Penelitian ini bertujuan untuk mendapatkan informasi tentang potensi Rhizopus delemar TB 26 dan R. delemar TB 37 yang berasal dari "daun waru" dalam menentukan kualitas tempe. Tempe dibuat menggunakan R. delemar TB 26 (Tempe TB 26), R. delemar TB 37 (Tempe TB 37), dan inokulum komersial tempe (Tempe K). Uji organoleptik, aktivitas antioksidan, dan analisis proksimat telah dilakukan untuk menentukan kualitas tempe. Hasil penelitian menunjukkan bahwa tekstur, warna dan komposisi kimia Tempe TB 26, Tempe TB 37, dan Tempe K memenuhi syarat mutu tempe yang ditetapkan di Indonesia yang tertera pada SNI 3144:2015. Secara organoleptik, citarasa Tempe TB 26 dan Tempe TB 37 lebih disukai panelis dibandingkan dengan Tempe K. Dengan demikian, R. delemar TB 26 dan R. delemar TB 37 yang masing masing digunakan membuat Tempe TB 26 dan Tempe TB 37 berpotensi dikembangkan sebagai inokulum tempe. Kesimpulannya, penelitian ini telah berhasil untuk menganalisis kualitas Tempe TB 26 dan Tempe TB 37 yang dibandingkan dengan tempe komersial.

Quality of Tempeh using Rhizopus delemar TB 26 and R. delemar TB 37 Isolated from Traditional Inoculum of Tempeh "daun waru"

Abstract

Rhizopus is the main microorganism in tempeh fermentation. This study aims to obtain information about the potential of R. delemar TB 26 and R. delemar TB 37 isolated from traditional inoculums of tempeh "waru leaves" in determining the quality of tempeh. Tempeh was made using R. delemar TB 26 (Tempe TB 26), R. delemar TB 37 (Tempe TB 37), and commercial inoculum of tempeh (Tempe K). Organoleptic test, antioxidant activity, and proximate analysis were done to measure the quality of tempeh. The results showed that the texture, color and chemical composition of Tempe TB 26 and Tempe TB 37 fulfilled the tempeh quality requirements as stated in SNI 3144: 2015. Tempe TB 26 and Tempe TB 37 were more preferred by panelists compared to Tempe K. Therefore, R. delemar TB 26 and R. delemar TB 37, which were used to make Tempe TB 26 and Tempe TB 37, could potentially be developed as tempeh inoculum. As conclusion, Tempe TB 26 and Tempe TB 37 could be analyzed and the comparison to commercial tempeh was also successfully identified.

Keywords
Rhizopus delemar; tempe; tekstur; warna; komposisi kimia; texture; color; chemical composition; tempeh

Article Metrics:

  1. Andriani, M., Baskoro, K., Nurhartadi, E. 2014. Studies on physicochemical and sensory characteristics of overripe tempeh flour as food seasoning. Academic Research International 5(5):36-45.
  2. Astawan, M., Wresdiyati, T., Widowati, S., Bintari, S.H., Ichsani, N. 2013. Karakteristik fisikokimia dan sifat fungsional tempe yang dihasilkan dari berbagai varietas kedelai. Jurnal Pangan 22(3):241-252. DOI:10.33964/jp.v22i3.102
  3. Astuti, M., Meliala, A., Dalais, F.S., Wahlqvist, M.L. 2000. Tempe, a nutritious and healthy food from Indonesia. Asia Pacific Journal of Clinical Nutrition 9(4):322-325. DOI: 10.1046/j.1440-6047.2000.00176.x.
  4. Barus T., Wati, L., Melani, Suwanto, A., Yogiara. 2017. Diversity of protease-producing Bacillus spp. From Fresh Indonesian tempeh based on 16S rRNA gene sequence. HAYATI Journal of Biosciences 24(1):35- 40. DOI: DOI:10.1016/ j.hjb.2017.05.001.
  5. Barus, T., Hanjaya, I., Sadeli, J., Lay, B.W., Suwanto, A., Yulandi, A. 2013. Genetic diversity of Klebsiella spp. isolated from tempe based on enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR). HAYATI Journal of Biosciences. 20(4):171-176. DOI:10.4308/hjb. 20.4.171.
  6. Barus, T., Maya, F. Hartanti, A.T., 2019. Peran Beberapa Galur Rhizopus microsporus yang Berasal dari “laru tradisional” dalam Menentukan Kualitas Tempe. Jurnal Aplikasi Teknologi Pangan 8(1). DOI:10.17728/jatp.3761.
  7. Barus, T., Suwanto, A., Wahyudi, A.T., Wijaya, H. 2008. Role of bacteria in tempe bitter taste formation: microbiological and molecular biological analysis based on 16S rRNA gene. Microbiology Indonesia 2(1):17-21. DOI:10.5454/mi.2.1.4.
  8. Bavia, A.C.F., Silvia, C.E., Ferreira, M.P., Leite, R.S., Mandarino, J.M.G., Carrao-Panizzi, M.C. 2012. Chemical composition of tempeh from soybean cultivars specially developed for human consumption. Ciencia e Tecnologia de Alimentos 32(3):613-620. DOI:10.1590/S0101-2061201200 5000085.
  9. Broadbent, J.R, Barnes, M., Brennand, C., Strickland, M., Houck, K., Johnson, M.E., Steele, J.L. 2002. Contribution of Lactococcus lactis cell envelope proteinase specificity to peptide accumulation and bitterness in reduced-fat cheddar cheese. Applied and Environmental Microbiology 68:1778-1785. DOI:10.1128/AEM.68.4.1778-1785.2002.
  10. BSN (Badan Standarisasi Nasional). 2015. SNI Nomor 3144:2015 tentang Tempe Kedelai. BSN, Jakarta.
  11. Damanik, R.N.S., Pratiwi, D.Y.W., Widyastuti, N., Rustanti, N., Anjani, G., Afifah, D.N. 2018. Nutritional composition changes during tempeh gembus processing. IOP Conference Series: Earth and Environmental Science. 116:1-10. DOI:10.1088/1755-1315/116/1/012026.
  12. Endrawati, D., Kusumaningtyas, E. 2017. Beberapa fungsi Rhizopus sp dalam meningkatkan nilai nutrisi bahan pakan. WARTAZOA 27(2):081-088. DOI:0.14334/wartazoa.v27i2.1181.
  13. Ferreira, M.P., Oliveria, M.C.N., Mandarino, J.M.G., Silva, J.B., Ida, E.I., Panizzi, M.C.C. 2011. Changes in the isoflavone profile and in the chemical composition of tempeh during processing and refrigeration. Pesquisa Agropecuaria Brasileira 46(11):1555-1561. DOI:10.1590/S0100-204X2011001100018
  14. Fiedor, J., Burda, K. 2014. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 6(2):466:468. doi:10.3390/nu6020466
  15. Handoyo, T., Morita, N. 2006. Structural and functional properties of fermented soybean (tempeh) by using Rhizopus oligosporus. International Journal of Food Properties 9(2):347-355. DOI: 10.1080/10942910500224746.
  16. Hartanti, A.T., Rahayu, G., Hidayat, I. 2015. Rhizopus spesies from fresh tempeh collected from several regions in Indonesia. Hayati Journal of Biosciences 22(3):136-142. DOI: 10.1016/j.hjb. 2015.10.004.
  17. Keuth, S., Bisping, B. 1994. Vitamin B12 production by Citrobacter freundii or Klebsiella pneumoniae during tempeh fermentation and proof of enterotoxin absence by PCR. Applied and Environmental Microbiology 60(5):1495-1499.
  18. Manani, T.A.N., Mwangwela, A.M., Schuller, R.B., Ostlie, H.M., Wicklund. 2014. Sensory evaluation and consumer acceptance of naturally and lactic bacteria-fermented pastes of soybean and soybean-maize blends. Food Science & Nutrition 2(2): 114-131. DOI: 10.1002/fsn3.82.
  19. Nout, M.J.R., Rombouts, F.M. 1990. A review: recent developments in tempe research. Journal of Applied Bacteriology 69:609-633. DOI: 10.1111/j.1365-2672.1990.tb01555.x.
  20. Nout M. J.R., Kiers, J.l. 2005. Tempe fermentation, innovation, and functionality: update into third millenium. Applied and Environmental Microbiology 98:789-805. DOI: 10.1111/j.1365-2672.2004.02471.x
  21. Odoni, D.I., Tamayo-Ramos, J.A., Sloothaak, J., van Heck, R.G., dos Santos, V.A.M., de Graaff, L.H., Suarez-Diez, M. Schaap, P.J., 2017. Comparative proteomics of Rhizopus delemar ATCC 20344 unravels the role of amino acid catabolism in fumarate accumulation. PeerJ, 5: 1-18. DOI: 10.7717/peerj.3133.
  22. Pabesak, R.V., Dewi, L., Lestario, L.N. 2013. Aktivitas antioksidan dan fenolik total pada tempe dengan penambahan biji labu kuning (Cucurbita moschata ex Poir). Prosiding Seminar Nasional Biologi 10(2):1-7.
  23. Purwoko, T., Pawiroharsono, S., Gandjar I. 2001. Biotransformasi isoflavon oleh Rhizopus oryzae UICC 524. Biosmart 3(2):7-12.
  24. Radiati, A., Sumarto. 2016. Analisis sifat fisik, sifat organoleptik, dan kandungan gizi pada produk tempe dari kacang non-kedelai. Jurnal Aplikasi Teknologi Pangan 5(1):16-22. DOI: 10.17728/jatp.v5i1.32.
  25. Roubos van den Hill, P.J., Nout, M.J.R., Beumer, R., Meulen, J., Zwietering. 2009. Fermented soya bean (tempe) extracts reduce adhesion of enterotoxigenic Escherichia coli to intestinal epithelial cells. Journal of Applied Microbiology 106:1013-1021. DOI:10.1111/j.1365-2672.2008. 04068.x.
  26. Sarrette, M., Nout, M.J.R., Gervais, P., Rombouts, F.M. 1992. Effect of water activity on production and activity of Rhizopus oligosporus polysaccharidases. Applied Microbiology and Biotechnology 37: 420-425. DOI: 10.1007/ BF00180961.
  27. Sheih, I.C., Fang, T.J., Wu, T.K., Chen, R.Y. 2014. Effects of fermentation on antioxidant properties and phytochemical composition of soy germ. Journal of the Science of Food and Agricultural 94:3163-3170. DOI: 10.1002/jsfa.6666.
  28. Zheng, R.Y., Chen, G.Q., Huang, H., Liu, X.Y. 2007. A monograph of Rhizopus. Sydowia-Horn 59(2):273-372.