

The Effect of Dayak Onion (*Eleutherine Palmifolia*) Extract Cream Application on Serum Interleukin-6 Levels: An Experimental Study in UVB-induced Male Wistar Rats

Armadina Fitra Choirunnisa¹, Liza Afriliana^{2*}, Galih Sari Damayanti², Widyawati²

¹Undergraduate Program, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia

²Department of Dermatology and Venereology, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia

Keywords:

Anti-inflammatory
Eleutherine palmifolia
IL-6
UVB
Wistar rats

ABSTRACT

Background: Indonesia receives intense ultraviolet B (UVB) exposure. Prolonged exposure to (UVB) radiation is a major environmental factor contributing to oxidative stress and skin inflammation through the overproduction of reactive oxygen species (ROS) and subsequent upregulation of pro-inflammatory cytokines, including interleukin-6 (IL-6). *Eleutherine palmifolia*, traditionally used in Indonesian herbal medicine, contains abundant flavonoids and phenolic compounds with documented antioxidant and photoprotective properties. Its ability to absorb UV rays and neutralizing ROS suggests potential efficacy as a topical agent for mitigating UVB-induced inflammatory responses.

Objective: This study aimed to evaluated the effect of *Eleutherine palmifolia* extract cream at various concentrations (10%, 15%, 20%) on serum IL-6 levels in UVB-induced male Wistar rats.

Methods: A true experimental design with post-test only control group was conducted using 36 male Wistar rats randomly assigned to four groups: control (placebo), P1 (10%), P2 (15%), and P3 (20%). The cream was applied 20 minutes before UVB exposure and again 4 hours after irradiation, three times per week for 30 days. Serum IL-6 levels were measured using ELISA. Statistical analysis was performed using Shapiro-Wilk, Levene's test, one-way ANOVA, and LSD post-hoc test.

Results: Mean IL-6 levels (pg/mL): control 1.63; P1 1.59; P2 1.65; P3 1.57. ANOVA indicated a significant differences among groups ($p = 0.047$). Post-hoc analysis showing a significant difference only between P2 and P3 groups ($p = 0.012$).

Conclusion: The 20% *Eleutherine palmifolia* cream showed the strongest anti-inflammatory effect, significantly lowering IL-6 compared with 15%, while other group differences were not significant.

DIMJ, 2025, 6(2), 26-31 DOI: <https://doi.org/10.14710/dimj.v6i1.29701>

1. Introduction

Indonesia has a high level of sunlight exposure, and most work is performed outdoors. Consequently individuals are often exposed to high levels of sun. Sunshine exposure offers important health bonuses to the human body, especially in promoting the production of vitamin D, which has a part in bone turnover and immune function.¹ Conversely, excessive exposure to sunlight is a prominent exogenous skin damage mediator.²

Ultraviolet (UV) radiation is a component of the electromagnetic spectrum present in sunlight. UV radiation is classified according to its wavelength into UVA (320–400 nm), UVB (290–320 nm), and UVC (<290 nm). Excessive exposure to UV radiation on the skin increases the risk of skin damage.³ Several conditions associated with such damage include sunburn, tanning, edema, erythema, photoaging, skin cancer, and hyperplasia.^{4–6} Other consequences of UVB exposure include redness, wrinkling,

dryness, burning, and irritation of the skin.⁷ UVB penetration into the epidermis can also reduce collagen levels and generate reactive oxygen species (ROS), leading to DNA damage and the release of interleukin-6 (IL-6). Excessive ROS production causes redox imbalance, resulting in elevated expression of pro-inflammatory mediators such as IL-2, IL-6, and tumor necrosis factor- α (TNF- α). The normal serum concentration of IL-6 ranges from 1–5 pg/mL.⁸ Values above this threshold indicate an inflammatory process. To mitigate the harmful effects of UV radiation, one of the preventive measures is the use of sunscreen cream. Sunscreens function by absorbing, scattering, and reflecting UV radiation to protect the skin from damage.⁹

Flavonoids are compounds capable of protecting the skin from UV exposure by absorbing UV radiation and scavenging ROS. Their aromatic ring structure enables absorption of both UVA and UVB, thereby functioning as an optical shield.¹⁰ One plant with a high flavonoid content is the Dayak onion (*Eleutherine palmifolia*), which

originates from Kalimantan and has long been used as traditional medicine by the Dayak ethnic community.¹¹⁻¹³ *Eleutherine palmifolia* contains various secondary metabolites, including phenols, tannins, flavonoids, steroids, alkaloids, proteins, reducing sugars, terpenoids, and exhibits antioxidant activity with an IC₅₀ value of 45.33 ppm.^{11,12} Its flavonoid and phenolic contents have been reported to reduce IL-6 levels through anti-inflammatory, antioxidant, and immunomodulatory mechanisms.¹⁴

This study aims to evaluate the effect of topical application of *Eleutherine palmifolia* extract cream on serum interleukin-6 levels in male Wistar rats induced by UVB radiation.

2. Methods

This study was conducted at the Cendekia Nanotech Hutama Laboratory, the Biology Laboratory of Universitas Negeri Semarang, and the CITO Clinical Laboratory between May and June 2025. The research employed an experimental design using a Post-Test Only Control Group Design. A total of 36 male Wistar rats were obtained from the Biology Laboratory of Universitas Negeri Semarang as research subjects.

The inclusion criteria were male Wistar rats aged 8–12 weeks, weighing 200–250 grams, and in healthy and active condition. The exclusion criteria included Wistar rats with skin or anatomical abnormalities, wounds, signs of inflammation, or illness. The independent variable in this study was the topical application of *Eleutherine palmifolia* (Dayak onion) extract cream at concentrations of 10%, 15%, and 20%. The dependent variable was the serum IL-6 levels.

The 36 rats were randomly allocated into four groups, each consisting of nine rats that met the inclusion and exclusion criteria. Prior to treatment, the animals underwent a seven-day acclimatization period. The control group (K) received placebo cream (base cream without *Eleutherine palmifolia* extract), while the treatment groups (P) received extract creams according to their assigned concentrations. UVB irradiation was administered for 60 minutes using a narrowband UVB lamp with an irradiance of 3 mW/cm², corresponding to a total dose of 180 mJ/cm², and irradiance calibration was performed prior to the experiment to ensure consistent exposure across all subjects. The extract cream was applied 20 minutes before UVB exposure and again 4 hours after irradiation, with each treatment session conducted once every two days (three times per week) for a total duration of 30 days, providing a consistent and reproducible treatment schedule throughout the study. From each group, six rats were randomly selected by lottery for blood sampling. This sample size was determined based on WHO guidelines, which recommend a minimum of 5–6 animals per group to ensure statistical validity.

The primary data collected were the serum IL-6 levels, measured from blood samples. Statistical analysis began with a normality test using the Shapiro–Wilk test. Once normal distribution was confirmed, homogeneity of variance was assessed with Levene's test. If variances were

homogeneous, parametric analysis was performed using one-way ANOVA to compare mean values across groups, followed by a Post Hoc test to determine significant differences between groups. One of the Post Hoc methods applied was the Least Significant Difference (LSD) test.

3. Results

During the treatment period, two rats from the control group (K), one rat from group P2, and one rat from group P3 dropped out due to death. Serum IL-6 levels were measured using the ELISA method.

Table 1. Comparative Analysis of Serum Interleukin-6 Levels

Treatment Group(s)	Mean \pm Standard Deviation	Median (min-max)	P Value
K	1.63 \pm 0.02	1.62 (1.57-1.69)	0.93*
P1	1.59 \pm 0.02	1.58 (1.50-1.65)	0.89*
P2	1.65 \pm 0.03	1.63 (1.58-1.76)	0.61*
P3	1.57 \pm 0.02	1.57 (1.50-1.64)	0.88*

Note: Normal distribution, p > 0.05

Based on the Shapiro-Wilk test, all groups (K, P1, P2, and P3) showed significance values of p > 0.05. This indicates that the data were normally distributed within each group and therefore met the assumption of normality, allowing further analysis using parametric tests.

Table 2. Levene's Test Results on Serum Interleukin-6 Levels

	Levene Statistic	P Value
Based on Mean	0.22	0.88*

Note: Homogeneous if p > 0.05

After confirming that the data were normally distributed, homogeneity of variance was then tested using Levene's test. As shown in Table 6, Levene's test yielded a significance value of 0.884, well above the threshold of 0.05, indicating that the variances among groups were homogeneous. Hence, the data fulfilled the assumptions required for ANOVA.

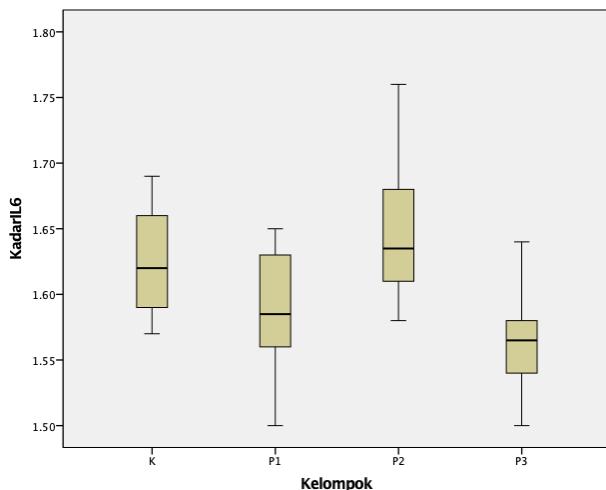


Figure 1. Boxplot of Differences in Serum Interleukin-6 Levels

Since both assumptions for parametric testing were met, comparative analysis was performed. This study employed univariate comparative analysis, as only one dependent variable (serum IL-6 levels) was assessed across four groups. The analysis aimed to determine whether there were significant differences in mean IL-6 levels among groups. Therefore, a one-way ANOVA was applied.

Table 3. Results of ANOVA on Serum Interleukin-6 Levels

	Sum of Squares	df	Mean Square	F	P Value
Between Groups	0.03	3	0.009	3.15	0.047
Within Groups	0.06	20	0.003		
Total	0.08	23			

Note: Significant if $p < 0.05$

The ANOVA test showed a significance value of 0.047 ($p < 0.05$), indicating a statistically significant difference in mean serum IL-6 levels among groups. Post hoc analysis using the Least Significant Difference (LSD) method was then conducted.

Table 4. Results of Least Significant Difference (LSD) Test on Serum Interleukin-6 Levels

(I) Group	(J) Group	Mean Difference (I-J)	Std. Error	Sig.	95% Confidence Interval	
					Lower Bound	Upper Bound
K	P1	.04000	.03056	.205	-.0238	.1038
	P2	-.02500	.03056	.423	-.0888	.0388
	P3	.06000	.03056	.064	-.0038	.1238
P1	K	-.04000	.03056	.205	-.1038	.0238
	P2	-.06500*	.03056	.046	-.1288	-.0012
	P3	.02000	.03056	.520	-.0438	.0838
P2	K	.02500	.03056	.423	-.0388	.0888
	P1	.06500*	.03056	.046	.0012	.1288
	P3	.08500*	.03056	.012	.0212	.1488
P3	K	-.06000	.03056	.064	-.1238	.0038
	P1	-.02000	.03056	.520	-.0838	.0438
	P2	-.08500*	.03056	.012	-.1488	-.0212

Note: Significant if $p < 0.05$

The LSD test revealed that only the comparison between groups P2 and P3 showed a significant difference ($p = 0.01 < 0.05$). This indicates that rats treated with *Eleutherine palmifolia* extract cream at 20% concentration (P3) had significantly lower serum IL-6 levels compared to those treated with 15% concentration (P2). Meanwhile, all other pairwise comparisons, including P1 (10%) and P2 (15%) versus the control group, did not demonstrate significant differences ($p > 0.05$).

4. Discussion

This study evaluated the effect of Dayak onion (*Eleutherine palmifolia*) extract cream on serum IL-6 levels in male Wistar rats following 30 days of UVB exposure. During the experiment, a small proportion of rats dropped out due to mortality, which may reflect individual variations in sensitivity.¹⁵ Dropouts may also have resulted from UVB-induced suppression of cutaneous and systemic immunity, leading to a decline in immune status that varies between individuals.¹⁶

The results demonstrated variation in mean IL-6 levels among the groups, although not all differences were statistically significant. Group P3 (20% extract) showed the lowest IL-6 levels (1.57 pg/mL) and was the only group with a statistically significant reduction compared to P2 (15%) ($p = 0.012$). In contrast, differences involving the control, P1, and P2 groups were not significant ($p > 0.05$), despite consistent descriptive reductions suggesting a dose-response pattern.

The dose-dependent effect observed aligns with prior research demonstrating that plant-based topical extracts tend to reduce inflammatory cytokines even when significance is not consistently achieved.^{17,18} Thallib et al. (2023) reported IL-6 reductions with 7.5% red dragon fruit extract cream in acute wounds, although intergroup differences were not statistically significant.¹⁹ Similarly, Ekasari et al. (2023) examined 10% *Physalis angulata* leaf extract cream in BALB/c mice with atopic dermatitis and found reductions in IL-6 and IgE levels in the treatment group compared with controls, although these were not statistically significant.²⁰ They attributed this to the anti-inflammatory properties of flavonoids, while acknowledging that biological variability and immune status may influence IL-6 responses, leading to heterogeneous results. These findings are comparable to the non-significant but directionally consistent reductions in P1 and P2 of this study. Conversely, Hendrayanta et al. (2024) demonstrated that topical application of *Annona squamosa* L. leaf extract cream in UVB-exposed Wistar rats for four weeks significantly reduced TNF- α levels and increased TIMP-1, with the 20% concentration being most effective.²¹ These effects were attributed to high flavonoid and phenolic content, which suppress pro-inflammatory pathways, support tissue regeneration, and provide strong antioxidant activity.²²

Collectively, previous literature indicates that plant-derived topical formulations generally lower inflammatory mediators, though statistical outcomes

depend on concentration, timing, and inflammatory phase. The present findings reinforce that the 20% *Eleutherine palmifolia* extract concentration yields the most robust anti-inflammatory effect, supporting its potential as a topical photoprotective agent. This supports the hypothesis that Dayak onion extract, rich in naphthoquinones and flavonoids, possesses strong topical anti-inflammatory potential, particularly when applied at adequate doses and for sufficient duration to suppress peak inflammatory responses.

This study specifically focused on the effects of *Eleutherine palmifolia* extract cream on serum IL-6 in UVB-induced sunburn in male Wistar rats. UVB radiation is known to induces the overproduction of reactive oxygen species (ROS), which activate MAPK pathways and stimulate IL-6 secretion. Elevated IL-6 promotes fibroblast activity and MMP production, contributing to extracellular matrix degradation.²³

The extract cream contains flavonoids and naphthoquinones with well-established antioxidant and anti-inflammatory activity.²⁴ Flavonoids, with their aromatic ring structure, are capable of absorbing UVA and UVB, thereby functioning as natural photoprotectants while suppressing ROS formation and subsequent inflammation.^{10,25} This mechanism underlies the potential of *Eleutherine palmifolia* extract in preventing UVB-induced IL-6 elevation.

The lack of statistical significance in groups P1 and P2 may be partly explained by the timing of sample collection in the late afternoon, when IL-6 levels are physiologically lower due to circadian variation, thereby reducing statistical sensitivity.²⁶⁻²⁸ Moreover, at this time point, the inflammatory response may have already shifted into the proliferative phase, during which IL-6 naturally declines. This is consistent with previous reports showing that UVB-induced inflammation is transient, typically resolving into tissue repair between days 4 and 7 after irradiation.^{29,30} Biological variability among rats, including immune status, individual metabolism, and differential sensitivity to UVB, may also account for heterogeneity in IL-6 expression and the absence of statistical significance in some comparisons.

The Synchro®-based cream contains multiple bioactive compounds, including calendula oil, beeswax, sweet almond oil, B-complex vitamins, vitamins A, C, E, and H, *Hypericum* extract, fatty acid esters, biological extracts, amino acids (glutamine, arginine, lysine), magnesium, and potassium, which collectively exert antioxidant and anti-inflammatory effects³¹. Vitamins A, C, and E, together with essential minerals such as zinc, are crucial for collagen synthesis and tissue repair, with vitamin C in particular demonstrating strong antioxidant capacity in modulating immune responses and neutralizing free radicals. *Hypericum* extract has been reported to suppress pro-inflammatory cytokines such as IL-6 and TNF- α during wound healing, and recent in vitro studies confirmed that *Calendula officinalis* possesses significant anti-inflammatory and antioxidant activity.^{32,33} Consequently, Synchro® cream should not be regarded as a passive

vehicle, since its intrinsic antioxidant components may modulate therapeutic outcomes and act synergistically with *Eleutherine palmifolia* extract in suppressing IL-6 expression.^{31,32} Conversely, repeated shaving of the dorsal skin may induce mild irritation and contribute to subtle increases in cytokines such as IL-6.^{34,35}

Despite these limitations, the overall downward trend in IL-6 across treatment groups supports the anti-inflammatory potential of *Eleutherine palmifolia* extract cream, particularly at the 20% concentration. This study provides preliminary evidence for its use as a topical agent to mitigate UVB-induced inflammatory responses.

5. Conclusion

The application of *Eleutherine palmifolia* extract cream influenced serum IL-6 levels in UVB-induced male Wistar rats, although most intergroup differences were not statistically significant. While the 10% and 15% extract concentrations showed only descriptive changes compared with the control group, the 20% concentration produced the lowest IL-6 level and demonstrated a significant difference when compared with the 15% group, indicating a dose-dependent trend. Overall, the findings suggest that higher concentrations of *Eleutherine palmifolia* extract, particularly the 20% formulation, have greater potential in reducing UVB-induced inflammatory responses.

Ethical Approval

This study received ethical clearance from the Health Research Ethics Commission (KEPK), Faculty of Medicine UNDIP, under approval No. 044/EC/KEPK/FK-UNDIP/III/2025.

Conflicts of Interest

The authors declare no conflicts of interest related to this study.

Funding

All financial support for this study was provided by the author.

Author Contributions

Conceptualization, AFC, LA, GSD; methodology, AFC, LA, GSD, W; validation, LA, GSD; data analysis, AFC; investigation, AFC, LA, W; resources, AFC; data curation, AFC; original draft preparation, AFC; review and editing, AFC, LA, GSD, W; supervision, LA, GSD, W; funding acquisition, AFC.

References

1. Selan TI, Made G, Budiana N. Identifikasi Komponen Senyawa Metabolit Sekunder Serta Uji Aktivitas Tabir Surya Ekstrak Etanol Bogenvil Septabillis Willd (Bougainvillea Sp.). Media Sains. 2024;24:20–7.

2. Nazifah F, Yenny SW. Berbagai Tanaman di Indonesia untuk Tabir Surya. *Health and Medical Journal*. 2023;5(3):220–4.
3. Oktora MZ, Haiga Y, Liana N. Peningkatan Pengetahuan Masyarakat Terhadap Pengaruh Paparan Sinar Matahari yang Dapat Menyebabkan Kanker Kulit. *Jurnal Pengabdian Masyarakat Kesehatan* [Internet]. 2023;1(2):28–31. Available from: <http://journal.scientic.id/index.php/asci/issue/view/2>
4. Dewi KRS, Yowani SC. Eksplorasi Potensi Bahan Alam Sebagai Tabir Surya. *COMSERVA*. 2023;3(8):2924–35.
5. Nurfadilah, Usman F, Rasyid AUM, Zulkifli, Wahdaniah Y. Penentuan Nilai SPF (Sun Protecting Factor) Sunscreen Gel Ekstrak Daun Cengkeh (*Syzygium aromaticum*) Secara In Vitro. *Jurnal Mandala Pharmacon Indonesia*. 2023 Dec 22;9(2):244–52.
6. Fitraneti E, Rizal Y, Nafiah SR, Primawati I, Hamama DA. Pengaruh Paparan Sinar Ultraviolet terhadap Kesehatan Kulit dan Upaya Pencegahannya: Tinjauan Literatur. *Scientific* [Internet]. 2024;III(3):185–94. Available from: <http://journal.scientic.id/index.php/sciena/issue/view/19>
7. Al-bari A, Saputri RK, Jannah SR. Evaluasi Sediaan Krim Ekstrak Etanol Daun Tapak Dara (*Catharanthus roseus* L.) Sebagai Tabir Surya dalam Menghambat Pembentukan Eritema. *SEHATI: Jurnal Kesehatan*. 2023 Feb 28;3(1):30–4.
8. Lazzerini PE, Cupelli M, Cartocci A, Bertolozzi I, Salvini V, Accioli R, et al. Elevated Interleukin-6 Levels Are Associated With an Increased Risk of QTc Interval Prolongation in a Large Cohort of US Veterans. *J Am Heart Assoc*. 2024 Feb 20;13(4):1–14.
9. Kusumaratni DA, Prasetyo EY. Hubungan Tingkat Pengetahuan Terhadap Penggunaan Sunscreen pada Mahasiswa Farmasi. *Enfermeria Ciencia*. 2023 Nov 30;1(2):105–13.
10. Widhihastuti E, Larasati DS, Priatmoko S, Rakainsa SK. Formulation and Sunscreen Activity of Cream Preparation from Iler Leaves Extract (*Coleus scutellarioides* (L.) Benth). *J Chem Sci* [Internet]. 2024;13(1):52–63. Available from: <http://journal.unnes.ac.id/sju/index.php/ijcs>
11. Kumalasari E, Mardiah A, Khumaira Sari A. Formulasi Sediaan Krim Ekstrak Daun Bawang Dayak (*Eleutherine Palmifolia* (L) Merr) dengan Basis Krim Tipe A/M dan Basis Krim Tipe M/A. *Jurnal Farmasi Indonesia AFAMEDIS*. 2020;1(1):23–33.
12. Fitriansyah SN, Puteri N, Muthmainnah N, Setiani NA. Kandungan Kimia dan Aktivitas Antioksidan pada Umbi Bawang Dayak (*Eleutherine palmifolia* (L.) Merr.) Hasil Fermentasi. *Jurnal Sains dan Teknologi Farmasi Indonesia*. 2022;10(2):44–50.
13. Laila F, Resmeliana I, Yulianti W, Supardan AD. Evaluasi Kadar Senyawa Fenolat, Flavonoid Total, serta Aktivitas Antioksidan Secara in vitro dalam Ekstrak Metanol Bawang Dayak (*Eleutherine palmifolia* (L.) Merr). *KOVALEN: Jurnal Riset Kimia*. 2022;8(3):298–307.
14. Waruwu IS, Rawar EA, Kristiyani A. Penetapan Kadar Flavonoid Total dan Fenolik Total Serta Uji Penghambatan Denaturasi Protein Dalam Seduhan Teh Bunga Telang (*Clitoria ternatea* L.). *Original Article MFF* [Internet]. 2023;27(2):47–51. Available from: <http://journal.unhas.ac.id/index.php/mff>
15. Krisanti R, Wanandi S, Wuyung P, Hoemardani A. Effect of Narrowband Ultraviolet B (311 nm) Exposure on Skin Carcinogenesis in Wistar Rats. *J Adv Vet Anim Res*. 2025;(0):1.
16. Beach T, Bakke J, Riccio E, Javitz HS, Nishita D, Kapur S, et al. The Progression of Radiation Injury in a Wistar Rat Model of Partial Body Irradiation with ~5% Bone Marrow Shielding. *Int J Radiat Biol*. 2023 Jul 3;99(7):1080–95.
17. Li Y, Ma Y, Yao Y, Ru G, Lan C, Li L, et al. Protective Effect of Isoquercitrin on UVB-Induced Injury in Hacat Cells and Mice Skin Through Anti-Inflammatory, Antioxidant, and Regulation Of MAPK and JAK2-STAT3 Pathway. *Photochem Photobiol*. 2024 Sep 9;100(5):1507–18.
18. Vale DL, Martinez RM, Medeiros DC, da Rocha C, Sfeir N, Lopez RF V., et al. A Topical Formulation Containing Quercetin-Loaded Microcapsules Protects Against Oxidative and Inflammatory Skin Alterations Triggered by UVB Irradiation: Enhancement of Activity by Microencapsulation. *J Drug Target*. 2021 Oct 21;29(9):983–97.
19. Thalib A, Mas A, Batari UA, Watampone T. Pengaruh Pemberian Krim Topikal Ekstrak Buah Naga Merah (*Hylocereus polyrhizus*) Pada Luka Akut Terhadap Kadar Interleukin-6 Fase Inflamasi Pada Wistar. *Jurnal Luka Indonesia* [Internet]. 2018;4(1):1–10. Available from: <https://www.researchgate.net/publication/323545270>
20. Ekasari DP, Basuki S, Kurniasih W, Brahmanti H, Rofiq A. Effect of *Physalis angulata* Leaf Extract Cream on Interleukin-4, Interleukin-6, and Immunoglobulin-E in Mice with Induced Atopic Dermatitis. *Universa Medicina* [Internet]. 2023;42(2):150–9. Available from: <http://dx.doi.org/10.18051/UnivMed.2023.v42:150-159>
21. Michelle Hendrayanta, Ketut Kwartantaya Winaya, I Gusti Agung Ayu Elis Indira, I Gusti Agung Ayu Praharsini, I Gusti Ayu Agung Dwi Karmila, Nyoman Suryawati. Aplikasi topikal krim ekstrak daun srikaya (*Annona squamosa* L) meningkatkan kadar tissue inhibitor of metalloproteinase-1 (TIMP-1) dan menurunkan kadar tumor necrosis factor- α (TNF- α) pada kulit tikus wistar (*Rattus norvegicus*) yang terpapar sinar ultraviolet B. *Intisari Sains Medis*. 2024 Jun 12;15(2):629–35.
22. Aryantini D, Sari F, Wijayanti CR. Kandungan Fenolik dan Flavonoid Total Pada Ekstrak Daun Srikaya

(*Annona squamosa* L.) Terfermentasi. Farmasains : Jurnal Ilmiah Ilmu Kefarmasian. 2020 Sep 25;7(2):67–74.

23. Tanveer MA, Rashid H, Tasduq SA. Molecular Basis of Skin Photoaging and Therapeutic Interventions by Plant-derived Natural Product Ingredients: A Comprehensive Review. *Heliyon*. 2023 Mar;9(3):e13580.

24. Firdaus NM, Mudyantini W, Sugiyarto. Physiological and Phytochemical Characters of *Eleutherine palmifolia* Affected by Treatment of Variation in Light Intensity and Water Capacity. *Cell Biology and Development*. 2020 Jun 3;4(1).

25. Li L, Chong L, Huang T, Ma Y, Li Y, Ding H. Natural Products and Extracts from Plants as Natural UV Filters for Sunscreens: A Review. *Animal Model Exp Med*. 2023 Jun 19;6(3):183–95.

26. Hakamata Y, Hori H, Mizukami S, Izawa S, Yoshida F, Moriguchi Y, et al. Blunted Diurnal Interleukin-6 Rhythm is Associated with Amygdala Emotional Hyporeactivity and Depression: a Modulating Role of Gene-stressor Interactions. *Front Psychiatry*. 2023 May 30;14.

27. Wang XL, Li L. Circadian Clock Regulates Inflammation and the Development of Neurodegeneration. *Front Cell Infect Microbiol*. 2021 Sep 14;11.

28. Aragona F, Rizzo M, Giudice E, Fazio F, Costa A, Di Bella B, et al. Circadian Oscillation of Leukocyte Subpopulations and Inflammatory Cytokines over a 24-H Period in Horses. *Vet Sci*. 2025 Apr 20;12(4):386.

29. Choi SM, Shin EJ, Zo SM, Rao KM, Seok YJ, Won SY, et al. Revised Manuscript with Corrections: Polyurethane-Based Conductive Composites: From Synthesis to Applications. *Int J Mol Sci*. 2022 Feb 9;23(4):1938.

30. Sullivan M, Gonzalez Obezo C, Lipsky Z, Panchal A, Jensen J. Frontiers in Topical Photoprotection. *Cosmetics*. 2025 May 10;12(3):96.

31. Stanescu C, Chiscop I, Mihalache D, Boev M, Tamas C, Stoleriu G. The Roles of Micronutrition and Nutraceuticals in Enhancing Wound Healing and Tissue Regeneration: A Systematic Review. *Molecules*. 2025 Aug 31;30(17):3568.

32. Farasati Far B, Gouranmohit G, Naimi-jamal MR, Neysani E, El-Nashar HAS, El-Shazly M, et al. The Potential Role of *Hypericum perforatum* in Wound Healing: A Literature Review on The Phytochemicals, Pharmacological Approaches, and Mechanistic Perspectives. *Phytotherapy Research*. 2024 Jul 10;38(7):3271–95.

33. Prabhu Venkatesh D, S G, Ramani P, S R, Ramalingam K. In Vitro Evaluation of Antioxidant and Anti-inflammatory Potentials of Herbal Formulation Containing Marigold Flower (*Calendula officinalis* L.) Tea. *Cureus*. 2023 Aug 10;

34. Rowley NL, Ramos-Rivera E, Raiciulescu S, Lee SH, Christy AC. Comparison of Two Hair Removal Methods in Sprague–Dawley Rats (*Rattus norvegicus*). *Journal of the American Association for Laboratory Animal Science*. 2021 Mar 1;60(2):213–20.

35. Tsai PF, Chou FP, Yu TS, Lee HJ, Chiu CT. Depilatory Creams Increase the Number of Hair Follicles, and Dermal Fibroblasts Expressing Interleukin-6, Tumor Necrosis Factor- α , and Tumor Necrosis Factor- β in Mouse Skin. *The Korean Journal of Physiology & Pharmacology*. 2021 Nov 1;25(6):497–506.