
Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

46
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

Novel Code Plagiarism Detection Based on Abstract Syntax
Tree and Fuzzy Petri Nets

Yu-Ying Wang1, Rong-Kuan Shen2, Gwo-Jen Chiou3, Cheng-Ying Yang4, Victor R.L. Shen5, Farica Perdana Putri5

1Department of Applied Foreign Languages, Jinwen University of Science and Technology, Taiwan
2Department of Japanese Language and Literature, Shih Hsin University, Taiwan

3Department of Electrical Engineering, National Formosa University, Taiwan
4Department of Computer Science, University of Taipei, Taiwan

5Department of Computer Science and Information Engineering, National Taipei University, Taiwan

Email: rlshen@mail.ntpu.edu.tw

ABSTRACT - Those students who major in computer science and/or engineering are required to design program codes in a variety of
programming languages. However, many students submit their source codes they get from the Internet or friends with no or few
modifications. Detecting the code plagiarisms done bystudents is very time-consuming and leadsto the problems of unfair learning
performance evaluation. This paper proposes a novel method to detect the source code plagiarisms by using a high-level fuzzy Petri net
(HLFPN) based on abstract syntax tree (AST). First, the AST of each source code is generated after the lexical and syntactic analyses
have been done. Second, token sequence is generated based on the AST. Using the AST can effectively detect the code plagiarism by
changing the identifier or program statement order.Finally, the generated token sequences are compared with one another using an
HLFPN to determine the code plagiarism. Furthermore, the experimental results have indicated that we can make better determination
to detect the code plagiarism.

Keywords: Computer Science Education, Source Code Plagiarism, Lexical Analysis, Syntactic Analysis, Abstract Syntax Tree, Petri Net.
Submission: May 29, 2018 Correction: July 29, 2018 Accepted: Februari 27, 2019

Doi: http://dx.doi.org/10.12777/ijee.1.1.46-56
[How to cite this article: Wang, Y. Y., Shen, R. K., Chiou, G. J., Yang, C. Y., Shen, V. R. L., Putri, F. P. (2019), Novel Code Plagiarism Detection Based on

Abstract Syntax Tree and Fuzzy Petri Nets. International Journal of Engineering Education, 1(1), 46-56. doi:
http://dx.doi.org/10.12777/ijee.1.1.46-56]

I. INTRODUCTION

Developing a program is required to be done by
those students who major in computer science and/or
engineering in colleges. They are required to design
program codes in a variety of programming languages.
Therefore, the teachers provide plenty of coding
assignments. Some of them could be done in the
classroom or at home. Such coding assignments are very
helpful to learn programming languages and to acquire
programming skills. With the rapid development of open
source code, many documents and source codes are
available on the Internet and easy to access [1]. Thus,
when the coding assignments are collected and examined,
many of these tasks could have the same or similar source
codes.

Students submit the source code they get from the
Internet or friends with no or little modification.
Plagiarism has been defined as someone handing in a
report or document as his/her own original work which
was, in fact, written or created by someone else [2].
Detecting code plagiarisms done by the students is very

time-consuming for the teachers, who actually need to
take their time to prepare other teaching materials or
assignments. Therefore, for the purpose of faster finding
code plagiarisms, researchers have proposed some
methods or tools to detect the code plagiarisms.

Furthermore, the source code plagiarism often deals
with the uncertainty in code similarity. It is because each
student has designed his/her own algorithm with
different complexities, performances, etc., but he/she
solves the same problem. It should handle the vagueness
in which students express their solutions. This paper
proposes a novel method of detecting the source code
plagiarism by using a high-level fuzzy Petri net (HLFPN)
based on abstract syntax tree (AST), which is not
influenced by changing the identifier or program
statement order.

The HLFPN was adopted to deal with the uncertainty
or vagueness in code plagiarism detection. First, the
abstract syntax tree of each source code is generated after
the lexical and syntax analyses have been done. Second,
the token sequence is generated based on an AST. Finally,

http://issn.pdii.lipi.go.id/data/1457578073.png
mailto:rlshen@mail.ntpu.edu.tw
http://dx.doi.org/10.12777/ijee.1.1.46-56
http://ejournal2.undip.ac.id/index.php/ijee/index
http://dx.doi.org/10.12777/ijee.1.1.46-56

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

47
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

the generated token sequences are compared with one
another using a high-level fuzzy Petri net to determine the
code plagiarism.

In Section 2, we provide a literature review on the
plagiarism in computer science, source code plagiarism
detection techniques, abstract syntax tree, sequence
alignment, and a high-level fuzzy Petri net. In Section 3,
the framework of the proposed AST and HLFPN-based
code plagiarism detection system is described. The
experimental results and analyses are presented in
Section 4. Finally, the conclusion and future work are
summarized in Section 5.

II. LITERATURE REVIEW

In this section, we first describe the plagiarism in
computer science, the development of source code
plagiarism detection techniques, the abstract syntax tree,
and the sequence alignment. Then, we describe some
basic definitions regarding a high-level fuzzy Petri net and
a fuzzy reasoning algorithm to determine the decision
output.

Plagiarism in Computer Science

The problem of students plagiarizing is ongoing in
educational institutions and is not confined to the
submission of essays and other text-based assignments. It
is also an issue within the computing disciplines, where
students must write the program code that is assessed for
correctness and quality [8].

Jones [9] described a definition of plagiarism
detection in computer science, characterizing it as a
problem of pattern analysis, based on plagiarizing
transformations which have been applied to a source file.
Such transformations are presented as follows [9]:

1. verbatim copying,
2. changing comments,
3. changing white space and formatting,
4. renaming identifier,
5. reordering code blocks,
6. reordering statements within code blocks,
6. changing the order of operands/operators in

expressions,
7. changing data types,
8. adding redundant statements or variables,
9. replacing control structures with equivalent

structures.
Kikuchi, et. al. [2] defined the source code plagiarism

as someone handing in a report or documentation as
his/her own original work which was, in fact, written or
created by someone else. Students copy other work and
then make no or few modifications.

Source Code Plagiarism Detection Approaches

According to Zhao, et.al. [10], in the early times of
the concepts of plagiarism, the maindetecting technology
of a copy was based on the file. This method is very
simple and determines whether the two files are similar
by comparing the calculated values of the files [10]. But, it
can just detect the code plagiarism without
transformation or modification. Roy and Cordy [11]
classified six different detection techniques as follows:

Text-based Approach
This approach treats the source code as a pure text.

The target source program is considered as a sequence of
lines or strings. Two code fragments are compared with
each other to find the sequences of same text/strings. If
all strings are the same, we consider the two source codes
which are homologous.

There are several problems that can arise in a line-
by-line detection technique, presented as follows:

1. Line break: code portions with line break
relocation are not detected as clones or detected as
shorter clones.

2. Identifier changes: changes of identifier names
may not be handled in line-by-line technique as it
compares the similarity of texts/strings.

3. Parenthesis removal or addition for a single
statement: For instance, if…else… statement or for
statements can be written with or without begin-end
brackets (“{“ and “}”). In the line-by-line technique, the
presence of “{“ and “}” pair in one code segment but not in
the other one may be detected as a distinct fragment.
Therefore, it is obvious that different kinds of coding style
can create problems in the line-by-line technique.

4. Transformations: any source code
transformation is not suitable in the line-based approach.

Token-based Approach
In the token-based approach, the entire source code

is lexed/parsed/transformed into a sequence of tokens.
Each word in the source code is treated as a token. This
sequence is then examined to find the duplicated
subsequences of tokens. This technique is more robust
against code changes such as formatting and spacing
compared to the text-based approach.

The leading tool of this approach is CCFinder [14].
Kamiya used the lexical rules to convert each word in the
source code into a token which can eliminate the impact
of changes of variable and function names. He also
removed the white spaces between tokens during lexical
analysis, and used it later to reconstruct the original
source code. Other detecting tools, such as CP-Miner,
JPlag, and Winnowing are all token-based ones [15]-[17].
However, all the tools cannot detect the modification of
renaming, reordering, and inserting null strings [10].

Tree-based Approach
The tree-based approach uses an abstract syntax

tree (AST) created by parsing the source code, and then
compares with one another by using the tree structure.
The AST-based approach disregards the information
about identifiers (in order to make codes differing on
variable names which appear the same on ASTs), and
ignoresthe data flows.So,it becomes fragile to statement
reordering [11]. This approach is more durable against
any modification made by a plagiarist than the previous
approaches. Therefore, some algorithms have been
proposed in [2],[10],[18-21].

Feng, et. al. [20] proposed an algorithm to detect the
code plagiarism based on the AST. The algorithm can
detect the plagiaristic cases by comparing the hash value
of the node to detect the plagiarism between two source

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

48
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

code files [20]. Their algorithm can effectively detect the
following plagiarism cases: changing the variable name,
reordering a sequence of expression evaluation, changing
some parts of the code statements, and so on.

PDG-based Approach
The Program Dependency Graph (PDG)-based

approach contains the control flow and data flow
information of a program and hence carries semantic
information. Once a set of PDGs are obtained from a
subject program, the isomorphic subgraph matching
algorithm is applied for finding the similar subgraphs
which are returned as clones [11].

As Bellon, et. al. [22] stated, the advantage of PDG-
based detection is that it can detect non-contiguous code
clones, whereas other detection techniques are less
effective in detecting them. A non-contiguous code clone
is the one having elements that are not consecutively
located on the source code [23]. It has been reported that,
after copying and pasting a code fragment, the pasted
code is sometimes incorrectly changed or forgotten to be
changed [24]. On the other hand, the PDG-based code
clone detection also has some disadvantages. For
example, the ability to detect contiguous code clones is
inferior to other techniques,and the application of PDG-
based detection to practical software systems is not
feasible because to do so is time consuming [25]-[26].

Metrics-based Approach
These approaches gather different metrics for code

fragments and compare these metrics vectors instead of
comparing code fragments directly. There are several
detection techniques that use various software metrics
for detecting similar code fragments. First, a set of
software metrics called fingerprinting functions are
calculated for one or more syntactic units such as a class,
a function, a method, or even a statement.Then the metric
values are compared with one another to find the clones
over these syntactic units.

Mayrand, et. al. [27] proposed the code clone
identification based on metrics extracted from the source
code using the tool, DatirxTM. This technique uses 21
function metrics grouped into four points of comparison:
name, layout, expressions, and control flow. After the
metrics are obtained, they defined eight strategies in
identifying clones. They have found that the technique is
useful in improving the maintainability of a software
system by managing and removing the source code
function clones. However, the computational cost is
polynomial and the main cost in conducting the
experiments is the software measurement. Thus, they
have to optimize and enhance the technique in order to
apply it to a very large scale system.

Hybrid Approach
Hybrid approaches are the combination of several

previous approaches. For instance, from Koschke et. al.
[18], the AST nodes are serialized in preorder traversal, a
suffix tree is created for these serialized AST nodes, and
the resulting maximally long AST node sequences are
then cut out according to their syntactic regions. Thus,

only syntactically closed sequences are still remained.
Instead of comparing the AST nodes,their approach
compares the tokens of the AST-nodes using a suffix tree-
based algorithm.Therefore, this approach can find clones
in linear time and space, which is a significant
improvement to the usual AST-based approaches.

Another research work was presented by Jiang et.
al.[28]. Certain characteristic vectors are computed to
approximatethe structural information within the ASTs in
Euclidean space. A Locality Sensitive Hashing (LSH) [29]
is then used to cluster similar vectors w.r.t. Euclidean
distance metrics and thus the code clones are formed.

Abstract Syntax Tree

In computer science, an abstract syntax tree (AST),
or just syntax tree is a tree representation of the abstract
syntactic structure of source code written in a
programming language. Abstract syntax trees (ASTs) are
created by parsing the source code, and then compared
with each other by using the tree structure. ASTs are data
structures widely used in compilers, due to their property
of representing the structure of program code. An AST is
usually the result of the syntax analysis phase of a
compiler. The AST is used intensively during semantic
analysis, where the compiler checks correct usage of the
elements in a program and the language.

The AST captures the essential structure of the input
data in a tree form, while omitting unnecessary syntactic
details [30]. ASTs can be distinguished from the concrete
syntactic trees by their omission of tree nodes to
represent punctuation marks such as semi-colons to
terminate statements or commas to separate function
arguments. Tree nodes that represent unary productions
in the grammar are omitted by ASTs. ASTs are generated
along parsing by bottom-up approach.

When designing the nodes of a tree, a common
design choice is made to determine the granularity of
ASTs. That is, whether all constructs of the source
language are represented as a different type of AST nodes,
or whether some constructs of the source language are
represented with a common type of AST nodesis all
differentiated using a value [30].

Sequence Alignment

Sequence alignment is a method to calculate a
corresponding relationship among strings by adding a
space or shifting the alphabetic positions [2]. Sequence
alignment was applied for the first time in bioinformatics.
In bioinformatics, a sequence alignment is a way of
arranging the sequences of DNA, RNS, or protein to
identify regions of similarity that may be a consequence
of functional, structural, or evolutionary relationships
between the sequences [31].

The distinguished algorithm of sequence alignment
is Needleman-Wunsch algorithm [32]. Needleman-
Wunsch algorithm is the one used in bioinformatics to
align protein or nucleotide sequences. The algorithm was
found by Saul B. Needleman and Christian D. Wunsch in
1969. The Needleman-Wunsch algorithm is an efficient
one based on dynamic programming.

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

49
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

High-Level Fuzzy Petri Net
Petri net theory has been proposed by Dr. Carl Petri

in 1962 as his dissertation, “Kommunikation mit
Automaten,” [Communication with Automata]. Petri
formulated the basis for a theory of communication
between asynchronous components of a computer
system. Petri nets are a graphical and mathematical
modeling tool, which is concurrent, asynchronous,
distributed, parallel, nondeterministic, and
stochastic.They can be used to model and analyze various
systems [34].

Therefore, scholars or researchers one after another
conduct their researches with extended Petri net theory,
such as colored Petri net [35], timed Petri net [36], fuzzy
Petri net [37], high-level fuzzy Petri net [38]-[43], and so
on. This paper adopts HLFPN to make a decision on the
code plagiarism.

Definitions
The basic definitions and fuzzy reasoning approach

are presented as follows:

 Definition 1: The HLFPN is defined as an eight-tuple
HLFPN = (P, T, F, C, V, α, β, δ), where

P = {p1 , p2, p3, …, pk} A finite set of places.
T = {t1 , t2, t3, …, tl} A finite set of transitions. P

T ≠ ∅

F


(PT) (TP)
Called the flow relation and is
also a finite set of arcs, each
representing the fuzzy set (i.e.
fuzzy term) for an antecedent or
a consequent; where the
positive arcs (i.e. THEN parts)

are denoted by


.
C = {X, Y, Z} A finite set of linguistic

variables, e.g. X, Y, and Z, where
X = {x1, x2 x3…, xn}, Y = {y1, y2 y3…,
ym}, and Z = {z1, z2 z3…, zq}.

V = {v1, v2 v3…, v4} A finite set of fuzzy truth values
known as the fuzzy relational
matrix between the antecedent
and the consequent of a rule.

α : P →C An association function,
mapping from places to
linguistic variables. α(pi) = ci, i =
1, …, I, where C = {ci}is a set of
linguistic variables in the

knowledge base (KB), and I is
the number of linguistic
variables in the KB.

β : F → [0, 1] An association function,
mapping from the flow relations
to the fuzzy truth values
between zero and one.

δ : T →V
An association function,
mapping from transitions to
fuzzy relational matrices.

 Definition 2 (Input and Output Functions):
I(t) = {p P | (p,t)F} A set of the input places of

transition t .
I(p) = {t T | (t,p)F} A set of the input transitions of

place
p

.
O(t) = {p P | (t,p)F} A set of the output places of

transition t .
O(p) = {t T | (p,t)F} A set of the output transitions of

place
p

.

 Definition 3 (Negation):

In the IF-THEN-ELSE rule, the ELSE part is denoted
by a negation arc →, and the fuzzy set in the antecedent
(i.e., IF part) must be complemented and denoted by  ,
i.e. the negated fuzzy set = 1-the fuzzy set in the
antecedent.

 Definition 4 (Membership Function):

Mem(p): P→[0,1], which assigns to each place a real
value Mem(p) = DOM(α(p)), where DOM represents the
degree of membership in the associated proposition, and
data tokens are available in P.

 Definition 5 (Max-Min Compositional Rule):

In HLFPN, transition t, V(t)= min(fuzzy sets in

I(t)); and  place p, V(p) = max(fuzzy sets in I(p)). This
rule is denoted by .

 Definition 6 (Input Place, Hidden Place, and

Output Place):

In HLFPN,  place piP, if  tjT, pi
O(tj), then pi

is called input place (IP); if  tjT, pi
I(tj), then pi is

called output place (OP); else, pi is called hidden place.

Fuzzy Reasoning
In the fuzzy reasoning method presented in [43],

fuzzy production rules are used. Mamdani’s fuzzy
implication rule type [44] is applied throughout this
paper. In general, a fuzzy production rule describes fuzzy
relationship between the antecedent and the consequent.
Let R be a set of fuzzy production rules, where R = {R1, R2,
..., Rn}. The general form of the ith fuzzy production rule
Riis shown as follows:

Ri: IF dj(X is A), THEN dk(Y is B); ELSE, dw(Z is C)…(V).
where “X is A”, “Y is B” and “Z is C” are propositions;

X is called the input linguistic variable; Y and Z are called
the output linguistic variables, respectively; A is called the
input fuzzy set; B and C are called the output fuzzy sets,
respectively; the fuzzy truth values of the propositions “X
is A”, “Y is B” and “Z is C” are restricted to [0, 1]; “X is A” is
the antecedent of fuzzy production rule Ri, “Y is B” and “Z
is C” are the consequents of fuzzy production rule Ri. Let V
represent the fuzzy relational matrix between the
antecedent and the consequent of a fuzzy production rule.

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

50
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

Example 1:
Let us consider the fuzzy production rule R1 shown

as follows:

1R
: IF it (1X

) is hot (1A
) AND the sky (2X

) is

cloudy (2A
), THEN the humidity (Y) is high (B).

Based on the transformation procedure presented in
[41], we can transform the above fuzzy production rule R1
into the following first-order logic form:

'

1R
: IF 1X

(1A
) AND 2X

(2A
), THEN Y (B).

Then, the HLFPN model is shown in Figure 1.

Fig 1: HLFPN for Example 1

Assume that the fuzzy sets A1, A2 and B are shown as

follows:

A1=
0.24

a11
+

0.55

a12
+

0.25

a13

A2=
0.13

a21
+

0.78

a22
+

0.42

a23

B=
0.30

b1
+

0.72

b2
+

0.21

b3

By the cylindrical extension operations [45], we can
obtain the antecedent fuzzy set A, shown as follows:
A=A1×A2=(0.24 0.55 0.25)T⋀(0.13 0.78 0.42)

 = |
0.13 0.24 0.24
0.13 0.55 0.42
0.13 0.25 0.25

|

Then, the fuzzy relational matrices V1(t1), V2(t2) and
V3(t3) between the antecedent and consequent of fuzzy
production rule R1 can be obtained, shown as follows:

V1(t1)= |
0.13 0.24 0.24
0.13 0.30 0.30
0.13 0.25 0.25

| ∈ A × B × b1

V2(t2)= |
0.13 0.24 0.24
0.13 0.55 0.42
0.13 0.25 0.25

| ∈ A × B × b2

V3(t3)= |
0.13 0.21 0.21
0.13 0.21 0.21
0.13 0.21 0.21

| ∈ A × B × b3

The most widely used fuzzy reasoning method is the
max–min composition inference [46]. Assume that the

input fuzzy sets 1A and 2A are shown as follows:

A'1=
0.10

a11
+

0.82

a12
+

0.33

a13

A'2=
0.28

a21
+

0.87

a22
+

0.49

a23

Then, we can get
A'1∘V1(t1)=(0.10 0.82 0.33)∘V1(t1)=(0.13 0.30 0.30)
A'1∘V2(t1)=(0.10 0.82 0.33)∘ V2(t1)=(0.13 0.55 0.42)
A'1∘V3(t1)=(0.10 0.82 0.33)∘V3(t1)=(0.13 0.21 0.21)

Finally, we can obtain

B'=(0.28 0.87 0.49)∘ |
0.13 0.13 0.13
0.30 0.55 0.21
0.30 0.42 0.21

|

=(0.30 0.55 0.21)

=
0.30

b1
+

0.55

b2
+

0.21

b3

The above description is the fuzzy reasoning process
of HLFPN.

Fuzzy Reasoning Algorithm
In this sub-section, we briefly review the fuzzy

reasoning algorithm (FRA) [37] to determine whether
there exists or not a fuzzy relational matrix between the
antecedent and the consequent of a fuzzy production rule.

INPUT: Mem(p),  piIP, where IP denotes a set of
input places.

OUTPUT: Mem(p),  piOP, where OP denotes a set
of output places.

PROCEDURE:
Step 1: Initially, assume that only the DOMs in the

propositions operating on input variables are
available. Consequently, the initial marking
function is shown as follows:

M(pi) = 0, if pi
 IP

M(pi) = the number of data tokens, if piIP
Step 2:  tjT, compute

V(tj) = WaWc = (1a
w

, 2aw
,…, maw

)T (1c
w

,

2cw
,…, ncw

), where T denotes a set of
transitions; V(tj) is a fuzzy relational matrix
between the antecedent and the consequent of

rule tj; Wa = { 1a
w

, 2aw
,…, maw

} is a fuzzy set for

the antecedent; Wc = { 1c
w

, 2cw
,…, ncw

} is a fuzzy
set for the consequent; and each element of a
fuzzy set is denoted by a fuzzy interval.

Step 3: Input a data pattern Wa-input.
Step 4:

Fire the enabled transitions. Let jt
be any

enabled transition. Then, compute:

tjT /  pk I(tj), M(pk) = the number of data
tokens.
W’a = Wa-input
W’c = W’a V(tj) or  W’a V(tj),
if an ELSE part is available.

Step 5: For every output variableO , its associated

membership distribution is W’c = {

'

icw
}=

'

icw
,

i = 1, 2, …, I, where I is the in-degree of output
variable O. Then, W’c becomes an actual output.

Step 6:
Go back to Step 4, while

/ () 1j it T M p  
,

()i jp I t 
, that is, while the enabled

transitions still exist.
Step 7: The weighted average defuzzification method is

applied and the real operating value is obtained.

III. THE PROPOSED SYSTEM

The code plagiarism detection system based on AST
and HLFPN is divided into three stages: AST generation,

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

51
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

sequence alignment, and detection of code plagiarism
using HLFPN. As shown in Fig. 2, we input the source code
programs to the lexical analysis. Lexical analyzer deals
with the large-scale constructs, such as expressions,
statements, and program units [47]. A lexical analyzer is
essentially a pattern matcher which attempts to find a
substring in the given string of characters that matches a
given character pattern. The lexical analysis process
includes skipping comments and white space, inserts
lexemes for user-defined names, and detects syntactic
errors in tokens.

After lexical analysis, syntax analysis or parsing is
used to construct parse trees for the given source codes.
There are two distinct goals of syntax analysis [47]: First,
the syntax analyzer must check the input source code to
determine whether it is syntactically correct. The second
goal is to produce a complete parse tree, or at least trace
the structure of the complete parse tree, for syntactically
correct input datasets.

The generated ASTs are compared with one another
through the sequence alignment. The sequence alignment
extracts the similarity features which become the input
datasets to HLFPN and the decision output is obtained.

Fig 2: Flowchart of code plagiarism detection based
on AST and HLFPN

Abstract Syntax Tree Generation

This paper uses an AST as the similarity detection
model. ASTs can provide more accurate and
comprehensive information for code plagiarism detection
in terms of changing the identifier or program statement
order. ANTLR (Another Tool for Language Recognition) is
used to generate the syntax tree. There are two main sub-
processes which are used by ANTLR to generate an AST.
First, ANTLR uses a grammar file to generate the lexical
and syntax analyzer. Second, the input source code is
converted to an AST by using the generated lexical
analyzer.The input of a parser is the phrase flow, so the
AST is obtained by the parser. This process is shown in
Fig. 3. For instance, the AST converted from the source
code program main.c, as shown in Fig. 4, is shown in Fig.

5. The output results are the inverse of Poland expression
from the source codes.

Fig 3: Flowchart of ANTLR analysis

Fig 4: Source code of main.c

Sequence Alignment

Sequence alignment is a method to calculate a
corresponding relationship among strings by adding a
space or shifting the alphabetic positions. In the proposed
method, we first obtain the token sequence from the
generated AST and obtain the similarity features using
the concept of Needleman-Wunsch algorithm. It has a
good effect on looking for the optimal matching. This
algorithm is computed by using dynamic programming.
Fig. 6 shows the token sequence of AST generated from
Fig. 5. In our experiment, we use a scoring system for
better performance as follows:

 Match score : +2
 Mismatch score : -1
 Indel score : -1

Fig 5: AST generated from main.c

//main.c

main()

{

inta,b;

}

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

52
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

Fig 6: Token sequence generated from Fig. 5

Plagiarism Detection and Similarity Feature Extraction
This sub-section explains the function and feature

extraction based on HLFPN. This study uses three
features to define the plagiarism decision output between
two input source codes.

1) Similarity Feature 1 : Ratio of total number of
matches tothe length of the sequence

Assume that n denotes the length of the sequence and
nmatch denotes the total number of matches. The ratio of
total number of matches to the length of the sequence is
defined as:

Rmatch =
𝑛match

𝑛
× 100%

 (1)
2) Similarity Feature 2 : Ratio of total number of

mismatchestothe length of the sequence
Assume that n denotes the length of the sequence and

nmismatch denotes the total number of mismatches. The
ratio of total number of mismatches to the length of the
sequence is defined as:

Rmismatch =
𝑛mismatch

𝑛
× 100%

 (2)
3) Similarity Feature 3 : Ratioof the total number of

gapstothe length of the sequence
Assume that n denotes the length of the sequence and

ngap denotes the total number of gaps. The ratio of total
number of gaps to the length of the sequence is defined
as:

Rgap =
𝑛gap

𝑛
×100%

 (3)
Membership Function

In the decision method, three features are used,
namely, the ratio of total number of matches to the length
of the sequence (Rmatch), the ratio of total number of
mismatches to the length of the sequence (Rmismatch),
and the ratio of total number of gaps to the length of the
sequence (Rgap). Then, three sets of similarity features
membership functions are shown in Fig. 7. In addition, the
plagiarism detection is also divided into three parts,
namely, “Non-plagiarized”, “Undecided”, and
“Plagiarized”. The membership functions for the
plagiarism decision are shown in Fig. 8.

In the decision method, three features are used,
namely, the ratio of total number of matches to the length
of the sequence (Rmatch), the ratio of total number of
mismatches to the length of the sequence (Rmismatch), and
the ratio of total number of gaps to the length of the
sequence (Rgap).The membership functions of Low,
Middle, and High are defined in Table 1. The membership
functions of plagiarism detection are listed in Table 2. In
the analysis, the membership functions of input

parameters are set between 0 and 1. Thus, the values of
input parameters are converted to the values between 0
and 1.

Fig 7: The type of membership functions for similarity
features

Fig 8: The type of membership functions for
plagiarism decision

Table 1: Membership functions of similarity features

Input Parameter Low Middle High

Rmatch 10 30 20 50 80 70 90
Rmismatch 10 30 20 50 80 70 90

Rgap 10 30 20 50 80 70 90

Table 2: Membership functions of plagiarism decision

Non-Plagiarized Undecided Plagiarized

0 0.4 0.4 0.6 0.6 1

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

53
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

Fuzzy Reasoning and Building HLFPN

According to the fuzzy sets and their corresponding
membership functions defined in the previous sub-
section, the similarity features are calculated and
assigned to the fuzzifier to get the membership degrees.
Therefore, an ‘IF… THEN’ statement is constructed in
order to establish a fuzzy production rule.

Table 3. Description of parameters

Name of
Parameter

Description of Parameter

MA Represents the ratio of total number of matches to
the length of the sequence, i.e., input place p1.

MS Represents the ratio of total number of mismatches
to the length of the sequence, i.e., input place p2.

G Represents the ratio of total number of gaps to the
length of the sequence, i.e., input place p3.

D Represents decision, i.e., output place p4.
H, M, L Represent high, middle, low fuzzy sets,

respectively.
S, I, WK Represent strong, intermediate, and weak fuzzy

sets, respectively.
V(ti), i = 1, 2, 3 Represents the fuzzy relational matrices of MA, MS,

G, and detection status decision.
H’, M’, L’ Represent high, middle, and low fuzzy sets of input

values, respectively.

We configure input linguistic variables as the ratio of

total number of matches (MA)to the length of the
sequence, the ratio of total number of mismatches (MS)to
the length of the sequence, and the ratio of total number
of gaps (G) to the length of the sequence, with fuzzy
terms: high (H), middle (M), and low (L). The fuzzy
production rules are defined as follows:

R1: IF MA is H THEN D is S
R2: IF MA is M THEN D is I
R3: IF MA is L THEN D is WK
R4: IF MS is H THEN D is WK
R5: IF MS is M THEN D is I
R6: IF MS is L THEN D is S
R7: IF G is H THEN D is WK
R8: IF G is M THEN D is I
R9: IF Gis L THEN D is S
Based on the conversion procedure, we transform

the above fuzzy production rules into the HLFPN model,
as shown in Fig. 9, and the parameters are described in
Table 3.

Fig 9: The HLFPN model representing nine fuzzy
production rules

IV. EXPERIMENTAL RESULTS

In Section 4, we aim to experimentally evaluate the
performance of our proposed system. First, we collect all
the required datasets; and set up the AST using ANTLR
tool and HLFPN code plagiarism detection system.Then,
the experimental environment and evaluation results are
discussed.

Experimental Environment

In our experiment, we have used C# programming
language on Visual Studio 2015 platform. The ANTLR tool
library was installed within the project on Visual Studio
2015. The user interface is shown in Fig. 10.

Fig 10: User interface

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

54
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

Experimental Procedure
In this sub-section, we present the experimental

procedure of our research as follows:
1. Determine all the sample exercises which have to

be performed by students.
We select four sample exercises which have to be

performed by students in the class using C programming
language. The number of students in the class is 20. Thus,
each student needs to perform five sample exercises
presented in Table 4. Then, we collect all the exercises
done by the students to detect the code plagiarism.

Table 4. Sample exercises

Exercise Description

E1 Simple Calculator
E2 Merge Sort
E3 Binary Search
E4 Fibonacci Number
E5 HanoiTower

2. Detect the code plagiarism among all the exercises.
Before the code plagiarism detection is performed, we

group each sample exercise as one folder. The code
plagiarism detection system is developed to compare any
two students’ exercises within the same folder and yield
the decision output.

3. Discuss the decision on students’ work.
After the decision output is obtained, we make a

discussion with the student about his/her algorithm and
make a decision, either plagiarized or non-plagiarized.

4. Measure the precision rate of our proposed system.

Main Results

As tabulated in Table 5, this experiment evaluates 5
sample exercises. Each exercise contains 20 source codes
created by 20 students. Total number of source codes is
100 with 950 comparisons of any two source codes
within the same folder. After our approach was
performed, we obtained 591 Non-plagiarized, 243
Undecided and 116 Plagiarized detection outputs.

Table 5. Information of source codes

Exercise
No. of

Source
Codes

No. of
Comparisons

Non-
plagiarized

Undecided Plagiarized

E1 20 190 122 35 33
E2 20 190 117 50 23
E3 20 190 119 55 16
E4 20 190 118 52 20
E5 20 190 115 51 24

Total 100 950 591 243 116

In Table 5, we can see that our approach yields more

Undecided comparisons than Non-plagiarized
comparisons. This occurs because all source codes have a
similar algorithm to perform an exercise.

In order to perform a fair and comparative evaluation,
we compare our proposed system with AST-based code
plagiarism detection system without HLFPN using
precision calculation. Precision is the ratio of the number
of correctly detected code plagiarisms to total number of
correctly and incorrectly detected code plagiarisms in

source code comparisons. The formula for precision is
shown in Equation (10).

Precision =

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡𝑠+𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑢𝑡𝑝𝑢𝑡𝑠
x 100% (10)

The performance evaluation results are shown in

Table 6. The larger the evaluated values are, the better the
code plagiarism detection will become.

Table 6. Performance analysis

Exercise

Precision, %

Without
HLFPN

With
HLFPN

Increment

E1 86.73 94.74 8.01
E2 77.89 90.00 12.11
E3 92.63 95.78 3.15
E4 80.52 93.15 12.63
E5 87.37 92.10 4.73

Average 85.03 93.15 8.12

Based on the performance analysis results in Table 6,

we can see that on average the precision for the approach
AST without HLFPN can only achieve 85.03% correctly.
However, after integrating the AST with HLFPN, we can
achieve the average precision as high as 93.15%. It has
increased the precision by 8.12%. The experimental
results indicate that the proposed approach can achieve
the reliable improvement.

V. CONCLUSIONS

This paper has proposed a code plagiarism detection
system using the HLFPN model based on ASTs. To do so,
we first need to construct the AST and generate the token
sequence. The token sequences from two ASTs are used
to obtain the similarity features which are adopted as
input datasets to the HLFPN model. The contributions of
this study are presented as follows:

1. By using an HLFPN model based on ASTs, our
system is proved to detect the source code plagiarism
which cannot be defeated by comments modification,
renaming identifiers, reordering the block of code,
reordering the sentences within a block, changes of
operator or operand sequence in an expression, changes
of data type, splitting of an expression, replacement of
control structure by equivalence control structure,
increase of the redundancy of statements or variables,
and combination of all the above scenarios.

2. Improving the performance of previous AST
approach without HLFPN can better detect the code
plagiarism.

3. Due to the “Undecided” output, it gives the
teacher an opportunity to discuss with the students about
their source codes. Thus, it prevents the teacher from
directly judging a student as a plagiarist.

From the experimental results, we know that
although our approach can detect the code plagiarism; it
still yields more Undecided outputs. It occurred due to the
simplicity of the sample exercises and the similarity of the
source codes. In the future, we will do more analyses of
similarity features and scoring system of sequence
alignment to deal with the simple exercises with

http://issn.pdii.lipi.go.id/data/1457578073.png

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

55
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

optimization and efficiency of the code plagiarism
detection method, which tackle more programming
languages.

Acknowledgments

The authors are very grateful to the anonymous
reviewers for their constructive comments which have
improved the quality of this paper.Also, this work was
supported by the Ministry of Science and Technology,
Taiwan, under grant MOST 107-2221-E-845-002-MY3.

References
[1]. S. Butakov, M. Kim, and S. Kim, “Low RAM footprint

algorithm for small scale plagiarism detection projects,”
Procs. of the International Conference on Information
Science and Applications (ICISA), pp. 1-2, May 2012.

[2]. H. Kikuchi, T. Gooto, M. Wakatsuki, and T. Nishino, “A
source code plagiarism detecting method using alignment
syntax tree elements,” Procs. of the 15th International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD),
pp. 1-6, Jun. 2014.

[3]. S. Nadelson, “Academic misconduct by university students:
Faculty perceptions and responses,” Plagiary, vol. 2, no. 2,
pp. 1-10, 2007.

[4]. F. Culwin and T. Lancaster, “Plagiarism issues for higher
education,” Procs. of VINE, vol. 31, no. 2, pp. 36-41, 2001.

[5]. J. Wilkinson, “Staff and student perceptions of plagiarism
and cheating,” International Journal of Teaching and
Learning in Higher Education, vol. 20, no. 2, pp. 98-105,
2009.

[6]. M. Paris, “Source code and text plagiarism detection
strategies,” Procs. of the 4th Annual LTSN-ICS Conference,
pp. 74-78, 2003.

[7]. M. Dick, et. al., “Addressing student cheating: Definitions
and solutions,” Procs. of Innovation and Technology in
Computer Science Education,” pp. 172-184, Jun. 2002.

[8]. M. Joy, G. Cosma, J. Y. Yau, and J. Sinclair, “Source code
plagiarism-A student perspective,” IEEE Transactions on
Education, vol. 54, no. 1, Feb. 2011.

[9]. E. Jones, “Metrics based plagiarism monitoring,” Journal of
Computing Sciences in Colleges, vol. 16, no. 4, pp. 253-261,
2001.

[10]. J. Zhao, K. Xia, Y. Fu, and B. Cui, “An AST-based code
plagiarism detection algorithm,” Procs. of the 10th
International Conference on Broadband and Wireless
Computing, Communications, and Applications (BWCCA),
pp. 178-182, Nov. 2015.

[11]. C. K. Roy and J. R. Cordy, “A survey on software clone
detection research,” Queen’s UniversityTechnical Report
No. 2007-541, pp. 1-109, Sept. 2007.

[12]. B. Baker, “On finding duplication and near-duplication in
large software systems,” Procs. of the Second Working
Conference on Reverse Engineering, pp. 86-95, Jul. 1995.

[13]. J. Johnson, “Substring matching for clone detection and
change tracking,” Procs. of the 10th International
Conference on Software Maintenance, pp. 120-126, 1994.

[14]. T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code,” IEEE Transactions on
Software Engineering, vol. 28, no. 7, pp. 654-670, Jul. 2002.

[15]. Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A tool for
finding copy-paste and related bugs in operating system
code,” Procs. of the 6th Conference on Symposium on
Operation Systems Design & Implementation, pp. 289-302,
Dec. 2004.

[16]. L. Prechelt, G. Malpohl, and M. Phillipsen, “Finding
plagiarisms among a set of programs with JPlag,” Journal of
Universal Computer Science, vol. 8, no. 11, pp. 1016-1038,
Apr.2002.

[17]. S. Schleimer, D. S. Wilkerson, and A. Aiken, “Winnowing:
Local algorithms for document fingerprinting,” SIGMOD
ACM, pp. 76-85, Jun. 2003.

[18]. R. Koschke, R. Falke, and P. Frenzel, “Clone detection using
abstract syntax suffix trees,” Procs. of IEEE 13th Working
Conference on Reverse Engineering (WCRD), pp. 253-262,
Oct. 2006.

[19]. L. P. Zhang and D. S. Liu, “AST-based multi-language
plagiarism detection method,” Procs. of IEEE 4th
International Conference on Software Engineering and
Service Science (ICSESS), pp. 738-742 , May 2013.

[20]. J. Feng, B. Cui, and K. Xia, “A code comparison algorithm
based on AST for plagiarism detection,” Procs. of the 4th
International Conference on Emerging Intelligent Data and
Web Technologies (EIDWT), pp. 393-397, Sept. 2013.

[21]. L. P. Zhang, D. S. Liu, Y. Li, and M. Zhong, “AST-based
Plagiarism Detection Method,” Procs. of the International
Workshop on Internet of Things' Technology and
Innovative Application Design (IOT Workshop), pp. 611-
618, Apr. 2012.

[22]. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E.
Merlo,“Comparison and evaluation of clone detection
tools,”IEEE Transactions on Software Engineering, vol. 31,
no. 10, pp.804–818, Aug. 2007.

[23]. Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto, “Incremental
code clone detection: A PDG-based approach,” Procs. of the
18th IEEE Working Conference on Reverse Engineering,
pp. 3-12, Oct. 2011.

[24]. M. Balint, T. Girba, and R. Marinescu, “How developers
copy,” Procs. of the 14th IEEE International Conference on
Program Comprehension, pp. 56–68, Jun. 2006.

[25]. R. Komondoor and S. Horwitz, “Semantics-preserving
procedure extraction,” Procs. of the 27th ACM SIGPLAN-
SIGACT on Principles of Programming Languages, pp. 155–
169, Jan. 2000.

[26]. J. Krinke, “Identifying similar code with program
dependence graphs,” Procs. of the 8th Working Conference
on Reverse Engineering, pp. 301–309, Oct. 2001.

[27]. Christopher Venters, Cassandra Groen, Lisa D. McNair, and
Marie C. Paretti,“Using writing assignments to improve
learning in Statics: A mixed methods study”, The
International Journal of Engineering Education, vol. 34, no.
1, pp. 119-131, Feb. 2018.

[28]. L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “DECKARD:
Scalable and accurate tree-based detection of code clones,”
Procs. of the 29th International Conference on Software
Engineering (ICSE'07), pp. 96-105, May 2007.

[29]. M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
“Locality-sensitive hashing scheme based on p-stable
distributions,” Procs. of the 20th annual symposium on
computational geometry (SoGG'04), pp. 253-262, Jun.
2004.

[30]. J. Jones. 2016. Abstract Syntax Tree Implementation
Idioms [Online]. University of Alabama. Available:
http://www.hillside.net/plop/plop20013/Papers/Jones-
ImplementingASTs.pdf.

[31]. D. W. Mount, Sequence and Genome Analysis, Cold Spring
Harbor Laboratory Press, 2002.

[32]. Wiharyanto Oktiawan, Mochtar Hadiwidodo, and
Purwono,“Enhancement student understanding through
the development of lab module based on constructivistic”,
The International Journal of Engineering Education, vol. 1,
no. 1, pp. 1-5,Jan. 2016.

http://issn.pdii.lipi.go.id/data/1457578073.png
http://www.hillside.net/plop/plop20013/Papers/Jones-ImplementingASTs.pdf
http://www.hillside.net/plop/plop20013/Papers/Jones-ImplementingASTs.pdf

Internat. J. Eng. Ed. Vol. 1(1)2019:46-56, Yu-Ying Wang, Rong-Kuan Shen, Gwo-Jen Chiou, Cheng-Ying Yang, Victor R.L. Shen, Farica Perdana Putri

56
IJEE, Vol. 1(1), June 2019 – ISSN : 2540-9808

[33]. T. Akutsu, Mathematical Models and Algorithms in
Bioinformatics, Kyoritsu Shuppan, 2007.

[34]. T. Murata, “Petri nets: Properties, analysis and
applications,” Proceedings of IEEE, vol. 77, no. 4, pp. 541-
580, Aug. 1989.

[35]. R. Robidoux, H.P. Xu, L.D. Xing, and M.C. Zhou, “Automated
modeling of dynamic reliability block diagrams using
colored Petri nets,” IEEE Transactions on Systems, Man,
Cybernetics-Part A: Systems and Humans, vol. 40, no. 2, pp.
337–351, Nov. 2010.

[36]. H. Ogata and Y. Yano, “Knowledge awareness map for
computer-supported ubiquitous language-learning,” Procs.
of the 2nd IEEE International Workshop on Wireless and
Mobile Technologies in Education, pp. 19–25, Mar. 2004.

[37]. Ari Wibisono, Wisnu Jatmiko, Hanief Arief Wisesa, Benny
Hardjono, and Petrus Mursanto, “Traffic big data
prediction and visualization using Fast Incremental Model
Tress-Drift Detection (FIMT-DD),” Knowledge-Based
Systems, vol. 93, pp. 33–46, Feb. 2016.

[38]. Victor R.L. Shen and Cheng-Ying Yang, “An intelligent
multiagent tutoring system inartificial intelligence”, The
International Journal of Engineering Education, vol. 27, no.
2, pp. 248-256, Apr. 2011.

[39]. Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna,
“Lending Petri nets,” Science of Computer Programming,
vol. 112, no. 1, pp. 75–101,Nov.2015.

[40]. Kaile Zhou, and Shanlin Yang, “Exploring the uniform effect
of FCM clustering: A data distribution perspective,”
Knowledge-Based Systems, vol. 96,pp. 76–83, Mar. 2016.

[41]. V. R. L. Shen, H. Y. Lai, and A. F. Lai, “The implementation of
a smartphone-based fall detection system using a high-
level fuzzy Petri net,” Applied Soft Computing, vol. 26, no.
1, pp. 390-400, Jan. 2015.

[42]. V. R. L. Shen, “Knowledge representation using high-level
fuzzy Petri nets,” IEEE Transactions on Systems, Man, and
Cybernetics-Part A: Systems and Humans, vol. 36, no. 6, pp.
2120-2127, Oct. 2006.

[43]. V. R. L. Shen, “Reinforcement learning for high-level fuzzy
Petri nets,” IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 33, no. 2, pp. 351-362,
Mar. 2003.

[44]. E. H. Mamdani, “Application of fuzzy logic to approximate
reasoning using linguistic systems,” IEEE Transactions on
Computers, vol. 26, no. 12, pp. 1182–1191, Dec. 1977.

[45]. V. R. L. Shen, “Correctness in hierarchical knowledge-based
requirements,” IEEE Transactions on Systems, Man, and
Cybernetics-Part B: Cybernetics, vol. 30, no. 4, pp. 625-631,
Aug. 2000.

[46]. V. R. L. Shen, Y. S. Chang, and T. T. Y. Juang, “Supervised and
unsupervised learning by using Petri nets,” IEEE
Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, vol. 40, no. 2, pp. 363-375, Mar.
2010.

[47]. R. W. Sebesta, Concepts of Programming Languages, New
Jersey: Pearson Education, 2012.

http://issn.pdii.lipi.go.id/data/1457578073.png

