

Journal of Applied Food Technology

Crossref
Content
Registration

Home page: https://ejournal2.undip.ac.id/index.php/jaft

A Systematic Review of Food Safety Risks in Plant and Seaweeds as Emerging Alernative Protein Sources

Leila Mehdizadehtapeh¹, Elena Bancalari², Delia Grace³, Parag Acharya³, Maria Paciulli², Marcello Alinovi², Giovanni Sogari², Tanya Stathers³, Said Ennahli⁴, Sümeyye Uçak⁵, Marwa Tainsa⁶, El Amine Ajal⁷, Serap Andaç⁸, Ahmad Nimatullah Al-Baarri⁹, İsmail Hakkı Tekiner^{10*}

Abstract

Alternative plant and seaweed protein sources other than soy and pea have gained significant interest as sustainable replacements of animal proteins in the last decades. However, despite a large food safety literature base, there are concerns about their food safety risks. The current study aims to synthesize the existing knowledge and gaps on safety risks associated with brewers' spent grain (BSG), grapes, hazelnuts, potatoes, pumpkins, and seaweed. A systematic review between 2003 and 2023 was conducted in the PubMed database to identify microbial, chemical, mycotoxins, heavy metals, and allergenic risks in the key commodities. The records obtained were exported into an online reference management platform, screened by inclusion and exclusion search strings, and the duplicates were removed. Finally, two reviewers assessed the eligibility of the full-text articles. The findings demonstrated that 9127 papers were identified, and 1639 of them were left for eligibility assessment. The reviewers finally included 144 articles. Amongst the commodities, the most safety studies were on grapes, with 55 papers, followed by potatoes (n=38), seaweed (n=21), hazelnuts (n=19), pumpkin (n=9), and BSG (n=2), respectively. Based on the risk type, heavy metals were the most studied ones, with 49 papers, followed by mycotoxins (n=31), microbial risks (n=23), chemical contaminants (n=21), and allergenic risks (n=20), respectively. To meet the growing need for plant and seaweed proteins, their food safety aspects should be extensively studied to deliver safe, healthy, and affordable substitutes based on robust safety standards.

Article information: Received: 4 August 2025 Accepted: 17 October 2025 Available online: 10 November 2025

Keywords: plant protein seaweed protein sustainability food safety health nutrition

© 2025 Indonesian Food Technologists All rights reserved.

This is an open access article under the CC BY-NC-ND license.

doi: 10.17728/jaft.28846

Introduction

The protein demand for the existing 7.3 billion inhabitants in the world is about 202 million tonnes per annum. A surplus of 2.3 billion more people, from mainly developing countries, by 2050 will severely impact the demand for protein. Currently, ~50% of the protein supplied globally is met by plant sources (Toujgani et al., 2023). Plant-based protein sources requirevless land, water, and energy (65 to 98%) while producing 84% less Greenhouse Gas (GHG) emissions, relative to conventional animal protein sources. Thus, the

increasing demand for plant and seaweed protein sources has gained significant attraction due to health benefits in diet, increased consumer recognition of ecological sustainability, ethical and welfare issues of animals, and positive consumer view of protein-dense nutrition (Shabir et al., 2023; Wali et al., 2024). The global plant-based protein market is expected to increase from 10.3 billion dollars in 2020 to 15.6 billion dollars by 2026 (Zhang et al., 2022). The latest developments have brought financial investment, accelerated innovation and expanding market for a

¹Department of Nutrition and Dietetics, Recep Tayyip Erdoğan University, Rize, Türkiye

² Food and Drug, University of Parma, Parma, Italy

³Natural Resources Institute, University of Greenwich, Kent, United Kingdom

⁴Ecole Nationale d'Agriculture de Meknès, Meknès, Morocco

⁵Nutrition and Dietetics Doctoral Program, School of Graduate Studies, İstinye University, Istanbul, Türkiye

⁶Agroalimentary, Saad Dahleb University, Blida, Algeria

⁷ UPR of Pharmacognosy, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University, Rabat, Morocco

⁸Department of Nutrition and Dietetics, Istanbul Sabahattin Zaim University, Istanbul, Türkiye

⁹Department of Animal and Agricultural Sciences, Diponegoro University, Semarang, Indonesia

¹⁰Independent Researcher, Istanbul, Türkiye

^{*}Corresponding author (ihtekiner@gmail.com)

Table 1. The production amount, protein content, byproducts and waste streams of this study's plant-based protein sources

sources					
Commodity	Global Production (MT)	Protein Content (%)	Byproducts and Waste Streams	Key Insights	Reference(s)
BSG	36.4	26-30 (hordein, gluten, globulin, and albumin)	Residues from brewing processes (~85% of total brewing waste)	High in proteins with physicochemical properties suitable for nutritional use.	Nyhan et al. (2023); Wen et al., (2019)
Hazelnuts	1.1	Skins: ~38; Defatted cake: ~48; Shells: ~3	Skins (~2.5% weight), shells (~36-39%), husks, and defatted cake	Hazelnut byproducts offer significant protein valorization potential	Nicoletti et al. (2022); Zhao et al. (2023)
Potatoes	300	~3	Organic waste: 16-25% of weight during processing (~44M tonnes)	Wasted potatoes and processing byproducts are substantial and can be valorized for proteins.	Chauhan et al. (2023); SavFood (2022)
Pumpkins	28	Seed flour: 36.5- 51%; Seeds: ~48%	Waste/biomass: 3.1-4.4%; Peels: 2.6-16%; Pulp: 72-76%	High protein content in seeds and seed flour makes pumpkins valuable for a circular bioeconomy.	Gibbens (2022); Gavril et al. (2024)
Algae (Seaweed & Microalgae)	Seaweed: 358,000 tonnes (2019); Microalgae: 56.5k tonnes (2019)	Brown algae: 24 g/100g; Green algae: 32.7 g/100g; Red algae: 50 g/100g	Microalgae: Spirulina, Chlorella; Seaweeds: Brown, Green, Red	Spirulina and Chlorella (GRAS by FDA/EFSA); promising protein sources	Zhang et al. (2022); Ashour and Omran (2022); Medeiros et al. (2024)

sustainable protein and circular food system transition (Simon et al., 2024).

Research on plant and seaweed proteins has mainly focused on functionality, processing, industrial application, and side-stream valorization (Banach et al., 2023). However, their food safety risks have received less attention at different stages (Flint et al., 2023). Potential safety risks in plant and seaweed proteins have generally been described as: "no indication", "general or potential risk", "knowledge gap", "rarely occurred", and "technological gap" (Lang and Barling, 2013). For instance, spoilage bacteria and pathogens may differ from animal origin, there is not sufficient evidence in the frequency of mycotoxins, allergens, anti-nutrients, polyaromatic hydrocarbons (PAH), and heavy metal contaminants (Kumar et al., 2022; López-Pedrouso et al., 2023).

The food and agricultural industries discard remarkable quantities of biomass streams (Tufail et al., 2022). Extracting upcycled plant and seaweed proteins from raw materials otherwise destined to become food loss and waste (FLW) can enhance the sustainability of the entire food supply chain, reducing environmental burdens (Baca-Bocanegra et al., 2021). Hence, within the scope of a project "IPSUS-Climate-smart food innovation using plant and seaweed proteins from upcycled sources" (https://ipsus.org/en/) supported by EU Horizon 2020 ERA-Nets SUSFOOD2 and FOSC, six plant and seaweed commodities including BSG, grapes, hazelnuts, potatoes, pumpkins, and seaweed were selected to deliver upcycled plant and seaweed

protein-based meat alternatives and dairy-free cheese prototypes. The production amount, protein content, byproducts, and waste streams, together with key insights, are tabulated in Table 1.

Despite their potential, food safety risks associated with the key plant and seaweed protein sources have not been extensively investigated. Unlike animal-based sources, plant-based sources may potentially introduce a broad range of safety risks for alternative proteins, considered as 'novel foods' require special authorization process to ensure that they do not pose health risks. This systematic review aims to synthesize evidence on the food safety risks associated with six emerging plant protein sources (BSG, grapes, hazelnuts, potatoes, pumpkins, and seaweed) to identify the critical gaps of safety risks and guide the future research of novel foods.

Material and Methods

Search strategy

A systematic literature search was conducted using PubMed from January 2003 to December 2023. The search included "keywords" related to safety risks in the key commodities, such as:

- "Brewers Spent Grain" OR "Grapes" OR "Hazelnuts" OR "Potatoes" OR "Pumpkin" OR "Seaweeds"
- AND "Food Safety" OR "Food Hazard" OR "Microbial Risks" OR "Chemical Contaminants" OR "Mycotoxins" OR "Heavy Metals" OR "Allergens"

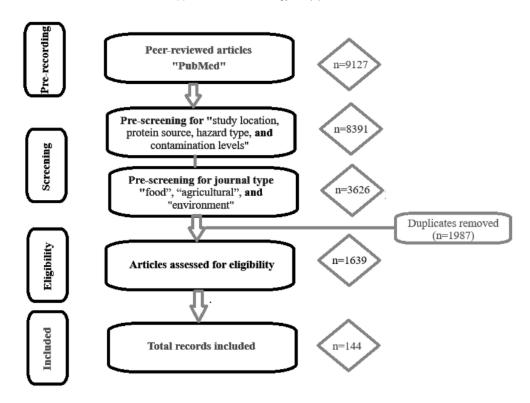


Figure 1. Systematic review stages and results

Inclusions and exclusion criteria

Studies were included if they: (1)were published in English; (2)focused on safety risks in the key commodities; and (3)provided quantitative data. Non-English papers, animal studies, clinical trials, non-peer-reviewed sources, and graduate studies were excluded.

Data extraction and analysis

The pre-records obtained from the PubMed database were exported into an online reference management platform (https://www.rayyan.ai) and initially screened for study location, protein source, risk type, and contamination levels. After that, the prescreened data were filtered based on the journal title with the words "food", "agricultural", and "environment", and duplicates were excluded. Finally, two reviewers independently screened studies for eligibility first based on titles and abstracts, and then on the full-texts, discussing and resolving of conflicting decisions, as well as assessing how well they agreed (Nussbaumer-Streit et al., 2023).

Results and Discussion

Overview of included studies

A total of 9,127 studies were identified, of which 144 met the eligibility criteria. The most frequently studied commodity was grapes (55 studies), followed by potatoes (38), seaweeds (21), hazelnuts (19), pumpkins (9), and BSG (2) (Figure 1). Based on risk type characteristics, heavy metals were the most examined risk (49 studies), followed by mycotoxins (31), microbial risks (23), chemical contaminants (21), and allergenic risks (20) (Figure 2).

Plant protein sources generally depend on soy and pea (Lin et al., 2023). Therefore, exploiting opportunities for extracting protein from different plants and seaweed is paramount to integrating sustainability,

in line with the framework the United Nations (UN) Decade of Action and the Second International Conference on Nutrition in 2014 (FAO, 2024; IPSUS, 2025). However, 51% of outbreak-associated illnessesin the United States of America (USA) were traced to plant foods over 10 years, higher than animal

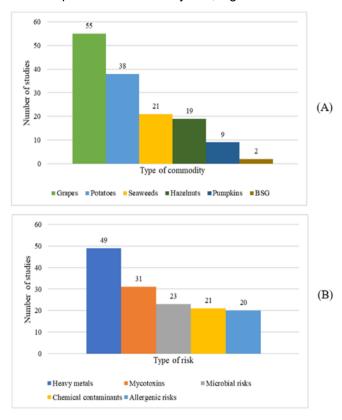


Figure 2. Systematic review results based on key commodities and risk type: (A) Based on type of commodity and (B) based on type of risk

Table 2. Papers reporting heavy metal contaminants

Commodity	reporting heavy m Heavy metal	Level (mg/kg)	Reference(s)
BSG	n/a	n/a	n/a
	Cu	0.462	Olalla (2004)
	Cu	7.54-11.32	García-Esparza et al. (2006)
	Al, Cu, Pb	0.074, 0.0125, 0.0116	Correia et al. (2006)
	Pb, Cu	0.012-0.359, 0.770-4.706	Calisir and Akman (2007)
Grapes	Cu, Pb	0.25, 0.07	Vystavna et al. (2017)
	Ni, Cu, Cr, Mn, Cd, Pb, As	3.75-5.22, 0.10-0.27, 9.22-77.8, 0.07-0.30, 0.02-0.07, 0.24-0.37, 0.25-0.26	Li et al. (2018)
	Mn	2.381	Jung et al. (2019)
	Mn, Cr, Pb	0.0913-0.0743, 0.00144-0.00328, 0.0482	Pérez Cid et al. (2019)
	Cd, Pb	0.01, 0.009	Rusin et al. (2021)
	Al, Pb, Mn	0-0.090	Han et al. (2023)
	Cu	16.2-32.2	Simsek and Aykut (2007)
	Cr, Mn, Ni, Cu, Pb	7-10, 177-580, 5-35, 90-152, 3-9	Çevik et al. (2009)
Hazelnuts and	Mn, Zn, Cu, Pb,	0.00013, 0.00115, 0.00005, 0.00001,	
hazelnut	Cd	0.00457	Mendil et al. (2009)
products	Cd, Pb	0.000067-0.000183, 0.000078-0.00021	Arpadjan et al. (2013)
producto	Mn	0.0126	Erdemir and Gucer (2014)
	As, Cd, Cu, Hg	0.0789, 0.0055, 0.0143, 0.1046	Moreda-Piñeiro et al. (2016)
	Cd, Pb	0.50, 3.19	Antonious and Snyder (2007
	Co, As, Hg, Cr	0.2-0.51, 0.82-2.05, 0.33-0.90, 0.12-0.17	Jonnalagadda et al. (2008)
	As, Cr	1.50-7.50, 23.31-33.84	Karim et al. (2008)
	Zn, Cu, Mn	1.044–3.603, 0.111-1.761, 0.198-1.023	Mansour et al. (2009)
			, ,
	Pb, Cd, Cu, Zn	0.199, 0.086, 0.534, 5.11	Marković et al. (2010)
	As, Cd, Cr, Cu, Ni, Pb, Zn	0.46–12.3, 0.08–4.4, 6.9–28.6, 0.58–20.04, 0.14–29.6, 0.21–13.3, 0.25–55.7	Cheraghi et al. (2013)
Potatoes and	Pb, Cd, Zn, Cu, Co, Ni	0.02, 0.02, 7.11, 0.75, 0.55 0.25	Ferrante et al. (2013)
potato	Cd, Pb	0.01, 0.014	Luis et al. (2014)
products	As, Cd, Co, Cr, Cu, Hg, Ni, Pb	6.1, 0.5, 0.5, 0.2, 14.2, 0.004, 6.3, 3.2	Briki et al. (2015)
	Cd	0.0-2.65	Huang et al. (2015)
	Cu, Mn, Zn	4.39-4.609, 8.118-8.262, 10.96-11.81	Gąsiorowska et al. (2018)
	Cd, Will, Zil	0.26-0.94	Ye et al. (2020)
	Cd, Pb	0.07-0.28, 0.10-0.50	Huang et al. (2020)
	Zn, Cu, Pb, Cr, Ni	2.73, 0.675, 0.027, 0.072, 0.055	Shi et al. (2022)
	Cd, Pb, Ni	0.03, 0.01, 2.5	Antonious et al. (2010)
Pumpkin	Pb, Cd, Cr, Cu, Ni	1.36, 0.27, 0.36, 1.36, 64.25	Galal et al. (2016)
			Moreda-Piñeiro et al. (2016)
	Cd, Co, Cu	0.0041, 0.002, 0.0282	Moreua-Fillello et al. (2010)
	Al, Ar, Cd, Pb	4.25–93.12, 0.001–0.104, 0.015–0.420, 0.003–0.100	Antoine et al. (2017)
	Hg, As, Cd, Pb, Cr, Mn, Co, Zn	0.015, 0.728, 0.382, 0.227, 0.850, 27.227, 0.525, 6.438	Guo et al. (2023)
			

products (Rizzo et al., 2021). Unlike animal products, potential food safety risks in plant protein sources must be considered through harvesting, processing, and According to the Institute of Food storage. Technologists (IFT), safety risks associated with plant and seaweed sources, as well as their proteins, are microbial (Salmonella spp., Bacillus (B.) cereus, Clostridium (C.) perfringens, Enterococcus (E.) faecium and Enterobacteriaceae spp.), allergens, heavy metal contaminants, pesticides, and mycotoxins (aflatoxins) (IFT, 2024). The recent systematic review showed that the key plants and seaweed may potentially pose safety risks for the protein extraction, indicating the need for further scientific evidence and regulatory-centric strategy to comply with the "do no significant harm" principles of the EU's Regulations 2015/2283 and

2020/852, European Green Deal 2019, and UN FAO/WHO Codexis.

Heavy metal contaminants

The recent systematic review showed that heavy metals including cadmium (Cd) (0.003 to 4.4 mg/kg), lead (Pb), mercury (Hg), and arsenic (As) (0.03 to 6.9 mg/kg) have been detected above the international safety limits in potatoes, grapes, pumpkin and seaweeds, especially in seaweeds due to marine pollution. However, BSG showed no recorded heavy metal contamination (Table 2).

Heavy metals pose toxic threats to the human body after long-term exposure in high amounts Heavy metals As, Pb, Hg, and Cd, are prioritized for monitoring and reduction. (Scutaraşu et al., 2023). The European Union (EU) 2021/1323 of the Commission, which

Table 3. Papers reporting mycotoxin characteristics

Commodity	Mycotoxin	Level (µg/kg)	Reference
BSG	AF B1	19–44.52	Gonzalez Pereyra et al. (2011)
	AF B1	52800, 0.64	El Khoury et al. (2006); Feizy et al. (2012)
	AF B2	0.10-81.26	Zhang et al. (2018)
Grapes	ОТА	2-24.5, 1920-1954.6, 40000, 6-32, 400-13300, 34.2-602.5, 2-17, >2, 10- 22, 0.12-20.28, 0.20, 1.15- 2.04, 0.03-0.62, 1.4-9.2, 0.99, 0.1, 2.98, 159990, 0.5, 0.10-81.26	Magnoli et al. (2003); Bau et al. (2005); El Khour at al. (2006); Leong et al. (2006); Atoui et al. (2007); Solfrizzo et al. (2008); Díaz et al. (2009); Lucchetta et al. (2010); Feizy et al. (2012); Peraica et al. (2010); Ponsone et al. (2010); Akdeniz et al. (2013); Terra et al. (2013); Tosun et al. (2014); Zhang et al. (2014); García-Cela et al. (2015); Heshmati et al. (2015); Freire et al. (2018); Yusefi et al. (2018); Zhang et al. (2018)
	PAT	1.86-3.53, 53.9	Poapolathep et al. (2017); Hussain et al. (2020)
	PCA, MPA, CPA, FB1, ZEN	0.10-81.26	Zhang et al. (2018)
	FB2, FB4	1660-2531	Perera et al. (2021)
Hazelnuts and hazelnut products	TAF	0.44-3.18, 0.02-78.98, 0.14-0.64, 5600-616000, 0.0-11.3, 0.0000106- 0.0000107	Ozay et al. (2008); Baltaci et al. (2012); Prelle et al. (2012); Ekinci et al. (2014); Kabak (2]016); Şen and Civil. (2022)
	PAT, ERG	5600-616000	Ekinci et al. (2014)
Potatoes and potato products	Chaetoglobosin A & C, Communesin A & B, Patulin & Citrinin	n.d.	Andersen & Thrane (2006)
Pumpkin	n/a	n/a	n/a
Seaweeds	n/a	n/a	n/a

modified Regulation (EC) 1881/2006 have set up limits for Cd (0.04 in cereal-based foods, 0.10 in cereals, and 0.05-0.2 mg/kg in vegetables), for Pb (0.20 in cereals and 0.02 mg/kg in cereal-based foods), for As (0.02 mg/kg in infant formulas and special medical foods, and 0.10 to 0.30 mg/kg in cereals and cereal-based products), and for Hg (0.01 mg/kg in various cereals and foods) (Rubio et al., 2023; FAO, 2024a).

Cd is a serious toxicant in the urinary and respiratory systems of the human body and is easily absorbed by plants (Wang et al., 2019), especially potatoes (Scutaraşu et al., 2023). Similarly, As, Hg and Pb are associated with carcinogenesis, neurotoxicity, nephrotoxicity and reproductive issues when taken in excess quantities (Bandara et al., 2020). Naturally, the heavy metal contaminants detected in the key plant and seaweed sources pose a severe risk for their protein extracts than non-plant protein sources. For instance, the Clean Label Project (cleanlabelproject.org) reported that Pb, Hg, Cd and As were present in 53 plant protein powders, and 75% had significant concentrations of Pb in one serving (Clean Label Project, 2024). In addition, wastewater might cause pumpkins, hazelnut byproducts (shell and skin), and potatoes to interact with Pb and Cd (Karim et al., 2023). In algae and seaweed products commercially availableed in Spain, the levels of Cd, Pb, Hg, and As ranged between 0.017 and 64.7 mg/kg, and a level of 0.017 mg/kg were detected in Asian and European products (Besada et al., 2008). According to the European Food Safety Authority (EFSA), consuming 5 g of dehydrated seaweed per day may contribute to the tolerable weekly intake of Cd by 22.7% (EFSA, 2023). Overall, the key plants and seaweed contaminated with heavy metal contaminants may provoke potential safety and health risks with their protein extracts to be used for manufacturing meat analogues and dairy free products.

Mycotoxin contamination

This systematic review exhibited that nycotoxin contamination was predominantly reported with ochratoxin A (OTA) in grapes (0.03 µg/kg to 159.9 mg/kg) and total aflatoxin (TAF) (10.6 µg/kg to 5.6 mg/kg) in hazelnuts. BSG contained detectable aflatoxin B1 (AFB1) (19 to 44.52 µg/kg). No mycotoxins were reported in seaweed and pumpkin (Table 3). OTA

Table 4. Papers reporting microbial characteristics

Commodity	Microorganisms	Level (CFU/g)	Reference(s)
BSG	n/a	n/a	n/a
Grapes	TAMB, TAB, yeast, mould, Massilia, Pantoea, Pseudomonas, Halomonas, Corynebacterium, Bacillus, Anaerococcus, Acinetobacter	7- 11, 63- 65, n.d.	Kou et al. (2007); Augustine et al. (2013); Xu et al. (2022)
Hazelnuts and	E. coli	n.d., 38	Little et al. (2009); Feng et al. (2018)
hazelnut products	Salmonella	0.75	Zhang et al. (2021)
	C. botulinum	<1	Del Torre et al. (2004)
	TAB	<30, 20-67	Montville and Schaffner (2004); Manani et al. (2006)
	Salmonella	53-56	DiPersio et al. (2005)
Potatoes and potato	L. monocytogenes	<60, 20-30	Pérez-Díaz et al. (2008); Szymczak and Dąbrowski (2015)
products	B. cereus B. weihenstephanensis B. cytotoxicus S. aureus Yeasts, moulds	10 ³ , 1×10 ² -7×10 ² <3 <200 10 ⁷ 12 – 26	King et al. (2007); Fangio et al. (2010) Samapundo et al. (2011) Contzen et al. (2014) Baumgartner et al. (2014) Malavi et al. (2021)
Pumpkin	Acinetobacter, Arthrobacter, Bacillus, Enterobacter, Erwinia, Klebsiella, Pantoea, Pseudoclavibacter, Pseudomonas, Serratia, Staphylococcus, Weissella, Enterobacteriaceae	5.6×10²-1.6×10 ⁶	Baruzzi et al. (2012)
Seaweeds	V. parahaemolyticus TAB	0.03-4.6 44-78	Mahmud et al. (2007) Choi et al. (2014)
	E. coli, E. coli 157:H7, L. monocytogenes, V. parahaemolyticus	50.1-68.4	Swinscoe et al. (2020)
	Undaria pinnatifida, Palmaria palmata, Arthrospira platensis, Porphyra spp., Laminaria spp., Hizikia fusiformis, Ulva spp.	22.3-55.8	Martelli et al. (2021)

is a carcinogenic, genotoxic, immunotoxic, and hepatotoxic mycotoxin for humans (Group 2B), which is produced by some fungal species belonging to the genera *Aspergillus* (*A*.) and *Penicillium* (*P*.) (Chen et al., 2018). The EFSA has reported its tolerable weekly intake as 120 ng/kg body weight (Freire et al., 2020)

The recent work showed that total AF (TAF) contamination was reported in hazelnuts (5.6 mg/kg), and with AFB1 in BSG (44.52 µg/kg). According to FAO, almost 25% of the global food crop is contaminated with mycotoxins (rBiopharm, 2022). All foods for human consumption should not contain more than 10 µg/kg of TAF, of which AFB1 needs to be lower than 5 µg/kg (FAO, 2024b). AFs are hazardous, toxic, stable and resistant mycotoxins, notably produced by A. flavus and A. parasiticus. Based on lethal dose values (LD50), AFB1 is the most (geno)toxic metabolite linked to acute hepatitis, liver cancer, immune and reproductive system disorders, and blood-forming stem cell dysfunction (Samimi et al., 2024). AFM1 is a significant metabolite of AFB1 in humans and animals. In the literature, other surveys also reported higher concentrations of TAF (6.55 μg/kg) and AFB1 (78.98 μg/kg) in hazelnuts

(Baltaci et al., 2012). Based on these factsi the proteins extracted from these commodities could be contaminated with mycotoxins. Thus, in literature, several studies also detected high concentrations ofAFB1 and OTA in soy protein (Bramante, 2024), in pea, chickpea, lupin, and seitan proteins (Mihalache et al., 2023), and in spirulina, chlorella and kelp (r-Biopharm, 2020). However, AF and OTA are stable which cannot easily be eliminated with toxicants standard thermal methods (Galluzzo et al., 2024). In addition, ultra-processing plant proteins may cause the released of mycotoxins from or bound to matrix components, forming degraded or modified products unknown toxicokinetic and toxicodynamic characteristics (Pavicich et al., 2024). Thus, monitoring mycotoxins in plant and seaweed as well as their protein extracts during harvesting, extraction and ultraprocessing is very important for the consumer health.

Microbial risks

The recent survey demonstrated that pathogenic bacteria (*Salmonella* spp., and *Staphylococcus* (*S.*) aureus), hygenic indicators (*Listeria* (*L.*) monocytogenes, and Escherichia (E.) coli), and other

Table 5. Papers reporting chemical contaminant characteristics

Commodity	Chemical	Level (mg/kg)	Reference(s)
BSG	Acrylamide & hydroxymethylfurfural (HMF)	0.00537-606.9	Jozinović et al. (2019)
Grapes	Paraffins; flufenoxuron-lufenuron-pyriproxyfen & fenoxycarb; imazalil-prochloraz & thiabendazole; pyrimethanil-boscalid-fenhexamid-cyprodinil & azoxystrobi; chlorpyrifos-lprodione; carbendazim, chlorpyrifos, dithiocarbamates, iprodione & thiophanate methyl; thiabendazole & Thiophanate- methyl 2-aminobenzimidazole; pyraclostrobin, dimethomorph, cymoxanil, cyazofamid, cyazofamid & CCIM; atrazine, propiconazole, cyhalothrin-L, myclobutanil, cyfluthrin, cypermethrin, difenoconazole, imidacloprid, acetamiprid, chlorpyrifos & thiophanatemethyl, azole pesticides, strobin, benzimidazole, organophosphorus, pyrethroid pesticides, nicotinoid	43-247; 0.14-0.45; 0.0047-0.0072, n.d.; 0.010-0.1; 0.0094-0.135; 0.01- 5.86; 49920-72540; <1.36; 0.002- 12.285	Fiorini et al. (2008); Payá et al. (2013); Xu et al. (2015); Mutengwe et al. (2016); Esteve-Turrillas et al. (2016); Varela-Martínez et al. (2018); Bouagga et al. (2019); Lu et al. (2019); Hamzawy (2022)
Hazelnuts and hazelnut products	n/a	n/a	n/a
Potatoes and potato products	Acrylamide	0.0023-0.0186; 0.106-4.630; 0.244- 1.688; 0.329; 0.01	Knol et al. (2008),;Becalski et al. (2010); Boroushaki et al. (2010); Mesias et al. (2020); Yang et al. (2021)
	Endosulfan-sulfate, tetradifon, fenbuconazole & others	0.0000125-0.001	Park et al. (2011)
	4-hydroxy-2-hexenal & 4- hydroxy2-nonenal	n.d.	Ma et al. (2019)
Pumpkin	Nitrate-N	281.02	Prasad and Chetty (2011)
Seaweeds	PAH & AHC Acrylic acid	110-32000 n.d.	Soares et al. (2021) Kim et al. (2022)

microorganisms *Bacillus* (*B.*) *cereus*, *C. Botulinum*, total aerobic bacteria (TAB), mould and yeast were detected in multiple commodities. Especially, potatoes exhibited the highest microbial risks with *Salmonella* spp. (53 to 56 CFU/25 g, *L. monocytogenes* (<60 CFU/25 g), *B. cereus* (7*10² to 10³ CFU/g), and *S. aureus* (10⁷ CFU/g), respectively (Table 4).

According to the Food Safety Authority of Ireland (FSAI) (2020) and Canadian Food Inspection Agency (CFIA) (2025), *L. monocytogenes* and *Salmonella* should be absent in 25 g while *E. coli* and *S. aureus* should be less than 10 and 20 CFU/g, respectively (FSAI, 2020; CFIA, 2025).

Bacillus is a common microbial risk in potatoes. It produces diverse biologically active metabolites, causing high resistance to biofertilizers, biofungicides, heat, desiccation, organic solvents, and ultraviolet (UV) irradiation (Purgatorio et al., 2024). Potatoes also generate moist waste, which may lead to pathogenic illnesses (Chauhan et al., 2023). Bacillus and Clostridium species are frequently detected in peas (Kyrylenko et al., 2023), as well asn fungi, yeast, and bacteria on grape (Sindrod et al., 2023), E. coli, coliforms, S. aureus, and Salmonella, and fungi (Aspergillus spp.) in hazelnuts and hazelnut products (Spagnuolo et al., 2023), fungi in pumpkin (Silva et al., 2022), and Bacillus spp., Vibrio spp., E. coli, and L.

monocytogenes in algae and seaweeds (Swinscoe et al., 2020; Martelli et al., 2021). However, not only the existence of microbial species, virulence factors and resistant-encoding gene transfer are also considered potential safety risks (Geeraerts et al., 2020). Overall, our data suggest that the key commodities in the review pose significant microbial risks for their protein extracts if sanitation and hygiene are not maintained well at extraction, manufacturing and storage stages.

Chemical contaminants

In this systematic review, chemical contaminants – pesticides, polycyclic aromatic hydrocarbons (PAH), and bisphenols- were frequently detected in the focal commodities. Potatoes contain high acrylamide levels (0.0023 to 4.630 mg/kg), a known carcinogen while seaweeds were found to accumulate high levels of PAHs (110 to 32000 mg/kg) (Table 5).

About 3 million tons of pesticides per year are used for agricultural operations globally, posing a severe threat with neural and kidney damage, congenital disabilities, reproductive problems, and cancer (Rather et al., 2017). PAHs are persistent organic pollutants from fossil fuel combustion, motor vehicles' exhaust emissions, and coke and asphalt production (Ailijiang et al., 2022). PAHs serve as

Table 6. Papers reporting allergenic characteristics

Commodity	Allergen	Level	Reference
BSG	n/a	n/a	n/a
	Vit v 1	n.d.; 0.15-0.88 g.mL ⁻¹	Schad et al. (2005); Asero et al. (2007); Vassilopoulou et al. (2007); Wigand et al. (2009)
Grapes	N-glycans	30 g.mL ⁻¹	Gonzalez-Quintela et al. (2011)
	β-1,3-glucanase & Harpin binding protein	n.d.	Rossin et al. (2015)
	Ethanolamine, ethylamine, putrescine and cadaverine	0.51-24.29 μg.g ⁻¹	Moncalvo et al. (2016)
	Profilin, NAD(P)H dehydrogenase, triosephosphate isomerase, glyceraldehyde- 3phosphate dehydrogenase and beta- galactosidase	n.d.	González Mahave et al. (2022)
Hazelnuts and hazelnut products	Cor a 1, Cor a 2, Cor a 8, Cor a 9, Cor a 11, Cor a 14	n.d.; 34%, 60% & 73% of samples	Hansen et al. (2003); Flinterman et al. (2008); Platteau et al (2011); Caffarelli et al. (2021)
D-4-4	Latex	n.d.	Asero et al. (2007)
Potatoes and	Patatin	n.d.	Lattová et al. (2015)
potato products	Sola t 1, Sola t 3, Sola t 4	n.d.	Kobayashi et al. (2021)
	Patatin	n.d.	Gelley et al. (2022)
	Lipid Transfer Protein	n.d.	Rodríguez-Jiménez et al. (2010)
Pumpkin	Skin prick test	1 mm-histamine wheal diameter; negative	Gawryjołek et al. (2021)
Seaweeds	Phlorotannins	n.d.	Barbosa et al. (2018)

potential carcinogens and mutagens (Sampaio et al., 2021). Currently, the maximum levels in foods are specified in Commission Regulation (EU) No. 835/2011 of 19 August 2011 for benzo[a]pyrene and ΣPAH4 (benzolalpyrene. benz[a]anthracene. benzo[b]fluoranthene and chrysene), that is 1 µg/kg of the sum of BaP and ΣPAH4 for processed cereal-based foods (Zelinkova and Wenzl, 2015). Moreover, pyrene, naphthalene, fluorene, anthracene. benzo[b]fluoranthene, benzo[a]pyrene, chrysene and acenaphthene have been included in the priority list of pollutants by the U.S. Environmental Protection Agency (EPA) (Borah and Deka, 2024). . In literature, several works reported benzo[a]pyrene (538-873 µg/kg) and PAH (2323-3423 µg/kg) in spirulina (Muys et al., 2019), and bisphenol (1.85 to 18.17 µg/kg) in oat and soy (Rebellato et al., 2023). In summary, our systematic review indicated that the mitigation with chemical contaminants in the key commodities, even of their protein extracts, needs the control and investigation of their modes of formation for effective regulation and reduction in their impact on human health, which aligns with the UN Sustainable Development Goals (SDGs) by 2030.

Allergenic risks

The recent review demonstrated that hazelnuts had the highest allergenic potential, with $Cor\ a\ 1\ (34\%)$, $Cor\ a\ 9\ (60\%)$ and $Cor\ a\ 14\ (73\%)$ proteins found in most samples, while no $Cor\ a\ 2$, $Cor\ a\ 8$, $Cor\ a\ 9$, or $Cor\ a\ 11$ were detected. Regarding grapes, $Vit\ v\ (0.15-0.88\ g/mL)$ was one of the most identified allergenic risks. None of patatin, $Sola\ t\ 1$, $Sola\ t\ 3$, and $Sola\ t\ 4$ was found in potatoes, and only one pumpkin study reported histamine (1 mm with a skin prick test). Besides, no allergenic proteins were detected in BSG, making it a promising alternative protein source (Table 6).

Food allergy is an IgE-mediated immunological response to specific proteins. It is currently estimated to affect 2% of adults and 8% of children in developed countries (Li et al., 2024). Of foodborne allergens, 70% are of plant origin (Tekiner et al., 2020). The relevant data on allergens can be retrieved from the WHO and International Union of Immunological Societies (IUIS) Allergen Nomenclature Subcommittee (http://allergen.org/) (Li et al., 2025). Safety prediction should be conducted by comparing the aminoacid sequences of a novel protein against identified allergens. However, the current allergen sequence databases cannot perform robust safety assessments (Malila et al., 2024). The transition to a plant-based diet may trigger allergic symptoms (Präger et al., 2023). Therefore, technology's multimodal action should challenge how to reduce allergenic risks in plant and seaweeds (Su et al., 2024). Moreover, using in vitro and in silico techniques such as quantitative structureactivity relationship analysis, physiologically based toxicokinetic modelling and Threshold of Toxicological Concern can be utilized to predict the allergenic risks by transcriptomics, proteomics, combining genetics, metabolomics and bioinformatics with toxicological data, rather than animal-based experiments (De Boer and Bast. 2017: EFSA Scientific Committee. 2019). Overall, foodborne allergenicity is generally considered a clinical issue. However, it requires multidimensional and multidisciplinary collaboration amongst food, nutritional and life sciences for the risk assessment of emerging plant and seaweed protein sources as a part of the food circular system.

Conclusion and future directions

In this systematic review, we evaluated the food safety risks associated with six key plants and seaweed. The results demonstrated that to meet the safe, healthy,

and affordable protein substitutes rather than animalbased sources, further research is needed to provide the robust safety standards at all stages of harvesting, extraction, processing, manufacturing, and storage, due to due to insufficient knowledge and data of food safety with the emerging plant- and seaweed protein sources. Safety is a non-negotiable requirement, and food scares can undermine the concept's viability. Overall, it is urgent to design a methodology that uses sustainability, food safety, and a regulatory-centric strategy, which complies with the principles of the "do no significant harm principle" of Regulation (EU) No 2020/852, European Green Deal (EGD)2019, EUs Regulation 2015/2283, and UN FAO/WHO Codexis. Besides, At the policy level, it is important to relax strict accommodate innovative regulations to biotechnological development to mitigate with the safety risks at each level.

Disclosure statement

None to declare.

Acknowledgement

The IPSUS "Climate-smart food innovation using plant and seaweed proteins from upcycled sources" project is supported by Horizon 2020 ERA-Nets SUSFOOD2 and FOSC.

This work is supported by TÜBİTAK 1071-Support Programme for Increasing Capacity to Benefit from International Research Funds and Participation in International R&D Cooperation [Grant number: 122N018].

References

- Ailijiang, N., Zhong, N., Zhou, X., Mamat, A., Chang, J., Cao, S., Hua, Z. and Li, N. 2022. Levels, sources, and risk assessment of PAHs residues in soil and plants in urban parks of Northwest China. Science Reports 12: 21448. DOI: 10.1038/s41598-022-25879-8
- Akdeniz, A. S., Ozden, S. and Alpertunga, B. 2013. Ochratoxin A in dried grapes and grape-derived products in Turkey. Food additives & contaminants. Part B, Surveillance 6(4): 265–269. DOI: 10.1080/19393210.2013.814719
- Almela, C., Clemente, M. J., Vélez, D. and Montoro, R. 2006. Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association 44(11): 1901–1908. DOI: 10.1016/j.fct.2006.06.011
- Andersen, B. and Thrane, U. 2006. Foodborne fungi in fruit and cereals and their production of mycotoxins. Advances in Experimental Medicine and Biology 571: 137–152. DOI: 10.1007/0-387-28391-9 8
- Antoine, J. M. R., Fung, L. A. H. and Grant, C. N. 2017.
 Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicology

- Reports 4: 181–187. DOI: 10.1016/j.toxrep.2017.03.006
- Antonious, G. F. and Snyder, J. C. 2007. Accumulation of heavy metals in plants and potential phytoremediation of lead by potato, Solanum tuberosum L. Journal of Environmental Science and Health. Part A, Toxic/hazardous substances & environmental engineering 42(6): 811–816. DOI: 10.1080/10934520701304757
- Antonious, G. F., Snyder, J. C. and Dennis, S. O. 2010. Heavy metals in summer squash fruits grown in soil amended with municipal sewage sludge. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes 45(2): 167–173. DOI: 10.1080/03601230903472223
- Arpadjan, S., Momchilova, S., Venelinov, T., Blagoeva, E. and Nikolova, M. 2013. An enzymolysis approach investigated bioaccessibility of Cd, Cu, Fe, Mn, Pb, and Zn in hazelnut and walnut kernels. Journal of agricultural and food chemistry 61(25): 6086–6091. DOI: 10.1021/jf401816j
- Asero, R., Mistrello, G., Roncarolo, D. and Amato, S. 2007. Detection of some safe plant-derived foods for LTP-allergic patients. International archives of allergy and immunology 144(1): 57–63. DOI: 10.1159/000102615
- Ashour, M. and Omran, A.M.M. 2022. Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae given Coronavirus Pandemic (COVID-19). Fermentation 8: 466. DOI: 10.3390/fermentation8090466
- Atoui, A., Mitchell, D., Mathieu, F., Magan, N. and Lebrihi, A. 2007. Partitioning of ochratoxin A in mycelium and conidia of Aspergillus carbonarius and the impact on toxin contamination of grapes and wine. Journal of Applied Microbiology 103(4): 961–968. DOI: 10.1111/j.1365-2672.2007.03320.x
- Augustine, S., Kudachikar, V. B., Vanajakshi, V. and Ravi, R. 2013. Effect of combined preservation techniques on the stability and microbial quality and retention of anthocyanins in grape pomace stored at low temperature. Journal of Food Science and Technology 50(2): 332–338. DOI: 10.1007/s13197-011-0325-0
- Baca-Bocanegra, B., Nogales-Bueno, J., Hernández-Hierro, J. M. and Heredia, F. J. 2021. Optimization of Protein Extraction of Oenological Interest from Grape Seed Meal Using Design of Experiments and Response Surface Methodology. Foods 10(1): 79. DOI: 10.3390/foods10010079
- Baltaci, C., Ilyasoğlu, H. and Cavrar, S. 2012. Aflatoxin levels in raw and processed hazelnuts in Turkey. Food additives & contaminants. Part B, Surveillance 5(2): 83–86. DOI: 10.1080/19393210.2012.656146
- Banach, J. L., van der Berg, J. P., Kleter, G., van Bokhorst-van de Veen, H., Bastiaan-Net, S., Pouvreau, L. and van Asselt, E. D. 2023. Alternative proteins for meat and dairy

- replacers: Food safety and future trends. Critical reviews in food science and nutrition 63(32): 11063-11080. DOI: 10.1080/10408398.2022.2089625
- Bandara, S. B., Towle, K. M. and Monnot, A. D. 2020. A human health risk assessment of heavy metal ingestion among consumers of protein powder supplements. Toxicology Reports 7: 1255–1262. DOI: 10.1016/j.toxrep.2020.08.001
- Barbosa, M., Lopes, G., Valentão, P., Ferreres, F., Gil-Izquierdo, Á., Pereira, D. M. and Andrade, P. B. 2018. Edible seaweeds' phlorotannins in allergy: A natural multi-target approach. Food chemistry 265: 233–241. DOI. 10.1016/j.foodchem.2018.05.074
- Baruzzi, F., Cefola, M., Carito, A., Vanadia, S. and Calabrese, N. 2012. Changes in bacterial composition of zucchini flowers exposed to refrigeration temperatures. The Scientific World Journal 2012: 127805. DOI: 10.1100/2012/127805
- Bati, K., Mogobe, O. and Masamba, W. R. L. 2016. Concentrations of some trace elements in vegetables sold at Maun Market, Botswana. Journal of Food Research 6: 69. DOI: 10.5539/jfr.v6n1p69
- Bau, M., Bragulat, M. R., Abarca, M. L., Minguez, S. and Cabañes, F. J. 2005. Ochratoxigenic species from Spanish wine grapes. International journal of food microbiology 98(2): 125–130. DOI: 10.1016/j.ijfoodmicro.2004.05.015
- Baumgartner, A., Niederhauser, I. and Johler, S. 2014. Virulence and resistance gene profiles of staphylococcus aureus strains isolated from ready-to-eat foods. Journal of Food Protection 77(7): 1232–1236. DOI: 10.4315/0362-028X.JFP-14-027
- Becalski, A., Stadler, R., Hayward, S., Kotello, S., Krakalovich, T., Lau, B. Y., ... and Trelka, R. 2010. Antioxidant capacity of potato chips and snapshot trends in acrylamide content in potato chips and cereals on the Canadian market. Food Additives and Contaminants 27(9): 1193-1198. DOI: 10.1080/19440049.2010.483692
- Besada, V., Andrade, J. M., Schultze, F. and González, J. J. 2008. Heavy metals in edible seaweeds commercialized for human consumption. Journal of Marine Systems 75(1–2): 305–313. DOI: 10.1016/j.jmarsys.2008.10.010
- Borah, P. and Deka, H. 2024. Polycyclic aromatic hydrocarbon (PAH) accumulation in selected medicinal plants: a mini review. Environmental Science and Pollution Research 31(25): 36532-36550. DOI: 10.1007/s11356-024-33548-8
- Briki, M., Ji, H., Li, C., Ding, H. and Gao, Y. 2015. Characterization, distribution, and risk assessment of heavy metals in agricultural soil and products around mining and smelting areas of Hezhang, China. Environmental monitoring and assessment 187(12): 767. DOI: 10.1007/s10661-015-4951-2
- Boroushaki, M. T., Nikkhah, E., Kazemi, A., Oskooei, M. and Raters, M. 2010. Determination of acrylamide level in popular Iranian brands of

- potato and corn products. Food and Chemical Toxicology 48(10): 2581-2584. DOI: 10.1016/j.fct.2010.06.011
- Bouagga, A., Chaabane, H., Toumi, K., Mougou Hamdane, A., Nasraoui, B. and Joly, L. 2019. Pesticide residues in Tunisian table grapes and associated risk for consumer's health. Food Additives & Contaminants: Part B 12(2): 135-144. DOI: 10.1080/19393210.2019.157153
- Bramante, S. 2024. Plant-based alternatives to meat, be careful of mycotoxins. https://www.carnisostenibili.it/en/plant-based-alternatives-to-meat-be-careful-of-mycotoxins/ (accessed May 8, 2024).
- Caffarelli, C., Mastrorilli, C., Santoro, A., Criscione, M. and Procaccianti, M. 2021. Component-Resolved Diagnosis of Hazelnut Allergy in Children. Nutrients 13(2): 640. DOI. 10.3390/nu13020640
- Calisir, F. and Akman, S. 2007. Survey of lead and copper in Turkish raisins. Food additives and contaminants 24(9): 960– 968. DOI: 10.1080/02652030701297529
- Canadian Food Inspection Agency (CFIA). (2025).

 Bacterial Pathogens in Seed Powder and Plant-Based Protein Powder-April 1, 2016 to March 31, 2018. https://inspection.canada.ca
- Chauhan, A., Islam, F., Imran, A., Ikram, A., Zahoor, T., Khurshid, S. and Shah, M. A. 2023. A review on waste valorization, biotechnological utilization, and management of potato. Food Science & Nutrition 11(10): 5773–5785. DOI: 10.1002/fsn3.3546
- Chen, W., Li, C., Zhang, B., Zhou, Z., Shen, Y., Liao, X., Yang, J., Wang, Y., Li, X., Li, Y. and Shen, X. L. 2018. Advances in Biodetoxification of Ochratoxin A-A Review of the Past Five Decades. Frontiers in Microbiology 9: 1386. DOI: 10.3389/fmicb.2018.01386
- Cheraghi, M., Lorestani, B., Merrikhpour, H. and Rouniasi, N. 2013. Heavy metal risk assessment for potatoes grown in overused phosphate-fertilized soils. Environmental monitoring and assessment 185(2): 1825–1831. DOI: 10.1007/s10661-012-2670-5
- Choi, E. S., Kim, N. H., Kim, H. W., Kim, S. A., Jo, J. I., Kim, S. H., Lee, S. H., Ha, S. D. And Rhee, M. S. 2014. Microbiological quality of seasoned roasted laver and potential hazard control in a real processing line. Journal of Food Protection 77(12): 2069–2075. DOI: 10.4315/0362-028X.JFP-14-177
- Clean Label Project. 2024. New Study of Protein Powders from Clean Label Project Finds Elevated Levels of Heavy Metals and BPA in 53 Leading Brands. https://cleanlabelproject.org/blog-post/new-study-of-protein-powders-from-clean-label-project-finds-elevated-levels-of-heavy-metals-and-bpa-in-53-leading-brands/ (accessed November 26, 2024).
- Contzen, M., Hailer, M. and Rau, J. 2014. Isolation of Bacillus cytotoxicus from various commercial potato products. International journal of food

- microbiology 174: 19–22. DOI: 10.1016/j.ijfoodmicro.2013.12.024
- Correia, L., Soares, M. E. and de Lourdes Bastos, M. 2006. Validation of an electrothermal atomization atomic absorption spectrometry method for the determination of aluminum, copper, and lead in grapes. Journal of agricultural and food chemistry 54(25): 9312–9316. DOI: 10.1021/jf0620564
- Çevik, U., Çelik, N., Çelik, A., Damla, N. and Coşkunçelebi, K. 2009. Radioactivity and heavy metal levels in hazelnut growing in the Eastern Black Sea Region of Turkey. Food and Chemical Toxicology 47(9): 2351–2355. DOI: 10.1016/j.fct.2009.06.029
- De Boer, A. and Bast, A. 2017. Demanding safe foods
 Safety testing under the novel food regulation
 (2015/2283). Trends in Food Science &
 Technology 72: 125–133. DOI:
 10.1016/j.tifs.2017.12.013
- Del Torre, M., Stecchini, M. L., Braconnier, A. and Peck, M. W. 2004. Prevalence of Clostridium species and behaviour of Clostridium botulinum in gnocchi, a REPFED of Italian origin. International journal of food microbiology 96(2): 115–131. DOI: 10.1016/j.ijfoodmicro.2004.01.004
- Díaz, G. A., Torres, R., Vega, M. and Latorre, B. A. 2009. Ochratoxigenic Aspergillus species on grapes from Chilean vineyards and Aspergillus threshold levels on grapes. International Journal of Food Microbiology 133(1-2): 195–199. DOI: 10.1016/i.iifoodmicro.2009.04.018
- DiPersio, P. A., Kendall, P. A., Yoon, Y. and Sofos, J. N. 2005. Influence of blanching treatments on Salmonella during home- type dehydration and storage of potato slices. Journal of Food Protection 68(12): 2587–2593. DOI: 10.4315/0362-028x-68.12.2587
- EFSA Scientific Committee. 2019. Guidance on the use of the Threshold of Toxicological Concern approach in food safety assessment. EFSA Journal 17(6): e05708. DOI: 10.2903/j.efsa.2019.5708
- Ekinci, R., Otağ, M. and Kadakal, Ç. 2014. Patulin & ergosterol: new quality parameters together with aflatoxins in hazelnuts. Food Chemistry 150: 17–21. DOI: 10.1016/j.foodchem.2013.10.120
- El Khoury, A., Rizk, T., Lteif, R., Azouri, H., Delia, M. L. and Lebrihi, A. 2006. Occurrence of ochratoxin A- and aflatoxin B1-producing fungi in Lebanese grapes and ochratoxin a content in musts and finished wines during 2004. Journal of agricultural and food chemistry 54(23): 8977–8982. DOI: 10.1021/jf062085e
- Erdemir, U. S. and Gucer, S. 2014. Fractionation analysis of manganese in Turkish hazelnuts (Corylus avellana L.) by inductively coupled plasma-mass spectrometry. Journal of agricultural and food chemistry 62(44) 10792–10799. DOI: 10.1021/jf503145t
- Esteve-Turrillas, F. A., Agulló, C., Abad-So:movilla, A.,

- Mercader, J. V. and Abad-Fuentes, A. 2016. Fungicide multiresidue monitoring in international wines by immunoassays. Food chemistry 196: 1279-1286. DOI: 10.1016/j.foodchem.2015.10.102
- European Food Safety Authority (EFSA)., Dujardin, B., De Sousa, R. F. and Ruiz, J. Á. G. 2023. Dietary exposure to heavy metals and iodine intake via consumption of seaweeds and halophytes in the European population. EFSA Journal 21(1): e07798. DOI: 10.2903/j.efsa.2023.7798
- Fangio, M. F., Roura, S. I. and Fritz, R. 2010. Isolation and identification of Bacillus spp. and related genera from different starchy foods. Journal of Food Science 75(4): M218–M221. DOI: 10.1111/j.1750-3841.2010.01566.x
- Feizy, J., Beheshti, H. R. and Asadi, M. 2012. Ochratoxin A and aflatoxins in dried vine fruits from the Iranian market. Mycotoxin research 28(4): 237–242. DOI. 10.1007/s12550-012-0145-8
- Feng, L., Muyyarikkandy, M. S., Brown, S. R. B. and Amalaradjou, M. A. 2018. Attachment and Survival of Escherichia coli O157:H7 on In-Shell Hazelnuts. International journal of environmental research and public health 15(6): 1122. DOI: 10.3390/ijerph15061122
- Ferrante, M., Fiore, M., Ledda, C., Cicciù, F., Alonzo, E., Fallico, R., Platania, F., Di Mauro, R., Valenti, L. and Sciacca, S. 2013. Monitoring of heavy metals and trace elements in the air, fruits and vegetables and soil in the province of Catania (Italy). Igiene e sanita pubblica 69(1): 47–54.
- Fiorini, D., Fiselier, K., Biedermann, M., Ballini, R., Coni, E. And Grob, K. 2008. Contamination of grape seed oil with mineral oil paraffins. Journal of agricultural and food chemistry 56(23): 11245-11250. DOI: 10.1021/jf802244r
- Flint, M., Bowles, S., Lynn, A. and Paxman, J. R. 2023. Novel plant-based meat alternatives: future opportunities and health considerations. The Proceedings of the Nutrition Society 82(3): 370-385. DOI: 10.1017/S0029665123000034
- Flinterman, A. E., Akkerdaas, J. H., Knulst, A. C., van Ree, R. and Pasmans, S. G. 2008. Hazelnut allergy: from pollen-associated mild allergy to severe anaphylactic reactions. Current opinion in allergy and clinical immunology 8(3): 261–265. DOI: 10.1097/ACI.0b013e3282ffb145
- Food and Agriculture Organization (FAO). 2024a.
 Second International Conference on Nutrition (ICN2). https://www.who.int/news-room/events/detail/2014/11/19/default-calendar/fao-who-second-international-conference-on-nutrition-(icn2) (accessed November 26, 2024).
- Food and Agriculture Organization (FAO). 2024b. Food Control (Maximum Levels of Aflatoxins in Food) Regulations: Section 13. https://faolex.fao.org/docs/pdf/BOT196888.pdf (accessed November 27, 2024).
- Food Safety Authority of Ireland (FSAI). (2020).

- Guidelines for the Interpretation of Results of Microbiological Testing of Ready-to-Eat Foods Placed on the Market (Revision 4). https://www.fsai.ie
- Freire, L., Guerreiro, T. M., Caramês, E. T., Lopes, L. S., Orlando, E. A., Pereira, G. E., ... and Sant'Ana, A. S. 2018. Influence of maturation stages in different varieties of wine grapes (*Vitis vinifera*) on the production of ochratoxin A and its modified forms by Aspergillus carbonarius and Aspergillus niger. Journal of Agricultural and Food Chemistry 66(33): 8824-8831. DOI: 10.1021/acs.jafc.8b02251
- Freire, L., Braga, P. A., Furtado, M. M., Delafiori, J., Dias-Audibert, F. L., Pereira, G. E., Reyes, F. G., Catharino, R. R. and Sant'Ana, A. S. 2020. From grape to wine: Fate of ochratoxin A during red, rose, and white winemaking process and the presence of ochratoxin derivatives in the final products. Food Control 113: 107167. DOI: 10.1016/j.foodcont.2020.107167
- Galal T. M. 2016) Health hazards and heavy metals accumulation by summer squash (*Cucurbita pepo* L.) cultivated in contaminated soils. Environmental monitoring and assessment 188(7): 434. DOI: 10.1007/s10661-016-5448-3
- Galluzzo, F., Cammilleri, G., Pulvirenti, A., Mannino, E., Pantano, L., Calabrese, V., Buscemi, M., Messina, E., Alfano, C., Macaluso, A. and Ferrantelli V. 2024. Determination of Mycotoxins in Plant-Based Meat Alternatives (PBMAs) and Ingredients after Microwave Cooking. Foods 13(2): 339. DOI: 10.3390/foods13020339
- García-Cela, E., Crespo-Sempere, A., Gil-Serna, J., Porqueres, A. and Marin, S. 2015. Fungal diversity, incidence and mycotoxin contamination in grapes from two agro-climatic Spanish regions with emphasis on Aspergillus species. Journal of the science of food and agriculture 95(8): 1716–1729. DOI: 10.1002/jsfa.6876
- García-Esparza, M. A., Capri, E., Pirzadeh, P. and Trevisan, M. 2006. Copper content of grape and wine from Italian farms. Food additives and contaminants 23(3): 274–280. DOI: 10.1080/02652030500429117
- Gąsiorowska, B., Płaza, A., Rzążewska, E., Cybulska, A. and Górski, R. 2018. The potato tuber content of microelements as affected by organic fertilization and production system. Environmental monitoring and assessment 190(9): 522. DOI: 10.1007/s10661-018-6894-x
- Gavril, R. N., Stoica, F., Lipṣa, F. D., Constantin, O. E., Stănciuc, N., Aprodu, I. and Râpeanu, G. 2024. Pumpkin and Pumpkin Byproducts: A Comprehensive Overview of Phytochemicals, Extraction, Health Benefits, and Food Applications. Foods 13(17): 2694. DOI: 10.3390/foods13172694
- Gawryjołek, J., Ludwig, H., Żbikowska-Götz, M., Bartuzi, Z. and Krogulska, A. 2021. Anaphylaxis after consumption of pumpkin seeds in a 2-y-old child tolerant to its pulp: A

- case study. Nutrition 89: 111272. DOI: 10.1016/j.nut.2021.111272
- Geeraerts, W., De Vuyst, L. and Leroy, F. 2020. Readyto-eat meat alternatives, a study of their associated bacterial communities. Food Bioscience 37: 2–7. DOI: 10.1016/j.fbio.2020.100681
- Gelley, S., Lankry, H., Glusac, J. and Fishman, A. (2022). Yeast-derived potato patatins: Biochemical and biophysical characterization. Food chemistry 370: 130984. DOI: 10.1016/j.foodchem.2021.130984
- Gibbens, S. 2022. Pumpkin pollution is a problem here's what you can do. https://www.nationalgeographic.com
- González Mahave, I., Lobera, T., López-Matas, M. A., Blasco, A., Vidal, I., Álvarez, F. and Carnes, J. 2022. Sensitization to Vitis vinifera pollen in a wine production area. Identification of the allergens involved. Journal of investigational allergology & clinical immunology 33(5): 383-391. DOI: 10.18176/jiaci.0849
- Gonzalez Pereyra, M. L., Rosa, C. A., Dalcero, A. M. and Cavaglieri, L. R. 2011. Mycobiota and mycotoxins in malted barley and brewer's spent grain from Argentinean breweries. Letters in applied microbiology 53(6): 649–655. DOI: 10.1111/j.1472-765X.2011.03157.x
- Gonzalez-Quintela, A., Gomez-Rial, J., Valcarcel, C., Campos, J., Sanz, M. L., Linneberg, A., Gude, F. and Vidal, C. 2011. Immunoglobulin-E reactivity to wine glycoproteins in heavy drinkers. Alcohol 45(2): 113–122. DOI: 10.1016/j.alcohol.2010.08.002
- Guo, Z., Dai, H., Wang, M. and Pan, S. 2023. Health risk assessment of heavy metal exposure through vegetable consumption around a phosphorus chemical plant in the Kaiyang karst area, southwestern China. Environmental science and pollution research international 30(13): 35617–35634. DOI: 10.1007/s11356-022-24662-6
- Han, X., Lu, H., Wang, Y., Gao, X., Li, H., Tian, M., Shi, N., Li, M., Yang, X., He, F., Duan, C. and Wang, J. 2023. Region, vintage, and grape maturity co-shaped the ionomic signatures of the Cabernet Sauvignon wines. Food Research International 163: 112165. DOI: 10.1016/j.foodres.2022.112165
- Hansen, K. S., Ballmer-Weber, B. K., Lüttkopf, D., Skov, P. S., Wüthrich, B., Bindslev-Jensen, C., Vieths, S. and Poulsen, L. K. 2003. Roasted hazelnuts--allergenic activity evaluated by double-blind, placebo-controlled food challenge. Allergy 58(2): 132–138. DOI: 10.1034/j.1398-9995.2003.23959.x
- Hamzawy, A. H. 2022. Residual pesticides in grape leaves (*Vitis vinifera* L.) on the Egyptian market and human health risk. Food Additives & Contaminants: Part B 15(1): 62-70. DOI: 10.1080/19393210.2021.2022005
- Heshmati, A. and Mozaffari Nejad, A. S. 2015. Ochratoxin A in dried grapes in Hamadan province, Iran. Food additives & contaminants.

- Part B, Surveillance 8(4): 255–259. DOI: 10.1080/19393210.2015.1074945
- Huang, B., Xin, J., Dai, H., Zhou, W. and Peng, L. 2015. Identification of low-Cd cultivars of sweet potato (*Ipomoea batatas* (L.) Lam.) after growing on Cd-contaminated soil: uptake and partitioning to the edible roots. Environmental science and pollution research international 22(15): 11813–11821. DOI: 10.1007/s11356-015-4449-z
- Huang, F., Zhou, H., Gu, J., Liu, C., Yang, W., Liao, B. and Zhou, H. 2020. Differences in absorption of cadmium and lead among fourteen sweet potato cultivars and health risk assessment. Ecotoxicology and environmental safety 203: 111012. DOI: 10.1016/j.ecoenv.2020.111012
- Hussain, S., Asi, M. R., Iqbal, M., Akhtar, M., Imran, M. and Ariño, A. 2020. Surveillance of Patulin in Apple, Grapes, Juices and Value-Added Products for Sale in Pakistan. Foods 9(12): 1744. DOI: 10.3390/foods9121744
- Institute of Food Technologists (IFT). 2024. How Safe Are My Plant Proteins? https://www.ift.org
- International Code of Oenological Practices (OIV). 2024. Standards and technical documents. https://www.oiv.int
- IPSUS. 2025. Climate-smart food innovation using plant and seaweed proteins from upcycled sources. https://ipsus.org/en/
- Jonnalagadda, S. B., Kindness, A., Kubayi, S. and Cele, M. N. 2008. Macro, minor and toxic elemental uptake and distribution in Hypoxis hemerocallidea, "the African Potato"-an edible medicinal plant. Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes 43(3): 271–280. DOI: 10.1080/03601230701771461
- Jozinović, A., Šarkanj, B., Ačkar, Đ., Panak Balentić, J., Šubarić, D., Cvetković, T., ... and Babić, J. 2019. Simultaneous determination of acrylamide and hydroxymethylfurfural in extruded products by LC-MS/MS method. Molecules 24(10): 1971. DOI: 10.3390/molecules24101971
- Jung, M. Y., Kang, J. H., Choi, Y. S., Lee, D. Y., Lee, J. and Park, J. 2019. Analytical features of microwave plasma-atomic emission spectrometry (MP-AES) for the quantitation of manganese (Mn) in wild grape (Vitis coignetiae) red wines: Comparison with inductively coupled plasma-optical emission spectrometry (ICP-OES). Food Chemistry 274: 20–25. DPOI: 10.1016/j.foodchem.2018.08.114
- Kabak B. 2016. Aflatoxins in hazelnuts and dried figs:
 Occurrence and exposure assessment. Food
 chemistry 211: 8–16. DOI:
 10.1016/j.foodchem.2016.04.141
- Karim, R. A., Hossain, S. M., Miah, M. M., Nehar, K. and Mubin, M. S. 2008. Arsenic and heavy metal concentrations in surface soils and vegetables of Feni district in Bangladesh. Environmental monitoring and assessment 145(1-3): 417-425. DOI: 10.1007/s10661-007-0050-3
- Kim, Y. S., Kim, Y. Y., Hwang, H. J. and Shin, H. S.

- 2022. Validation of analytical methods for acrylic acid from various food products. Food Science and Biotechnology 31(11): 1377-1387. DOI: 10.1007/s10068-022-01131-x
- King, N. J., Whyte, R. and Hudson, J. A. 2007. Presence and significance of Bacillus cereus in dehydrated potato products. Journal of Food Protection 70(2): 514–520. DOI: 10.4315/0362-028x-70.2.514
- Knol, J. J., Viklund, G. Å., Linssen, J. P., Sjöholm, I. M., Skog, K. I. And van Boekel, M. A. 2008. A study on the use of empirical models to predict the formation of acrylamide in potato crisps. Molecular nutrition & food research 52(3): 313-321. DOI: 10.1002/mnfr.200700343
- Kobayashi, T., Nakamura, M., Matsunaga, K., Nakata, J., Tagami, K., Sato, N., Kawabe, T. and Kondo, Y. 2021. Anaphylaxis due to potato starch (possibly caused by percutaneous sensitization). Asia Pacific allergy 11(2): e14. DOI: 10.5415/apallergy.2021.11.e14
- Kou, L., Luo, Y., Wu, D. and Liu, X. 2007. Effects of mild heat treatment on microbial growth and product quality of packaged fresh-cut table grapes. Journal of Food Science 72(8): S567–S573. DOI: 10.1111/j.1750- 3841.2007.00503.x
- Kumar, P., Sharma, N., Ahmed, M. A., Verma, A. K., Umaraw, P., Mehta, N., Abubakar, A. A., Hayat, M. N., Kaka, U., Lee, S. J. and Sazili, A. Q. (2022). Technological interventions in improving the functionality of proteins during processing of meat analogs. Frontiers in nutrition 9: 1044024. DOI: 10.3389/fnut.2022.1044024
- Kyrylenko, A., Eijlander, R. T., Alliney, G., De Bos, E. L. and Wells-Bennik, M. H. 2023. Levels and types of microbial contaminants in different plant-based ingredients used in dairy alternatives. International Journal of Food Microbiology 407: 110392. DOI: 10.1016/j.ijfoodmicro.2023.110392
- Lang, T. and Barling, D. 2013. Nutrition and sustainability: an emerging food policy discourse. The Proceedings of the Nutrition Society 72(1): 1–12. DOI: 10.1017/S002966511200290X
- Lattová, E., Brabcová, A., Bartová, V., Potěšil, D., Bárta, J. and Zdráhal, Z. 2015. N-glycome profiling of patatins from different potato species of Solanum genus. Journal of agricultural and food chemistry 63(12): 3243–3250. DOI: 10.1021/acs.jafc.5b00426
- Leong, S. L., Hocking, A. D., Varelis, P., Giannikopoulos, G. and Scott, E. S. 2006. Fate of ochratoxin A during vinification of Semillon and Shiraz grapes. Journal of agricultural and food chemistry 54(17): 6460–6464. DOI: 10.1021/jf061669d
- Li, X., Dong, S. and Su, X. 2018. Copper and other heavy metals in grapes: a pilot study tracing influential factors and evaluating potential risks in China. Scientific Reports 8(1): 17407. DOI: 10.1038/s41598-018-34767-z
- Li, X., Cao, Q. and Liu, G. 2024. Advances,

- applications, challenges and prospects of alternative proteins. Journal of Food Composition and Analysis 137(Part A): 106900. DOI: 10.1016/j.jfca.2024.106900
- Li, X., Cao, Q. and Liu, G. 2025. Advances, applications, challenges and prospects of alternative proteins. Journal of Food Composition and Analysis 137: 106900. DOI: 10.1016/j.jfca.2024.106900
- Lin, X., Duan, N., Wu, J., Lv, Z., Wang, Z. and Wu, S. 2023. Potential food safety risk factors in plant-based foods: Source, occurrence, and detection methods. Trends in Food Science & Technology 138: 511–522. DOI: 10.1016/j.tifs.2023.06.032
- Little, C. L., Jemmott, W., Surman-Lee, S., Hucklesby, L. and de Pinnal, E. 2009. Assessment of the microbiological safety of edible roasted nut kernels on retail sale in England, with a focus on Salmonella. Journal of Food Protection 72(4): 853–855. DOI: 10.4315/0362-028x-72.4.853
- López-Pedrouso, M., Lorenzo, J. M., Alché, J. D., Moreira, R. and Franco, D. 2023. Advanced Proteomic and Bioinformatic Tools for Predictive Analysis of Allergens in Novel Foods. Biology 12(5): 714. DOI: 10.3390/biology12050714
- Lucchetta, G., Bazzo, I., Cortivo, G. D., Stringher, L., Bellotto, D., Borgo, M. and Angelini, E. 2010. Occurrence of black aspergilli and ochratoxin A on grapes in Italy. Toxins 2(4): 840–855. DOI: 10.3390/toxins2040840
- Lu, S. H., Li, S. S., Yin, B., Mi, J. Y. and Zhai, H. L. 2019. The rapid quantitative analysis of three pesticides in cherry tomatoes and red grape samples with Tchebichef image moments. Food chemistry 290: 72-78. DOI: 10.1016/j.foodchem.2019.03.118
- Luis, G., Rubio, C., González-Weller, D., Gutiérrez, A. J., Revert, C. and Hardisson, A. 2014. Evaluation of content and estimation of daily intake of cadmium and lead in several varieties of potatoes (*Solanum tuberosum* L.) cultivated in the Canary Islands (Spain). Journal of Food Protection 77(4): 659–664. DOI: 10.4315/0362-028X.JFP-13-337
- Ma, L., Liu, G., Cheng, W., Liu, X., Liu, H. and Wang, Q. 2019. Matrix-mediated distribution of 4hydroxy-2-hexanal (nonenal) during deepfrying of chicken breast and potato sticks in vegetable oil. Food & function 10(11): 7052-7062. DOI: 10.1039/c9fo01878f
- Magnoli, C., Violante, M., Combina, M., Palacio, G. and Dalcero, A. 2003. Mycoflora and ochratoxin-producing strains of Aspergillus section Nigri in wine grapes in Argentina. Letters in applied microbiology 37(2): 179–184. DOI: 10.1046/j.1472-765x.2003.01376.x
- Mahmud, Z. H., Neogi, S. B., Kassu, A., Wada, T., Islam, M. S., Nair, G. B. and Ota, F. 2007. Seaweeds as a reservoir for diverse Vibrio parahaemolyticus populations in Japan. International journal of food microbiology

- 118(1): 92–96. DOI: 10.1016/j.ijfoodmicro.2007.05.009
- Malavi, D. N., Abong, G. O. And Muzhingi, T. 2021. Effect of food safety training on behavior change of food handlers: A case of orange-fleshed sweetpotato purée processing in Kenya. Food Control 119: 107500. DOI: 10.1016/j.foodcont.2020.107500
- Malila, Y., Owolabi, I. O., Chotanaphuti, T., Sakdibhornssup, N., Elliott, C. T., Visessanguan, W., Karoonuthaisiri, N. and Petchkongkaew, 2024. A. Current challenges of alternative proteins as future foods. npj Science of Food 8: 53. DOI: 10.1038/s41538-024-00291-w
- Manani, T. A., Collison, E. K. and Mpuchane, S. 2006.

 Microflora of minimally processed frozen vegetables sold in Gaborone, Botswana.

 Journal of Food Protection 69(11): 2581–2586.

 DOI: 10.4315/0362-028x-69.11.2581
- Mansour, S. A., Belal, M. H., Abou-Arab, A. A., Ashour, H. M. and Gad, M. F. 2009. Evaluation of some pollutant levels in conventionally and organically farmed potato tubers and their risks to human health. Food and chemical toxicology 47(3): 615–624. DOI: 10.1016/j.fct.2008.12.019
- Martelli, F., Marrella, M., Lazzi, C., Neviani, E. and Bernini, V. 2021. Microbiological Contamination of Ready-to-Eat Algae and Evaluation of Bacillus cereus Behavior by Microbiological Challenge Test. Journal of Food Protection 84(7): 1275–1280. DOI: 10.4315/JFP-20-407
- Marković, M., Cupać, S., Durović, R., Milinović, J. and Kljajić, P. 2010. Assessment of heavy metal and pesticide levels in soil and plant products from agricultural area of Belgrade, Serbia. Archives of environmental contamination and toxicology 58(2): 341–351. DOI: 10.1007/s00244-009-9359-y
- Medeiros, F., Aleman, R. S., Gabríny, L., You, S. W., Hoskin, R. T. and Moncada, M. 2024. Current status and economic prospects of alternative protein sources for the food industry. Applied Sciences 14(9): 3733. DOI: 10.3390/app14093733
- Mendil, D., Uluözlü, O. D., Tüzen, M. and Soylak, M. 2009. Investigation of the levels of some element in edible oil samples produced in Turkey by atomic absorption spectrometry. Journal of hazardous materials 165(1-3): 724–728. DOI: 10.1016/j.jhazmat.2008.10.046
- Mesias, M., Delgado-Andrade, C., Holgado, F. and Morales, F. J. 2020. Acrylamide in French fries prepared at primary school canteens. Food & function 11(2): 1489-1497. DOI: 10.1039/c9fo02482d
- Mihalache, O. A., Carbonell-Rozas, L., Cutroneo, S. and Dall'Asta, C. 2023. Multi-mycotoxin determination in plant-based meat alternatives and exposure assessment. Food Research International 168: 112766. DOI: 10.1016/j.foodres.2023.112766

- Moncalvo, A., Marinoni, L., Dordoni, R., Duserm Garrido, G., Lavelli, V. and Spigno, G. 2016. Waste grape skins: evaluation of safety aspects for the production of functional powders and extracts for the food sector. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 33(7): 1116–1126. DOI: 10.1080/19440049.2016.1191320
- Montville, R. and Schaffner, D. W. 2004. Statistical distributions describing microbial quality of surfaces and foods in food service operations. Journal of Food Protection 67(1): 162–167. DOI: 10.4315/0362-028x-67.1.162
- Moreda-Piñeiro, J., Herbello-Hermelo, P., Domínguez-González, R., Bermejo-Barrera, P. and Moreda-Piñeiro, A. 2016. Bioavailability assessment of essential and toxic metals in edible nuts and seeds. Food chemistry 205: 146–154. DOI: 10.1016/j.foodchem.2016.03.006
- Mutengwe, M. T., Chidamba, L. and Korsten, L. 2016. Pesticide residue monitoring on South African fresh produce exported over a 6-year period. Journal of Food Protection 79(10): 1759-1766. DOI: 10.4315/0362-028X.JFP-16-022
- Muys, M., Sui, Y. X., Schwaiger, B., Lesueur, C., Vandenheuvel, D., Vermeir, P. and Vlaeminck, S. E. 2019. High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology 275: 247-257. DOI: 10.1016/j.biortech.2018.12.059
- Nicoletti, R, Petriccione, M., Curci, M. and Scortichini, M. 2022. Hazelnut-Associated Bacteria and their implications in crop management. Horticulture 8(12): 1195. DOI: 10.3390/horticulturae8121195
- Nussbaumer-Streit, B., Sommer, I., Hamel, C., Devane, D., Noel-Storr, A., Puljak, L., Trivella, M., Gartlehner, G., and Cochrane Rapid Reviews Methods Group. 2023. Rapid reviews methods series: Guidance on team considerations, study selection, data extraction and risk of bias assessment. BMJ evidence-based medicine 28(6): 418–423. DOI: 10.1136/bmjebm-2022-112185
- Nyhan, L., Sahin, A. W., Schmitz, H. H., Siegel, J. B., and Arendt, E. K. 2023. Brewers' Spent Grain: an unprecedented opportunity to develop sustainable Plant-Based nutrition ingredients addressing global malnutrition challenges. Journal of Agricultural and Food Chemistry 71(28): 10543–10564. DOI: 10.1021/acs.jafc.3c02489
- Olalla, M., Fernández, J., Cabrera, C., Navarro, M., Giménez, R. and López, M. C. 2004. Nutritional study of copper and zinc in grapes and commercial grape juices from Spain. Journal of agricultural and food chemistry 52(9): 2715–2720. DOI: 10.1021/jf030796w
- Ozay, G., Seyhan, F., Pembeci, C., Saklar, S. and Yilmaz, A. 2008. Factors influencing fungal and

- aflatoxin levels in Turkish hazelnuts (*Corylus avellana* L.) during growth, harvest, drying and storage: a 3-year study. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 25(2): 209–218. DOI: 10.1080/02652030701711016
- Park, J. Y., Choi, J. H., Abd El-Aty, A. M., Kim, B. M., Oh, J. H., Do, J. A., ... and Shim, J. H. 2011. Simultaneous multiresidue analysis of 41 pesticide residues in cooked foodstuff using QuEChERS: Comparison with classical method. Food Chemistry 128(1): 241-253. DOI: 10.1016/j.foodchem.2011.02.065
- Pavicich, M. A., Roose, L., Meerpoel, C., Raes, K. and De Saeger, S. 2024. Unraveling the fate of mycotoxins during the production of legume protein and other derived products. npj Science of Food 8: 59. DOI: 10.1038/s41538-024-00303-9
- Payá, P., Mulero, J., Oliva, J., Cámara, M. A. and Barba, A. 2013. Influence of the matrix in bioavailability of flufenoxuron, lufenuron, pyriproxyfen and fenoxycarb residues in grapes and wine. Food and chemical toxicology 60: 419-423. DOI: 10.1016/j.fct.2013.08.013
- Peraica, M., Flajs, D., Domijan, A. M., Ivić, D. and Cvjetković, B. 2010. Ochratoxin A contamination of food from Croatia. Toxins 2(8): 2098–2105. DOI: 10.3390/toxins2082098
- Perera, D., Savocchia, S., Prenzler, P. D., Thomson, P. C. and Steel, C. C. 2021. Occurrence of fumonisin-producing black aspergilli in Australian wine grapes: effects of temperature and water activity on fumonisin production by A. niger and A. welwitschiae. Mycotoxin research 37(4): 327–339. DOI: 10.1007/s12550-021-00438-8
- Pérez Cid, B., Muinelo Martínez, M., Vázquez Vázquez, F. A. and Río Segade, S. 2019. Content and bioavailability of trace elements and nutrients in grape pomace. Journal of the science of food and agriculture 99(15): 6713–6721. DOI: 10.1002/jsfa.9953
- Pérez-Díaz, I. M., Truong, V. D., Webber, A. and McFeeters, R. F. 2008. Microbial growth and the effects of mild acidification and preservatives in refrigerated sweet potato puree. Journal of Food Protection 71(3): 639–642. DOI: 10.4315/0362-028x-71.3.639
- Platteau, C., De Loose, M., De Meulenaer, B. and Taverniers, I. 2011. Detection of allergenic ingredients using real-time PCR: a case study on hazelnut (*Corylus avellena*) and soy (Glycine max). Journal of agricultural and food chemistry 59(20): 10803-10814. DOI: 10.1021/jf202110f
- Poapolathep, S., Tanhan, P., Piasai, O., Imsilp, K., Hajslova, J., Giorgi, M., Kumagai, S. and Poapolathep, A. 2017. Occurrence and Health Risk of Patulin and Pyrethroids in Fruit Juices Consumed in Bangkok, Thailand. Journal of Food Protection 80(9): 1415–1421. DOI: 10.4315/0362-028X.JFP-17-026
- Ponsone, M. L., Chiotta, M. L., Combina, M., Torres, A.,

- Knass, P., Dalcero, A. and Chulze, S. 2010. Natural occurrence of ochratoxin A in musts, wines and grape vine fruits from grapes harvested in Argentina. Toxins 2(8): 1984–1996. DOI: 10.3390/toxins2081984
- Präger, L., Simon, J. C. and Treudler, R. 2023. Food allergy new risks through vegan diet?

 Overview of new allergen sources and current data on the potential risk of anaphylaxis.

 Journal der Deutschen Dermatologischen Gesellschaft 21(11): 1308–1313. DOI: 10.1111/ddg.15157
- Prasad, S. and Chetty, A. A. 2011. Flow injection assessment of nitrate contents in fresh and cooked fruits and vegetables grown in Fiji. Journal of Food Science 76(8): C1143-C1148. DOI: 10.1111/j.1750-3841.2011.02346.x
- Prelle, A., Spadaro, D., Garibaldi, A. and Gullino, M. L. 2012. Aflatoxin monitoring in Italian hazelnut products by LC- MS. Food additives & contaminants. Part B, Surveillance 5(4): 279–285. DOI: 10.1080/19393210.2012.711371
- Purgatorio, C., Anniballi, F., Scalfaro, C., Serio, A. and Paparella, A. 2024. Occurrence and molecular characterization of *Bacillus* spp. strains isolated from gnocchi ingredients and ambient gnocchi stored at different temperatures. LWT 192: 115703. DOI: 10.1016/j.lwt.2023.115703
- r-Biopharm. 2022. Plant-based food: Mycotoxins in the vegan diet. https://food.r-biopharm.com/news/plant-based-food-mycotoxins-in-the-vegan-diet/ (accessed November 10, 2022).
- Rather, I. A., Koh, W. Y., Paek, W. K. and Lim, J. 2017. The Sources of Chemical Contaminants in Food and Their Health Implications. Frontiers in Pharmacology 8: 830. DOI: 10.3389/fphar.2017.00830
- Rebellato, A. P., Fioravanti, M. I. A., Milani, R. F. and Morgano, M. A. 2023. Inorganic contaminants in plant-based yogurts commercialized in Brazil. International Journal of Environmental Research and Public Health 20(4): 3707. DOI: 10.3390/ijerph20043707
- Rizzo, D. M., Lichtveld, M., Mazet, J. A. K., Togami, E. and Miller, S. A. 2021. Plant health and its effects on food safety and security in a One Health framework: four case studies. One Health Outlook 3: 6. DOI: 10.1186/s42522-021-00038-7
- Rodríguez-Jiménez, B., Domínguez-Ortega, J., Ledesma, A., González-García, J. M. and Kindelan-Recarte, C. 2010. Food allergy to pumpkin seed. Allergologia et immunopathologia 38(1): 50–51. DOI: 10.1016/j.aller.2009.07.001
- Rossin, G., Villalta, D., Martelli, P., Cecconi, D., Polverari, A. and Zoccatelli, G. 2015. Grapevine Downy Mildew Plasmopara viticola Infection Elicits the Expression of Allergenic Pathogenesis-Related Proteins. International archives of allergy and immunology 168(2): 90–95. DOI: 10.1159/000441792

- Rusin, M., Domagalska, J., Rogala, D., Razzaghi, M. and Szymala, I. 2021. Concentration of cadmium and lead in vegetables and fruits. Scientific Reports 11(1): 11913. DOI: 10.1038/s41598-021-91554-z
- Samapundo, S., Everaert, H., Wandutu, J. N., Rajkovic, A., Uyttendaele, M. and Devlieghere, F. 2011. The influence of headspace and dissolved oxygen level on growth and haemolytic BL enterotoxin production of a psychrotolerant Bacillus weihenstephanensis isolate on potato based ready-to-eat food products. Food microbiology 28(2): 298–304. DOI: 10.1016/j.fm.2010.04.013
- Samimi, P., Aslani, R., Molaee-Aghaee, E., Sadighara, P., Shariatifar, N., Khaniki, G. J., Ozcakmak, S. And Reshadat, Z. 2024. Determination and risk assessment of aflatoxin B1 in the kernel of imported raw hazelnuts from Eastern Azerbaijan Province of Iran. Science Reports 14: 6864. DOI: 10.1038/s41598-024-57422-2
- Sampaio, G. R., Guizellini, G. M., da Silva, S. A., de Almeida, A. P., Pinaffi-Langley, A. C. C., Rogero, M. M., de Camargo, A. C. and Torres, E. A. F. S. 2021. Polycyclic Aromatic Hydrocarbons in Foods: Biological Effects, Legislation, Occurrence, Analytical Methods, and Strategies to Reduce Their Formation. International Journal of Molecular Sciences 22(11): 6010. DOI: 10.3390/ijms22116010
- SavFood. 2024. Potato waste and the circular economy.

 https://www.linkedin.com/pulse/potato-waste-circular-economy-savfood?trk=public_post_main-feed-card_reshare_feed-article-content
- Schad, S. G., Trcka, J., Vieths, S., Scheurer, S., Conti, A., Brocker, E. B. and Trautmann, A. 2005. Wine anaphylaxis in a German patient: IgE-mediated allergy against a lipid transfer protein of grapes. International archives of allergy and immunology 136(2): 159–164. DOI: 10.1159/000083324
- Scutaraşu, E. C. And Trincă, L. C. 2023. Heavy Metals in Foods and Beverages: Global Situation, Health Risks and Reduction Methods. Foods 12(18): 3340. DOI: 10.3390/foods12183340
- Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., Srivastava, S. and Nisha, R. 2023. Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods 7: 100215. DOI: 10.1016/j.fufo.2023.100215
- Shi, X., Lin, Q., Deng, P., Feng, T. and Zhang, Y. 2022. Assessment of Heavy Metal Uptake in Potatoes Cultivated in a Typical Karst Landform, Weining County, China. Foods 11(15): 2379. DOI: 10.3390/foods11152379
- Silva, D., Nunes, P., Melo, J. and Quintas, C. 2022.

 Microbial quality of edible seeds commercially available in southern Portugal. AIMS Microbiology 8(1): 42–52. DOI: 10.3934/microbiol.2022004
- Simon, W. J., Hijbeek, R., Frehner, A., Cardinaals, R.,

- Talsma, E. F. and Van Zanten, H. H. E. 2024. Circular food system approaches can support current European protein intake levels while reducing land use and greenhouse gas emissions. Nature Food 5(5): 402–412. DOI: 10.1038/s43016-024-00975-2
- Simsek, A. and Aykut, O. 2007. Evaluation of the microelement profile of Turkish hazelnut (*Corylus avellana* L.) varieties for human nutrition and health. International journal of food sciences and nutrition 58(8): 677–688. DOI: 10.1080/09637480701403202
- Sinrod, A. J. G., Shah, I. M., Surek, E. and Barile, D. 2023. Uncovering the promising role of grape pomace as a modulator of the gut microbiome: An in-depth review. Heliyon 9(10): e20499. DOI: 10.1016/j.heliyon.2023.e20499
- Soares, C., Sousa, S., Machado, S., Vieira, E., Carvalho, A. P., Ramalhosa, M. J., ... and Delerue-Matos, C. 2021. Bioactive lipids of seaweeds from the Portuguese north coast: Health benefits versus potential contamination. Foods 10(6): 1366. DOI: 10.3390/foods10061366
- Solfrizzo, M., Panzarini, G. and Visconti, A. 2008. Determination of ochratoxin A in grapes, dried vine fruits, and winery byproducts by high-performance liquid chromatography with fluorometric detection (HPLC-FLD) and immunoaffinity cleanup. Journal of Agricultural and Food Chemistry 56(23): 11081–11086. DOI: 10.1021/jf802380d
- Spagnuolo, L., Della Posta, S., Fanali, C., Dugo, L. and De Gara, L. 2023. Chemical Composition of Hazelnut Skin Food Waste and Protective Role against Advanced Glycation End-Products (AGEs) Damage in THP-1-Derived Macrophages. Molecules 28(6): 2680. DOI: 10.3390/molecules28062680
- Stančić, Z., Vujević, D., Gomaz, A., Bogdan, S. and Vincek, D. 2016. Detection of heavy metals in common vegetables at Varaždin City Market, Croatia. Archives of Industrial Hygiene and Toxicology 67: 340–350. DOI: 10.1515/ aiht-2016-67-2823
- Su, T., Le, B., Zhang, W., Bak, K. H., Soladoye, P. O., Zhao, Z., Zhao, Y., Fu, Y. and Wu, W. 2024. Technological challenges and future perspectives of plant-based meat analogues: From the viewpoint of proteins. Food Research International 186: 114351. DOI: 10.1016/j.foodres.2024.114351
- Swinscoe, I., Oliver, D. M., Ørnsrud, R. and Quilliam, R. S. 2020. The microbial safety of seaweed as a feed component for black soldier fly (*Hermetia illucens*) larvae. Food microbiology 91: 103535. DOI: 10.1016/j.fm.2020.103535
- Szymczak, B. and Dąbrowski, W. 2015. Effect of Filling Type and Heating Method on Prevalence of *Listeria* species and *Listeria monocytogenes* in Dumplings Produced in Poland. Journal of Food Science 80(5): M1060–M1065. DOI: 10.1111/1750-3841.12816
- Şen, L. and Civil, O. 2022. Presence of aflatoxins in

- hazelnut paste in Turkey and a risk assessment study. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 39(8): 1474–1486. DOI: 10.1080/19440049.2022.2081367
- Tekiner, İ. H., Ay, M. and Mutlu, H. 2020. A Food Safety and Health Issue: Fish and Fish Products Allergens. Aydın Gastronomy 4(1): 1-9.
- Terra, M. F., Prado, G., Pereira, G. E., Ematné, H. J. and Batista, L. R. 2013. Detection of ochratoxin A in tropical wine and grape juice from Brazil. Journal of the science of food and agriculture 93(4): 890–894. DOI: 10.1002/jsfa.5817
- Tosun, H., Yıldız, H., Obuz, E. and Seçkin, A. K. 2014. Ochratoxin A in grape pekmez (grape molasses) consumed in Turkey. Food additives & contaminants. Part B, Surveillance 7(1): 37– 39. DOI: 10.1080/19393210.2013.833298
- Toujgani, H., Brunin, J., Perraud, E., Allès, B., Touvier, M., Lairon, D., Mariotti, F., Pointereau, P., Baudry, J. and Guyot, E. K. 2023. The nature of protein intake as a discriminating factor of diet sustainability: a multi-criteria approach. Scientific Reports 13: 17850. DOI: 10.1038/s41598-023-44872-3
- Tufail, T., Ain, H. B. U., Saeed, F., Nasir, M., Basharat, S., Mahwish, N., Rusu, A. V., Hussain, M., Rocha, J. M., Trif, M. And AAdil, R. M. 2022. A retrospective on the innovative sustainable valorization of cereal bran in the context of circular Bioeconomy Innovations. Sustainability 14(21): 14597. DOI: 10.3390/su142114597
- Usubalieva, A., Batkibekova, M., Hintelmann, H. and Judge, R. 2013. The content of zinc, copper, lead and cadmium in some vegetables of Kyrgyzstan. Pakistan Journal of Food Sciences 23: 189–193.
- Vassilopoulou, E., Zuidmeer, L., Akkerdaas, J., Tassios, I., Rigby, N. R., Mills, E. N., van Ree, R., Saxoni-Papageorgiou, P. and Papadopoulos, N. G. 2007. Severe immediate allergic reactions to grapes: part of a lipid transfer protein-associated clinical syndrome. International archives of allergy and immunology 143(2): 92–102. DOI: 10.1159/000098657
- Varela-Martínez, D. A., González-Curbelo, M. Á., González-Sálamo, J. and Hernández-Borges, J. 2019. Analysis of multiclass pesticides in dried fruits using QuEChERS-gas chromatography tandem mass spectrometry. Food chemistry 297: 124961. DOI: 10.1016/j.foodchem.2019.124961
- Vystavna, Y., Zaichenko, L., Klimenko, N. and Rätsep, R. 2017. Trace metals transfer during vine cultivation and winemaking processes. Journal of the science of food and agriculture 97(13): 4520–4525. DOI: 10.1002/jsfa.8318
- Wali, M. E., Golroudbary, S. R., Kraslawski, A. and Tuomisto, H. L. 2024. Transition to cellular agriculture reduces agriculture land use and greenhouse gas emissions but increases demand for critical materials. Communications Earth & Environment 5: 61. DOI:

- 10.1038/s43247-024-01227-8
- Wang X., Zhang Y., Geng Z., Liu Y., Guo L. and Xiao G. 2019. Spatial analysis of heavy metals in meat products in China during 2015–2017. Food Control 104: 174–180. DOI: 10.1016/j.foodcont.2019.04.033
- Wen, C., Zhang, J., Duan, Y., Zhang, H. and Ma, H. 2019. A Mini-Review on Brewer's Spent Grain Protein: Isolation, Physicochemical Properties, Application of Protein, and Functional Properties of Hydrolysates. Journal of Food Science 84(12): 3330–3340. DOI: 10.1111/1750-3841.14906
- Wigand, P., Tenzer, S., Schild, H. and Decker, H. 2009.
 Analysis of protein composition of red wine in comparison with rosé and white wines by electrophoresis and high-pressure liquid chromatography-mass spectrometry (HPLC-MS). Journal of agricultural and food chemistry 57(10): 4328–4333. DOI: 10.1021/jf8034836
- Xu, L., Luan, F., Liu, H. and Gao, Y. 2015. Dispersive liquid–liquid microextraction combined with non-aqueous capillary electrophoresis for the determination of imazalil, prochloraz and thiabendazole in apples, cherry tomatoes and grape juice. Journal of the Science of Food and Agriculture 95(4): 745-751. DOI: 10.1002/jsfa.6834
- Xu, X., Miao, Y., Wang, H., Du, J., Wang, C., Shi, X. and Wang, B. 2022. Analysis of Microbial Community Diversity on the Epidermis of Wine Grapes in Manasi's Vineyard, Xinjiang. Foods 11(20): 3174. DOI: 10.3390/foods11203174
- Yang, Y., Shen, H., Liu, T., Wen, Y., Wang, F. and Guo, Y. 2021. Mitigation effects of phlorizin immersion on acrylamide formation in fried potato strips. Journal of the Science of Food and Agriculture 101(3): 937-946. DOI: 10.1002/jsfa.10701
- Yang, M., Luo, F., Zhang, X., Zhou, L., Lou, Z., Zhao, M. and Chen, Z. 2019. Dissipation and risk assessment of multiresidual fungicides in grapes under field conditions. Journal of agricultural and food chemistry 68(4): 1071-1078. DOI: 10.1021/acs.jafc.9b06064
- Ye, Y., Dong, W., Luo, Y., Fan, T., Xiong, X., Sun, L. and Hu, X. 2020. Cultivar diversity and organ differences of cadmium accumulation in potato (*Solanum tuberosum* L.) allow the potential for Cd-safe staple food production on contaminated soils. The Science of the total environment 711: 134534. DOI: 10.1016/j.scitotenv.2019.134534

- Yusefi, J., Valaee, M., Nazari, F., Maleki, J., Mottaghianpour, E., Khosrokhavar, R. and Hosseini, M. J. 2018. Occurrence of Ochratoxin A in Grape Juice of Iran. Iranian journal of pharmaceutical research 17(1): 140–146. Zelinkova, Z., and Wenzl, T. 2015. EU marker polycyclic aromatic hydrocarbons in food supplements: analytical approach and occurrence. Food additives & contaminants. Part A, Chemistry, analysis, control, exposure & risk assessment 32(11): 1914–1926. DOI: 10.1080/19440049.2015.1087059
- Zhang, X., Li, J., Zong, N., Zhou, Z. and Ma, L. 2014.
 Ochratoxin A in dried vine fruits from Chinese markets. Food additives & contaminants. Part B, Surveillance 7(3): 157–161. DOI: 10.1080/19393210.2013.867365
- Zhang, B., Chen, X., Han, S. Y., Li, M., Ma, T. Z., Sheng, W. J. and Zhu, X. 2018. Simultaneous Analysis of 20 Mycotoxins in Grapes and Wines from Hexi Corridor Region (China): Based on a QuEChERS-UHPLC-MS/MS Method. Molecules 23(8): 1926. DOI: 10.3390/molecules23081926
- Zhang, G., Hu, L., Luo, Y., Santillana Farakos, S. M., Johnson, R., Scott, V. N., Curry, P., Melka, D., Brown, E. W., Strain, E., Bunning, V. K., Musser, S. M. and Hammack, T. S. 2021. Survey of Salmonella in raw tree nuts at retail in the United States. Journal of Food Science 86(2): 495–504. DOI: 10.1111/1750-3841.15569
- Zhang, J., Meng, Z., Cheng, Q., Li, Q., Zhang, Y., Liu, L., Shi, A. and Wang, Q. 2022. Plant-based meat substitutes by high-moisture extrusion: Visualizing the whole process in data systematically from raw material to the products. Journal of Integrative Agriculture 21(8): 2435–2444. DOI: 10.1016/s2095-3119(21)63892-3
- Zhang, L., Liao, W., Huang, Y., Wen, Y., Chu, Y. and Zhao, C. 2022. Global seaweed farming and processing in the past 20 years. Food Production, Processing and Nutrition 4: 23. DOI: 10.1186/s43014-022-00103-2
- Zhao, J., Wang, X., Lin, H. and Lin, Z. 2023. Hazelnut and its byproducts: A comprehensive review of nutrition, phytochemical profile, extraction, bioactivities and applications. Food Chemistry 413: 135576. DOI: 10.1016/j.foodchem.2023.135576