Catalytic Oxidation of Tartrazine in Aqueous Solution Using a Pillared Clay with Aluminum and Iron

Ángel David Gálvez-Serna  -  Department of Chemical Engineering, Faculty of Engineering and Architecture, Universidad Nacional de Colombia sede Manizales, Colombia
Iván Fernando Macías-Quiroga scopus  -  Department of Chemical Engineering, Faculty of Engineering and Architecture, Universidad Nacional de Colombia sede Manizales, Colombia
Gloria Inés Giraldo-Gómez scopus  -  Department of Physics and Chemical, Faculty of Exact and Natural Sciences, Universidad Nacional de Colombia sede Manizales, Colombia
María Teresa Dávila-Arias  -  Department of Chemical Engineering, Faculty of Engineering and Architecture, Universidad Nacional de Colombia sede Manizales, Colombia
*Nancy Rocío Sanabria-González orcid scopus  -  Department of Chemical Engineering, Faculty of Engineering and Architecture, Universidad Nacional de Colombia sede Manizales, Colombia
Received: 2 Jan 2021; Revised: 25 Jan 2021; Accepted: 26 Jan 2021; Published: 31 Mar 2021; Available online: 29 Jan 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image

In this work, pillared bentonite with Al−Fe (Al−Fe−PILC) was synthesized and used as a heterogeneous Fenton-like catalyst in the oxidation of tartrazine azo-dye in an aqueous solution. The modification of bentonite with the Al-Fe mixed system in a concentrated medium, with ultrasound assisted intercalation was carried out, and the obtained catalyst was characterized by XRF, XRD, and N2 adsorption at 77 K. The oxidation of tartrazine with Al−Fe−PILC, using different amounts of H2O2, expressed as a multiple (1, 3, 6, and 9) of a stoichiometry amount required to completely oxidize the dye was evaluated. The reaction of catalytic wet peroxide oxidation (CWPO) of the dye with 400 mg of Al−Fe−PILC and 6 times the stoichiometric amount of H2O2 at 25 °C, reached 98.2±1.8% of decolorization, 51.9±1.9% of TOC removal and 71.5±1.8% of TN removal. Results of this study show that the oxidation of tartrazine increased with the amount of H2O2 up to a certain limit. This oxidation process can be considered as an alternative for treating wastewater containing azo-dye because the reaction takes place under mild experimental conditions (room temperature and atmospheric pressure). Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA  License (


Keywords: Pillared Clays; Al-Fe-PILC; tartrazine; decolorization; mineralization
Funding: Universidad Nacional de Colombia Sede Manizales (DIMA-UNAL Code 38621 and 46078)

Article Metrics:

  1. Soon, A.N., Hameed, B.H. (2011). Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination, 269, 1–16, doi: 10.1016/j.desal.2010.11.002
  2. Zheng, Z., Levin, R.E., Pinkham, J.L., Shetty, K. (1999). Decolorization of polymeric dyes by a novel Penicillium isolate. Process Biochemistry, 34, 31–37, doi: 10.1016/S0032-9592(98)00061-2
  3. Koprivanac, N., Kušić, H. (2007). Chapter 5. AOPs as an Effective Tool for the Minimization of Hazardous Organic Pollutants in Colored Wastewater; Chemical and Photochemical Processes. In Lewinsky, A.A. (Editor) Hazardous Materials and Wastewater: Treatment, Removal and Analysis. New York: Nova Science Publishers, Inc
  4. Zollinger, H. (2003). Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. Weinheim: Wiley VCH Publishers
  5. Chang, J.-S., Chou, C., Lin, Y.-C., Lin, P.-J., Ho, J.-Y., Lee Hu, T. (2001). Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Research, 35, 2841–2850, doi: 10.1016/S0043-1354(00)00581-9
  6. Saratale, R.G., Saratale, G.D., Chang, J.S., Govindwar, S.P. (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42, 138–157, doi: 10.1016/j.jtice.2010.06.006
  7. Hou, H., Zhou, R., Wu, P., Wu, L. (2012). Removal of Congo red dye from aqueous solution with hydroxyapatite/chitosan composite. Chemical Engineering Journal, 211–212, 336–342, doi: 10.1016/j.cej.2012.09.100
  8. Khelifi, S., Ayari, F., Choukchou-Braham, A., Hassan Chehimi, D.B. (2018). The remarkable effect of Al–Fe pillaring on the adsorption and catalytic activity of natural Tunisian bentonite in the degradation of azo dye. Journal of Porous Materials, 25, 885–896, doi: 10.1007/s10934-017-0500-4
  9. Gobara, M., Baraka, A. (2014). Tartrazine solution as dosimeter for gamma radiation measurement. International Letters of Chemistry, Physics and Astronomy, 14, 106–117, doi: 10.18052/
  10. Bastaki, M., Farrell, T., Bhusari, S., Pant, K., Kulkarni, R. (2017). Lack of genotoxicity in vivo for food color additive tartrazine. Food and Chemical Toxicology, 105, 278–284, doi: 10.1016/j.fct.2017.04.034
  11. Downham, A., Collins, P. (2000). Colouring our foods in the last and next millennium. Journal of Food Science and Technology, 35, 5–22, doi: 10.1046/j.1365-2621.2000.00373.x
  12. Awaleh, M.O., Soubaneh, Y.D. (2014). Waste water treatment in chemical industries: The concept and current technologies. Hydrology: Current Research, 5, 1–12, doi: 10.4172/2157-7587.1000164
  13. Chung, K.-T. (1983). The significance of azo-reduction in the mutagenesis and carcinogenesis of azo dyes. Mutation Research/Reviews in Genetic Toxicology, 114, 269–281, doi: 10.1016/0165-1110(83)90035-0
  14. Al-Degs, Y., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N.A. (2001). Sorption behavior of cationic and anionic dyes from aqueous solution on different types of activated carbons. Separation Science and Technology, 36, 91–102, doi: 10.1081/SS-100000853
  15. Muhd Julkapli, N., Bagheri, S., Bee Abd Hamid, S. (2014). Recent advances in heterogeneous photocatalytic decolorization of synthetic dyes. The Scientific World Journal, 2014, 692307, doi: 10.1155/2014/692307
  16. Agustina, T.E. (2013). AOPs Application on Dyes Removal. In Sharma, S., Sanghi, R. (Editors) Wastewater Reuse and Management. Dordrecht: Springer
  17. Atalay, S., Ersöz, G. (2015). Chapter 3. Advanced Oxidation Processes for Removal of Dyes from Aqueous Media. In Sharma, S.K. (Editor) Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications. Hoboken: John Wiley & Sons, Inc
  18. Glaze, W.H., Kang, J.-W., Chapin, D.H. (1987). The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone: Science & Engineering, 9, 335–352, doi: 10.1080/01919518708552148
  19. Babuponnusami, A., Muthukumar, K. (2014). A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering, 2, 557–572, doi: 10.1016/j.jece.2013.10.011
  20. Tehrani-Bagha, A.R., Balchi, T. (2018). Chapter 12. Catalytic Wet Peroxide Oxidation. In Ameta, S.C., Ameta, R. (Editors) Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology. London: Academic Press
  21. Wang, N., Zheng, T., Zhang, G., Wang, P. (2016). A review on Fenton-like processes for organic wastewater treatment. Journal of Environmental Chemical Engineering, 4, 762–787, doi: 10.1016/j.jece.2015.12.016
  22. Liotta, L.F., Gruttadauria, M., Di Carlo, G., Perrini, G., Librando, V. (2009). Heterogeneous catalytic degradation of phenolic substrates: Catalysts activity. Journal of Hazardous Materials, 162, 588–606, doi: 10.1016/j.jhazmat.2008.05.115
  23. Banković, P., Milutinović-Nikolić, A., Mojović, Z., Jović-Jovičić, N., Žunić, M., Dondur, V., Jovanović, D. (2012). Al,Fe-pillared clays in catalytic decolorization of aqueous tartrazine solutions. Applied Clay Science, 58, 73–78, doi: 10.1016/j.clay.2012.01.015
  24. Galeano, L.A., Gil, A., Vicente, M.A. (2010). Effect of the atomic active metal ratio in Al/Fe-, Al/Cu- and Al/(Fe–Cu)-intercalating solutions on the physicochemical properties and catalytic activity of pillared clays in the CWPO of methyl orange. Applied Catalysis B: Environmental, 100, 271–281, doi: 10.1016/j.apcatb.2010.08.003
  25. Gao, H., Zhao, B.-X., Luo, J.-C., Wu, D., Ye, W., Wang, Q., Zhang, X.-L. (2014). Fe–Ni–Al pillared montmorillonite as a heterogeneous catalyst for the catalytic wet peroxide oxidation degradation of orange acid II: Preparation condition and properties study. Microporous and Mesoporous Materials, 196, 208–215, doi: 10.1016/j.micromeso.2014.05.014
  26. Timofeeva, M.N., Khankhasaeva, S.T., Chesalov, Y.A., Tsybulya, S.V., Panchenko, V.N., Dashinamzhilova, E.T. (2009). Synthesis of Fe,Al-pillared clays starting from the Al,Fe-polymeric precursor: Effect of synthesis parameters on textural and catalytic properties. Applied Catalysis B: Environmental, 88, 127–134, doi: 10.1016/j.apcatb.2008.09.013
  27. Garrido-Ramírez, E.G., Theng, B.K.G., Mora, M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review. Applied Clay Science, 47, 182–192, doi: 10.1016/j.clay.2009.11.044
  28. Leal, T.W., Lourenço, L.A., Brandão, H.d.L., da Silva, A., de Souza, S.M.A.G.U., de Souza, A.A.U. (2018). Low-cost iron-doped catalyst for phenol degradation by heterogeneous Fenton. Journal of Hazardous Materials, 359, 96–103, doi: 10.1016/j.jhazmat.2018.07.018
  29. Ribeiro, R.S., Silva, A.M.T., Figueiredo, J.L., Faria, J.L., Gomes, H.T. (2016). Catalytic wet peroxide oxidation: a route towards the application of hybrid magnetic carbon nanocomposites for the degradation of organic pollutants. A review. Applied Catalysis B: Environmental, 187, 428–460, doi: 10.1016/j.apcatb.2016.01.033
  30. Taran, O.P., Zagoruiko, A.N., Ayusheev, A.B., Yashnik, S.A., Prihod’ko, R.V., Ismagilov, Z.R., Goncharuk, V.V., Parmon, V.N. (2015). Wet peroxide oxidation of phenol over Cu-ZSM-5 catalyst in a flow reactor. Kinetics and diffusion study. Chemical Engineering Journal, 282, 108–115, doi: 10.1016/j.cej.2015.02.064
  31. Bertella, F., Pergher, S.B.C. (2015). Pillaring of bentonite clay with Al and Co. Microporous and Mesoporous Materials, 201, 116–123, doi: 10.1016/j.micromeso.2014.09.013
  32. Tatibouët, J.-M., Guélou, E., Fournier, J. (2005). Catalytic oxidation of phenol by hydrogen peroxide over a pillared clay containing iron. Active species and pH effect. Topics in Catalysis, 33, 225–232, doi: 10.1007/s11244-005-2531-3
  33. Damardji, B., Khalaf, H., Duclaux, L., David, B. (2009). Preparation of TiO2-pillared montmorillonite as photocatalyst Part I. Microwave calcination, characterisation, and adsorption of a textile azo dye. Applied Clay Science, 44, 201–205, doi: 10.1016/j.clay.2008.12.010
  34. Carriazo, J., Guélou, E., Barrault, J., Tatibouët, J.M., Molina, R., Moreno, S. (2005). Synthesis of pillared clays containing Al, Al-Fe or Al-Ce-Fe from a bentonite: Characterization and catalytic activity. Catalysis Today, 107–108, 126–132, doi: 10.1016/j.cattod.2005.07.157
  35. Sanabria, N.R., Centeno, M.A., Molina, R., Moreno, S. (2009). Pillared clays with Al–Fe and Al–Ce–Fe in concentrated medium: Synthesis and catalytic activity. Applied Catalysis A: General, 356, 243–249, doi: 10.1016/j.apcata.2009.01.013
  36. Sanabria, N.R., Molina, R., Moreno, S. (2009). Effect of ultrasound on the structural and textural properties of aAl–Fe pillared clays in a concentrated medium. Catalysis Letters, 130, 664–671, doi: 10.1007/s10562-009-9956-4
  37. Carriazo, J., Molina, R., Moreno, S. (2007). Structural and textural characterization of a Colombian bentonite. Revista Colombiana de Química, 36, 213–225
  38. Day, P.R. (1965). Chapter 43. Particle fractionation and particle-size analysis. In Black, C.A., Evans, D.D., Ensminger, L.E., White, J.L., Clarck, F.E. (Editors) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Madison: American Society of Agronomy, Inc. Publisher
  39. Macías-Quiroga, I.F., Giraldo-Gómez, G.I., Sanabria-González, N.R. (2018). Characterization of Colombian clay and its potential use as adsorbent. The Scientific World Journal, 2018, 1–11, doi: 10.1155/2018/5969178
  40. Gregg, S.J., Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity. London: Academic Press
  41. Herney-Ramirez, J., Lampinen, M., Vicente, M.A., Costa, C.A., Madeira, L.M. (2008). Experimental design to optimize the oxidation of Orange II dye solution using a clay-based Fenton-like catalyst. Industrial & Engineering Chemistry Research, 47, 284–294, doi: 10.1021/ie070990y
  42. Ong, S.-A., Toorisaka, E., Hirata, M., Hano, T. (2005). Decolorization of azo dye (Orange II) in a sequential UASB–SBR system. Separation and Purification Technology, 42, 297–302, doi: 10.1016/j.seppur.2004.09.004
  43. Carriazo, J.G., Guelou, E., Barrault, J., Tatibouët, J.M., Moreno, S. (2003). Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays. Applied Clay Science, 22, 303–308, doi: 10.1016/S0169-1317(03)00124-8
  44. Barrault, J., Abdellaoui, M., Bouchoule, C., Majesté, A., Tatibouët, J.M., Louloudi, A., Papayannakos, N., Gangas, N.H. (2000). Catalytic wet peroxide oxidation over mixed (Al–Fe) pillared clays. Applied Catalysis B: Environmental, 27, L225–L230, doi: 10.1016/S0926-3373(00)00170-3
  45. Guélou, E., Barrault, J., Fournier, J., Tatibouët, J.-M. (2003). Active iron species in the catalytic wet peroxide oxidation of phenol over pillared clays containing iron. Applied Catalysis B: Environmental, 44, 1–8, doi: 10.1016/S0926-3373(03)00003-1
  46. Herney-Ramirez, J., Vicente, M.A., Madeira, L.M. (2010). Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: A review. Applied Catalysis B: Environmental, 98, 10–26, doi: 10.1016/j.apcatb.2010.05.004
  47. Abou-Elela, S.I., Ali, M.E.M., Ibrahim, H.S. (2016). Combined treatment of retting flax wastewater using Fenton oxidation and granular activated carbon. Arabian Journal of Chemistry, 9, 511–517, doi: 10.1016/j.arabjc.2014.01.010
  48. Sivrikaya, O., Uzal, B., Ozturk, Y.E. (2017). Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils. Applied Clay Science, 135, 532–537, doi: 10.1016/j.clay.2016.09.035
  49. Occelli, M.L., Bertrand, J.A., Gould, S.A.C., Dominguez, J.M. (2000). Physicochemical characterization of a Texas montmorillonite pillared with polyoxocations of aluminum: Part I: the microporous structure. Microporous and Mesoporous Materials, 34, 195–206, doi: 10.1016/S1387-1811(99)00173-0
  50. Occelli, M.L., Auroux, A., Ray, G.J. (2000). Physicochemical characterization of a Texas montmorillonite pillared with polyoxocations of aluminum. II. NMR and microcalorimetry results. Microporous and Mesoporous Materials, 39, 43–56, doi: 10.1016/S1387-1811(00)00175-X
  51. Thommes, M., Kaneko, K., Neimark, A.V., Olivier, J.P., Rodriguez-Reinoso, F., Rouquerol, J., Sing, K.S.W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87, 1051–1069, doi: 10.1515/pac-2014-1117
  52. Depci, T., Çelik, M.S. (2015). Chapter 9. Dye Adsorption on Expanding Three-Layer Clays. In Sharma, S.K. (Ed.) Green Chemistry for Dyes Removal from Wastewater. Salem: Scrivener Publishing LLC
  53. Zohra, B., Aicha, K., Fatima, S., Nourredine, B., Zoubir, D. (2008). Adsorption of direct red 2 on bentonite modified by cetyltrimethylammonium bromide. Chemical Engineering Journal, 136, 295–305, doi: 10.1016/j.cej.2007.03.086
  54. Marco-Brown, J.L., Barbosa-Lema, C.M., Torres Sánchez, R.M., Mercader, R.C., dos Santos Afonso, M. (2012). Adsorption of picloram herbicide on iron oxide pillared montmorillonite. Applied Clay Science, 58, 25–33, doi: 10.1016/j.clay.2012.01.004
  55. Aguiar, J.E., Bezerra, B.T.C., Siqueira, A.C.A., Barrera, D., Sapag, K., Azevedo, D.C.S., Lucena, S.M.P., Silva, I.J. (2014). Improvement in the adsorption of anionic and cationic dyes from aqueous solutions: A comparative study using aluminium pillared clays and activated carbon. Separation Science and Technology, 49, 741–751, doi: 10.1080/01496395.2013.862720
  56. Inchaurrondo, N.S., Massa, P., Fenoglio, R., Font, J., Haure, P. (2012). Efficient catalytic wet peroxide oxidation of phenol at moderate temperature using a high-load supported copper catalyst. Chemical Engineering Journal, 198–199, 426–434, doi: 10.1016/j.cej.2012.05.103
  57. Chen, Q., Wu, P., Li, Y., Zhu, N., Dang, Z. (2009). Heterogeneous photo-Fenton photodegradation of reactive brilliant orange X-GN over iron-pillared montmorillonite under visible irradiation. Journal of Hazardous Materials, 168, 901–908, doi: 10.1016/j.jhazmat.2009.02.107
  58. Bobu, M., Yediler, A., Siminiceanu, I., Schulte-Hostede, S. (2008). Degradation studies of ciprofloxacin on a pillared iron catalyst. Applied Catalysis B: Environmental, 83, 15–23, doi: 10.1016/j.apcatb.2008.01.029
  59. Ramirez, J.H., Costa, C.A., Madeira, L.M., Mata, G., Vicente, M.A., Rojas-Cervantes, M.L., López-Peinado, A.J., Martín-Aranda, R.M. (2007). Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay. Applied Catalysis B: Environmental, 71, 44–56, doi: 10.1016/j.apcatb.2006.08.012
  60. Dutta, K., Mukhopadhyay, S., Bhattacharjee, S., Chaudhuri, B. (2001). Chemical oxidation of methylene blue using a Fenton-like reaction. Journal of Hazardous Materials, 84, 57–71, doi: 10.1016/S0304-3894(01)00202-3
  61. Guedes, A.M.F.M., Madeira, L.M.P., Boaventura, R.A.R., Costa, C.A.V. (2003). Fenton oxidation of cork cooking wastewater - overall kinetic analysis. Water Research, 37, 3061–3069, doi: 10.1016/S0043-1354(03)00178-7
  62. Thiam, A., Zhou, M., Brillas, E., Sirés, I. (2014). Two-step mineralization of Tartrazine solutions: Study of parameters and by-products during the coupling of electrocoagulation with electrochemical advanced oxidation processes. Applied Catalysis B: Environmental, 150–151, 116–125, doi: 10.1016/j.apcatb.2013.12.011
  63. Yan, Y., Wu, X., Zhang, H. (2016). Catalytic wet peroxide oxidation of phenol over Fe2O3/MCM-41 in a fixed bed reactor. Separation and Purification Technology, 171, 52–61, doi: 10.1016/j.seppur.2016.06.047
  64. Sanabria, N.R., Molina, R., Moreno, S. (2012). Development of pillared clays for wet hydrogen peroxide oxidation of phenol and its application in the posttreatment of coffee wastewater. International Journal of Photoenergy, 2012, 864104, doi: 10.1155/2012/864104

Last update: 2021-04-21 12:18:13

No citation recorded.

Last update: 2021-04-21 12:18:15

No citation recorded.