Direct Instruction vs. Computer Simulation and their Learning Outcome in Engineering Education

Andreas zendler, Manuel Gohl


DOI: https://doi.org/10.14710/ijee.1.2.91-98

Abstract


Answers to the questions of which instructional methods are suitable for school, what instructional methods should be applied in teaching individual subjects and how instructional methods support the act of learning represent challenges to general education and education in individual subjects. This study focuses on the empirical examination of learning outcome in engineering educationwith respect to two instructional methods: direct instruction and computer simulation. A CRF 2x2 design is used to control instructional method and class context. Learning outcome on bridge construction is assessed with reference to the optics of bridge and the material usage for the bridge. The empirical findings show that learning with direct instruction was superior to computer simulation.

 


Keywords


Engineering education, instructional methods, direct instruction, computer simulation, experimental study, learning outcome

Full Text:

FULL TEXT PDF

References


Abell, S. K., & Lederman, N. G. (2007). Handbook of research on science education. New York: Lawrence Erlbaum.

Author (2018).

Borrego, M., Newswander, C.B., McNair, L.D., McGinn, S., & Paretti, M. C. (2009). Using concept maps to assess I intregration to green engineering knowledge. Advances in Engineering Education, 2(3), 1–26.

Bruckmann, W. (2011). Grundwissen Technikunterricht. Mühlheim an der Ruhr: Verlag an der Ruhr.

Brunner, E., & Munzel, U. (2013). Nichtparametrische Datenanalyse (2. Auflage). Berlin: Springer.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. London: Sage.

Davis, Gross B. (2009). Tools for teaching. San Francisco: Jossey-Bass.

DeMonbrun, M., Finelli, C. J., Prince, M., Borrego, M., Shekar, P., Henderson, C., & Waters, C. (2017). Creating an instrument to measure student response to instructional practices. Journal of Engineering Education, 106(2), 273–298.

Dijk, L. A. van, Berg, G. van, & Keulen, H. van (2001). Interactive lectures in engineering education. European Journal of Engineering Education, 26(1), 15–28.

Durán, M. J., Gallardo, S., Toral, S. L., Martínez-Torres, R., & Barrero, F. J. (2007). A learning methodology using Matlab/Simulink for undergraduate electrical engineering courses attending to learn¬er satisfaction outcomes. International Journal of Technology and Design Education, 17, 55–73.

Fies, H. (1998). Simulationsprogramme für den Technikunterricht. Zeitschrift für Technik im Unter-richt, 23, 36–44.

Fischer, T. A., & Tarver, S. G. (1997). Meta-analysis of studies of mathematics curricula designed around big ideas. Effective School Practices, 16, 71–79.

Ginnis, P. (2001). The teacher's toolkit. Classroom achievement. Carmarthen: Crown House Publishing.

Goldstein, H. (2010). Multilevel statistical models. New York: Wiley.

Gugel, G. (2011). 2000 Methoden für Schule und Lehrerbildung. Weinheim: Beltz.

Hattie, J. (2009). Visible learning. New York: Routledge.

HeadUp Games (2018). Produktbeschreibung. Retrieved July 28, 2018 from https://www.head upgames.com/game/bridge-constructor/

Heescher, H., & Danninger, T. (1995). Verkehrsdichteabhängige Ampelsteuerungen – Funktionsmo-dell und Computersimulation als Beitrag zur informatischen Grundbildung. LOG IN, 1, 83–88.

Helling, K. (2006). Umwelt Technik (Band 1). Stuttgart: Klett.

Helling, K. (2008). Umwelt Technik (Band 2). Stuttgart: Klett.

Helling, K. Happel, J., & Heffner, M. (2008). Umwelt Technik – kompakt. Stuttgart: Klett.

Helling, K., Happel, J., & Heffner, M. (2011). Umwelt Technik (Themenheft Bautechnik: Klasse 7 bis 10). Stuttgart: Klett.

Honebein, P. C., & Honebein, C. H. (2015). Effectiveness, efficiency, and appeal: pick any two? The influence of learning domains and learning outcomes on designer judgments of useful instructional methods. Educational Technology Research and Development, 63, 937–955.

Huber, S. G., & Hader-Popp, S. (2007). Unterrichtsentwicklung durch Methodenvielfalt im Unterricht fördern: das Methodenatelier als schulinterne Fortbildung. In A. Bartz, J. Fabian, S. G. Huber, C. Kloft, H. Rosenbusch, & H. Sassenscheidt (Eds.), PraxisWissen Schulleitung (30.31). München: Wolters Kluwer.

Hümbs, W., & Maas, L. (2001). Heizkostenabrechnung mit DELPHI – Vertrauen ist gut – Kontrolle ist besser: Schüler studieren die Grundlagen der Heizkosten und erstellen eine Abrechnung in DELPHI 3.0. LOG ON, 2, 41–44.

Hüttner, A. (2002). Technik unterrichten. Haan-Gruiten: Europa-Lehrmittel.

Kirk, R. E. (2012). Experimental design (4th edition). Pacific Grove, CA: Brooks/Cole Publishing Com-pany.

KMK (2018). Bildungspläne 2016. Bautechnik. Retrieved July 28, 2018 from https://www.head upgames.com/game/bridge-constructor/

Kusionowicz, T. (2016). The use of models in teaching General Building Engineering to architects. Global Journal of Engineering Education, 18(3), 196–201.

LeJeune, J. V. (2002). A meta-analysis of outcomes from the use of computer-simulated experiments in science education. Dissertation, Texas A&M University.

NASEM (2018). National Academies of Sciences, Enginnering and Medicine. A Framework for K-12 Science Education. https://www.nap.edu/read/13165/chapter/7#48

NCSS (2018). PASS 15. Retrieved January 2, 2018 from http://www.ncss.com

Neter, J., Kutner, M., Nachtsheim, C., & Wasserman, W. (1996). Applied linear statistical models. Chi¬cago: Irwin.

Park, J., Kim, D.-E., & Sohn, M. (2011). 3D simulation technology as an effective instructional tool for enhancing spatial visualization skills in apparel design. International Journal of Technology and Design Education, 21, 505–517.

Petrina, S. (2007). Advanced teaching methods for the technology classroom. London: Information Science Publishing.

Petty, G. (2009). Teaching today: a practical guide. Cheltenham: Nelson Thornes.

Prince, M. J., & Felder, R.M. (2006). Inductive teaching and learning methods: Definitions, comparison, amd esearch bases. Jourmal of Engineering Education, 95(2), 123–138.

Rais, M., Aryani, F., & Ahmar, A. S. (2018). The influence of the inquiry learning model and learning style on the drawing technique of students. Global Journal of Engineering Education, 18(3), 29–33.

Sarker, P. K. (2015). Use of concept maps for problem-solving in engineering. Global Journal of Engineering Education, 18(3), 29–33.

SolidWorks Lehr-Edition (2018). SolidWorks 3D CAD und Simulation macht Technik lebendig und Phy¬sik verständlich. Retrieved January 28, 2018 from http://www.schule-trifft-technik.de/pdf/SolidWorks_Informationsblatt%20fuer%20allgemeinbildende%20Schulen.pdf

The Center for Teaching and Learning (2018). 150 teaching methods. Retrieved January 2, 2018 from http://teaching.uncc.edu/learning-resources/articles-books/best-practice/instructional-methods/150-teaching-methods

VanSickle, R. L. (1986). A quantitative review of research on instructional simulation gaming: A twenty year perspective. Theory and Research in Social Education, 14(3), 245–264.

Wiechmann, J., & Wildhirt, S. (Eds.) (2015). Zwölf Unterrichtsmethoden. Weinheim: Basel.





Published by Faculty of Engineering in collaboration with Vocational School, Diponegoro University - Indonesia.