Assessment of Probiotic Properties of Lactic Acid Bacteria from Traditional Sourdoughs for Bread-Making in Turkey against Some Gut Conditions

Murat Doğan*, İsmail Hakkı Tekiner

1Gastronomy and Culinary Arts Department, Faculty of Fine Arts, İstanbul Gelişim University, İstanbul, Turkey
2Nutrition and Dietetics Department, Faculty of Health Sciences, İstanbul Sabahattin Zaim University, İstanbul, Turkey

*Corresponding author (muratdogan72@gmail.com)

Abstract

This study aims to assess the probiotic properties of Lactic Acid Bacteria isolated from the traditional sourdoughs used for bread making in Turkey against some gut conditions. A total number of 29 samples from twelve provinces of Turkey were collected, and screened for the presence of lactic acid bacteria using microbiological methods. The microbiological screening yielded 148 presumptive isolates. Of them, 62.8% were characterized as lactic acid strains by VITEK® MS. Following that, the characterized isolates were subjected to probiotic property testing, including gastric acid resistance, bile resistance and hydrophobic ability. The results showed that 44.1% exceeded gastric pH resistance, 33.3% survived under gastrointestinal system bile salt conditions, and 10.8% exhibited high hydrophobicity ability. In conclusion, our study revealed that only 4.3% (Enterococcus faecium, Lactobacillus brevis, Lactobacillus pentosus, and Lactobacillus plantarum) out of 93 lactic acid bacteria isolated from the traditional sourdoughs could meet all probiotic requirements against some gut conditions.

Keywords: lactic acid bacteria, probiotic, probiotic property, sourdough.

Introduction

Probiotics are living microorganisms of the human intestinal microflora that show beneficial functions by keeping the human intestine in balance. Such bacteria form a colony in the human intestine, and compete with harmful microorganisms. The beneficial effects of probiotics have been known by Metchnikoff’s studies since the early 1900s. Metchnikoff has attributed the longer lifespan and healthiness of Caucasian societies to fermented products and probiotics present in these products (Metchnikoff, 2004; Oltes, 2014; Doğan et al., 2019).

Probiotics can ferment non-digestible oligosaccharide dietary fibers in the colon to short-chain fatty acids, and thus prevent colon cancer. They contribute to lactose digestion by fermenting lactose, increases immunity by adjusting IgA production, and inhibit the absorption of intestines by breaking down antigens, resulting in reduced allergy. The introduction of probiotics as fermented food and food supplement are important for public health, and these studies have also increased public interest (Cui et al., 2011; Kailasapathy, 2013; Butel, 2014; Polewski et al., 2016).

Lactic Acid Bacteria (LAB) can reduce the redox potential in the intestine and generally break down carbohydrates and proteins. Anaerobic fermentation produces microbial metabolites such as lactic acid, succinate, acetate, propionate, butyrate, short chain fatty acids, microbial metabolites such as hydrogen, carbon dioxide, methane. Lactobacillus casei, Lactobacillus acidophilus, Lactobacillus rhamnosus, Lactobacillus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus paraplantarum, Lactobacillus pentosus, Lactobacillus fermentum, Enterococcus faecium, Pediococcus pentosaceus, and Pediococcus acidilactici were determined as the probiotic LAB strains (Dhanasekaran et al., 2008; Lee and Salminen, 2009).

In order for a microorganism to exhibit probiotic
properties, it must reach the intestines alive. For this reason, they should primarily resist the gastric acid (pH 1.5-3.0), and maintain their viability. Probiotics that exceed the acidity of the stomach then encounter bile in the small intestine, and therefore must be resistant to the bile to maintain their viability. Probiotics, which pass into colon while maintaining their viability in the small intestine, must be able to attach to the epithel and mucosal surfaces in order to proliferate in the intestinal surfaces to form a colony. Probiotics have gastric acid resistance and bile resistance properties that enable them to form colonies by attaching to the colon, thus show their viability, and function in the gastrointestinal system (GIS) and these properties are among the most important probiotic selection criteria. Detection of microorganisms that provide probiotic properties is one of the objectives of food biotechnology (Dogan and Ozpinar, 2017).

Probiotics are also available in some foods and dietary supplements, in particular the fermented products, and similar to the probiotics that exist naturally in the Human gut. Probiotics have a shell that naturally protects it from acidic environments in the stomach and upper intestines until it reaches the desired location. For instance, sourdough is an ingredient in the cereal fermentation such as bread making. It is an initial preparation by fermenting flour and water mixture with yeast and LAB in order to improve sensory, nutritious, functional and technological properties of cereal based foods (Arendt et al., 2011; Gobbetti et al., 2014).

In terms of the media sources and environmental conditions of sourdough, LAB and yeasts compete with other microorganisms to form the dominant flora. LAB is a very important bacteria that plays significant role in the production of many fermented foods, including yoghurt, cheese, boza and kefir, that are mostly traditional Turkish fermented foods (Terpou et al., 2014).

In this study, we aimed to assess the probiotic properties of Lactic Acid Bacteria isolated from the traditional sourdoughs used for bread making in the different provinces of Turkey against some gut conditions.

Materials and Methods

Sampling

Twenty-nine traditional sourdough samples were taken from the bakeries located in the twelve provinces of Turkey (2 İstanbul, 2 Kocaeli, 2 Adapazarı, 2 Tekirdağ, 2 Ankara, 3 Konya, 3 Karaman, 2 Aksaray, 2 Isparta, 3 Erzurum, 3 Malatya, and 3 Elazığ) (Table 1). No industrial yeast or starter culture was used. All the sourdough samples were selected among the traditionally used ones. The collected sourdough samples were initially mixed with wheat flour, water, and salt according to the Instructions by ISO 11133 (2014). Subsequently, the wet doughs were fermented for 6 hours at least. After that, the fermented dough was taken to the laboratory at 4°C, and cultured in the same day for further analysis.

Chemicals and Reagents

The chemicals and reagents used in the study were DeMan, Rogosa and Sharpe (MRS) agar (Merck 1.10660, Germany), MRS Broth (Merck 1.10661), M17 agar (1.15108 Merck) and M17 broth (1.15029 Merck) for cultural examination, pre-identification and storage of LAB strains; crystal violet, safranin, and lugol dyes for biochemical and morphological tests; and physiological saline (8.5 g NaCl dissolved in water, autoclaved 15 minutes at 121°C, and cooled to room temperature) for dilution and 20% glycerol (Merck 10494) for storage of culture, respectively. MRS and M17 broths were prepared with 1 N sterile Hydrochloric Acid (HCL) (Merck H9892), and 0.3% (w/v) Oxgall Bile bovine (B3883 Sigma Aldrich, USA) were used to determine gastric acid and bile resistance of the cultures. As much as 0.1 M Potassium Nitrate (KNO3) (P8394 Sigma Aldrich) and 0.3 ml Xylene (Sigma Aldrich) chemicals were used to calculate % hydrophobicity of the cultures. All the chemicals and reagents were selected and prepared according to the Instructions by ISO 11133 (2014).

Table 1. Distribution of Traditional Sourdough Samples by Province

<table>
<thead>
<tr>
<th>Province</th>
<th>Number of Sample (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>İstanbul</td>
<td>2</td>
</tr>
<tr>
<td>Kocaeli</td>
<td>2</td>
</tr>
<tr>
<td>Adapazarı</td>
<td>2</td>
</tr>
<tr>
<td>Tekirdağ</td>
<td>2</td>
</tr>
<tr>
<td>Ankara</td>
<td>2</td>
</tr>
<tr>
<td>Konya</td>
<td>3</td>
</tr>
<tr>
<td>Karaman</td>
<td>3</td>
</tr>
<tr>
<td>Aksaray</td>
<td>2</td>
</tr>
<tr>
<td>Isparta</td>
<td>2</td>
</tr>
<tr>
<td>Erzurum</td>
<td>3</td>
</tr>
<tr>
<td>Malatya</td>
<td>3</td>
</tr>
<tr>
<td>Elazığ</td>
<td>3</td>
</tr>
</tbody>
</table>
studies by Yadav et al. (2018). All probiotic property tests were repeated three times, and the results were given as mean ± standard deviation.

Characterization by Mass Spectrometry

The suspected LAB strains stored in MRS and/or M17 broths at –80°C were initially allowed to stand at room temperature for 2 hours. Subsequently, they were activated in aerobic and anaerobic conditions at 37°C for 24-48 hours according to the Instructions by ISO 6887-6 (2013). The characterization of the strains was done by using VITEK® MS (bioMérieux, Marcy l’Etoile, France). A reference strain of *Escherichia coli* was used for the positive test control (Dubois et al., 2012; Rifaat et al., 2014).

Evaluation of Probiotic Properties of LAB Strains

The probiotic properties of the characterized isolates, including gastric acid resistance, bile resistance, and hydrophobicity for adhesion to the intestines abilities were assessed according to the studies by Yadav et al. (2016) and de Melo Pereira et al. (2018). All probiotic property tests were repeated three times, and the results were given as mean ± standard deviation.

Gastric Acid Resistance

As much as 1 N sterile HCl, basically the acid present inside the stomach-comprising HCl around 5,000 to 10,000 ppm, was added to MRS and/or M17 broths to adjust pH to 2.5 – the normal pH in the human stomach ranges from 1 to 3. The activated culture was centrifuged at 10,000 rpm for 10 minutes, and the supernatant was removed away. The resulting pellet were initially suspended in 7 ml of physiological saline, and subsequently incubated for 3 hours at 37°C with 1% inoculation into 10 ml broths with pH 2.5. Then, serial dilutions were made again, and allowed for incubation at 37°C for 72 hours. Finally, active bacteria counting were performed (Lee et al., 2016).
Bile Resistance Analysis

Seven milliliters of MRS/M17 broths were prepared with 0.3% (w/v) Oxgall Bile bovine. The activated cultures were centrifuged at 10,000 rpm for 10 minutes. The resulting pellets were suspended in 7 ml of physiological saline, and then incubated for 3 hours at 37°C with 1% inoculation into 10 ml broths containing Ox-Bile. Finally, serial dilutions were made, and incubated again at 37°C for 72 hours, followed by active bacteria counting (Liong and Shah, 2005).

Hydrophobicity Analysis

The active cultures were centrifuged at 10,000 rpm for 15 minutes. The precipitate was washed twice with phosphate buffer solution, dissolved in 0.1 M KNO₃ (pH 6.2) buffer, and plated. The spectrophotometer was adjusted to an optical density (OD) of 600 (A0). One milliliter of the suspension was placed on 0.3 ml of xylene hydrocarbon, and incubated at room temperature for 4 hours. The OD of the aqueous phase was measured again on a spectrophotometer at 600 nm (A1). The adhesion percentage of the cultures to hydrocarbons was calculated using the formula [(A0−A1)/A0]x100 (Mishra and Prasad, 2005).

Results and Discussion

In this study, the probiotic properties of LAB strains isolated from the traditionally used sourdoughs for bread making in the twelve provinces of Turkey were assessed. Our analysis showed that microbiological screening yielded 148 presumptive isolates of LAB, and 62.8% of them were characterized as LAB by VITEK® MS. Among the characterized ones, 44.1% exceeded gastric pH resistance, 33.3% survived under gastrointestinal system bile salt conditions, and 10.8% exhibited high hydrophobicity ability. Overall, only 4.3% (Enterococcus faecium, L. brevis, L. pentosus, and L. plantarum) could meet all required probiotic properties.

The studies previously conducted in Turkey detected two identical strains from the sourdoughs, in particular E. faecium, and L. lactis, except for another LAB species different from that of our study, which was L. rhamnosus (Dirgak and Ozcelik, 1991; Menteş et al., 2004; Ertekín and Çon, 2014; Ekinci et al., 2016; Bakirci and Köse, 2017). On the other hand, our work detected 148 presumptive isolates by microbiological methods, and VITEK® MS could identify 93 (62.8%) as LAB species different from that of our study, which was previously described by Mishra and Prasad (2005). Our study showed that 10 isolates (E. faecium, L. brevis, L. pentosus, L. plantarum, L. rhamnosus, P. acidilactici, and P. pentosaceus) were able to pass the bile resistance test among 41 isolates, that could passed the gastric acid resistance test (Figure 2). Within the bile resistant strains, L. brevis, L. plantarum, and P. acidilactici were obtained to have the higher bile resistance. Our results on the resistant ability of L. brevis and L. plantarum strains against bile were similar to the previous studies carried out by Ramos et al. (2013) and Landa-Salgado et al. (2019).

Another important criteria in the selection of probiotics is the adherence ability of the probiotic strains to the epithelial surfaces of intestine. A positive correlation was obtained between adhesion of bacterial cells and cell surface hydrophobicity (Angmo et al., 2016). For this reason, the hydrophobicity of the cultures that passed the gastric acid resistance and bile resistance tests were examined, and the percentages of adherence to hydrocarbons were calculated as previously described by Mishra and Prasad (2005). Our study showed that 10 isolates (E. faecium, L. brevis, L. pentosus, L. plantarum, L. rhamnosus, P. acidilactici, and P. pentosaceus) out of 31 isolates exhibited high hydrophobicity, ranging from 60% to 100% as previously given by Singh et al. (2017) (Figure 3). Some other works also reported the same findings on the significant hydrophobic ability of some LAB strains such as L. brevis, L. pentosus, L. plantarum, L. rhamnosus, P. acidilactici, and P. pentosaceus (Ramos et al., 2013; Arasu et al., 2015; Ayyash et al., 2018; Aarti et al., 2018; Palachum et al., 2018; Maldonado et al., 2018). Overall, only 4 (or 4.3%) strains (E. faecium, L. brevis, L. pentosus, and L. plantarum) out of the 93 characterized LAB isolates could pass the gastric acid resistance, bile resistance and hydrophobicity tests (Table 3, Figure 4, Figure 5).
Conclusion

In conclusion, our study revealed that only 4.3% of the identified LAB strains (E. faecium, L. brevis, L. pentosus, and L. plantarum) from the traditional sourdoughs could meet all probiotic requirements against some gut conditions.

References


Ayyash, M., Abushelaibi, A., Al-Mahadin, S., Enan, M.,


Food Microbiology 37:30-40.

ISO 6887-6. 2013. Microbiology of food and animal feed-Preparation of test samples, initial suspension and decimal dilutions for microbiological examination-Part 6: Specific rules for the preparation of samples taken at the primary production stage, Geneva, Switzerland.

ISO 11334. 2014. Microbiology of food, animal feed and water-Preparation, production, storage and performance testing of culture media, Geneva, Switzerland.


Palachum, W., Chisti, Y., Choorit, W., 2018. In-vitro assessment of probiotic potential of Lactobacillus planatarum WU-P19 isolated from a traditional


