High Active Co/Mg1-xCex3+O Catalyst: Effects of Metal-Support Promoter Interactions on CO2 Reforming of CH4 Reaction

*Faris A. Jassim Al-Doghachi orcid scopus  -  Department of Chemistry, Faculty of Science, University of Basrah, Iraq
Diyar M. A. Murad  -  Department of Chemistry, Faculty of Science, University of Basrah, Iraq
Huda S. Al-Niaeem  -  Department of Chemistry, Faculty of Science, University of Basrah, Iraq
Salam H. H. Al-Jaberi  -  Missan Health Department, Ministry of Health, Iraq
Surahim Mohamad  -  Catalysis Science and Technology Research Centre, Faculty of Science, University Putra Malaysia, Malaysia
Yun Hin Taufiq-Yap  -  Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Malaysia
Received: 30 Dec 2020; Revised: 8 Feb 2021; Accepted: 8 Feb 2021; Published: 31 Mar 2021; Available online: 25 Feb 2021.
Open Access Copyright (c) 2021 by Authors, Published by BCREC Group
Creative Commons License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Citation Format:
Cover Image
Abstract

Co/Mg1XCe3+XO (x = 0, 0.03, 0.07, 0.15; 1 wt% cobalt each) catalysts for the dry reforming of methane (DRM) reaction were prepared using the co-precipitation method with K2CO3 as precipitant. Characterization of the catalysts was achieved by X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (H2-TPR), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), and thermal gravimetric analysis (TGA). The role of several reactant and catalyst concentrations, and reaction temperatures (700–900 °C) on the catalytic performance of the DRM reaction was measured in a tubular fixed-bed reactor under atmospheric pressure at various CH4/CO2 concentration ratios (1:1 to 2:1). Using X-ray diffraction, a surface area of 19.2 m2.g1 was exhibited by the Co/Mg0.85Ce3+0.15O catalyst and MgO phase (average crystallite size of 61.4 nm) was detected on the surface of the catalyst. H2 temperature programmed reaction revealed a reduction of CoO particles to metallic Co0 phase. The catalytic stability of the Co/Mg0.85Ce3+0.15O catalyst was achieved for 200 h on-stream at 900 °C for the 1:1 CH4:CO2 ratio with an H2/CO ratio of 1.0 and a CH4, CO2 conversions of 75% and 86%, respectively. In the present study, the conversion of CH4 was improved (75%–84%) when conducting the experiment at a lower flow of oxygen (1.25%). Finally, the deposition of carbon on the spent catalysts was analyzed using TEM and Temperature programmed oxidation-mass spectroscopy (TPO-MS) following 200 h under an oxygen stream. Better anti-coking activity of the reduced catalyst was observed by both, TEM, and TPO-MS analysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0).

 

Keywords: Dry reforming of methane; MgO-Ce2O3 catalyst; Synthesis gas; H2 production
Funding: NanoMite Grant under contract Vot. No: 5526308

Article Metrics:

  1. Istadi, I., Anggoro, D.D., Amin, N.A.S., Ling, D.H.W. (2011). Catalyst deactivation simulation through carbon deposition in carbon dioxide reforming over Ni/CaO-Al2O3 catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2), 129–136, doi: 10.9767/bcrec.6.2.1213.129-136
  2. Omoregbe, O., Danh, H.T., Nguyen-Huy, C., Setiabudi, H.D., Abidin, S.Z., Truong, Q.D., Vo, D.V.N. (2017). Syngas production from methane dry reforming over Ni/SBA-15 catalyst: Effect of operating parameters. International Journal of Hydrogen Energy, 42(16), 11283–11294, doi: 10.1016/j.ijhydene.2017.03.146
  3. Al-Doghachi F.J. (2018) Effects of platinum and palladium metals on Ni/Mg1-xZrxO catalysts in the CO2 reforming of methane. Bulletin of Chemical Reaction Engineering & Catalysis, 13(2), 295–310, doi: 10.9767/bcrec.13.2.1656.295-310
  4. Aboosadi, Z.A., Jahanmiri, A., Rahimpour, M.R. (2011). Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Applied Energy, 88(8), 2691–2701, doi: 10.1016/j.apenergy.2011.02.017
  5. Chen, W.H., Lin, B.J., Lee, M., Huang, H. (2012). One-step synthesis of dimethyl ether from the gas mixture containing CO2 with high space velocity. Applied Energy, 98, 92–101, doi: 10.1016/j.apenergy.2012.02.082
  6. Sarkari, M., Fazlollahi, F., Ajamein, H., Atashi, H., Hecker, W.C., Baxter, L.L. (2014). Catalytic performance of an iron-based catalyst in Fischer-Tropsch synthesis. Fuel Processing Technology, 127, 163–170, doi: 10.1016/j.fuproc.2014.05.003
  7. Zhang, J., Wang, H., Dalai, A.K. (2007). Development of stable bimetallic catalysts for carbon dioxide reforming of methane. Journal of Catalysis, 249(2), 300–310, doi: 10.1016/j.jcat.2007.05.004
  8. Al-Doghachi, F.A., Taufiq-Yap, Y.H. (2017). Syngas production from the CO2 reforming of methane over Co/Mg1-xNixO catalysts. Journal of Chemical Sciences, 129(11), 1781–1786, doi: 10.1007/s12039-017-1396-x
  9. Ashok, J., Kawi, S. (2013). Steam reforming of toluene as a biomass tar model compound over CeO2 promoted Ni/CaO-Al2O3 catalytic systems. International Journal of Hydrogen Energy, 38(32), 13938–13949, doi: 10.1016/j.ijhydene.2013.08.029
  10. Liu, Y., He, Z., Zhou, L., Hou, Z., Eli, W. (2013). Simultaneous oxidative conversion and CO2 reforming of methane to syngas over Ni/vermiculite catalysts. Catalysis Communications, 42, 40–44, doi: 10.1016/j.catcom.2013.07.034
  11. Chen, Q.J., Zhang, J., Jin, Q.W., Pan, B.R., Kong, W.B., Zhao, T.J., Sun, Y.H. (2013). Effect of reflux digestion treatment on the catalytic performance of Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of CH4. Catalysis Today, 215, 251–259, doi: 10.1016/j.cattod.2013.06.011
  12. Alabi, W.O., Sulaiman, K.O., Wang, H. (2020). Sensitivity of the properties and performance of Co catalyst to the nature of support for CO2 reforming of CH4. Chemical Engineering Journal, 390, 124486, doi: 10.1016/j.cej.2020.124486
  13. Paksoy, A.I., Caglayan, B.S., Aksoylu, A.E. (2015), A study on characterization and methane dry reforming performance of Co-Ce/ZrO2 catalyst. Appl. Catal. B Environ., 168, 164–174, doi: 10.1016/j.apcatb.2014.12.038
  14. Casanovas, A., Roig, M., Leitenburg, C.D., Trovarelli, A., Llorca, J. (2010), Ethanol steam reforming and water gas shift over Co/ZnO catalytic honeycombs doped with Fe, Ni, Cu, Cr, and Na. Int. J. Hydrogen Energy, 35, 7690–7698, doi: 10.1016/j.ijhydene.2010.05.099
  15. Jang, W.J., Jeong, D.W., Shim, J.O., Kim, H.M., Han, W.B., Bae, J.W., Roh, H.S. (2014), Metal oxide (MgO, CaO, and La2O3) promoted Ni-Ce0.8Zr0.2O2 catalysts for H2 and CO production from two major greenhouse gases. Renew Energy, 79, 91–95, doi: 10.1016/j.renene.2014.08.032
  16. Cavallaro, S., Mondello, N., Freni, S. (2001), Hydrogen produced from ethanol for internal reforming molten carbonate fuel cell. J. Power Sources, 102, 198–204, doi: 10.1016/S0378-7753(01)00800-X
  17. Al-Doghachi, F.A., Islam, A., Zainal, Z., Saiman, M.I., Embong, Z., Taufiq-Yap, Y.H. (2016), High Coke-Resistance Pt/Mg1-xNixO Catalyst for Dry Reforming of Methane. PloS One, 11(1), 5862–5884, doi: 10.1371/journal.pone.0145862
  18. Al-Doghachi, F.A., Rashid U., Taufiq-Yap, Y.H. (2016). Investigation of Ce (III) promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry- reforming of methane. RSC Advances, 6(13), 10372–10384, doi: 10.1039/C5RA25869C
  19. Al-Najar, A., Al-Doghachi, F.A., Al-Riyahee, A.A., Taufiq-Yap, Y.H. (2020). Effect of La2O3 as a Promoter on the Pt,Pd,Ni/MgO Catalyst in Dry Reforming of Methane Reaction. Catalysts, 10(7), 750, doi: 10.3390/catal10070750
  20. Saha, B., Khan, A., Ibrahim, H., Idem, R. (2014). Evaluating the performance of non-precious metal based catalysts for sulfur-tolerance during the dry reforming of biogas. Fuel, 120, 202–217, doi: 10.1016/j.fuel.2013.12.016
  21. Hidalgo-Carrillo, J., Sebti, J., Marinas, A., Marinas, M., Sebti, S. & Urbano, F.J. (2012). XPS evidence for structure–performance relationship in selective hydrogenation of crotonaldehyde to crotyl alcohol on platinum systems supported on natural phosphates. Journal of Colloid and Interface Science, 382(1), 67–73, doi: 10.1016/j.jcis.2012.05.050
  22. Al-Doghachi, F.A., Rashid, U., Zainal, Z., Saiman, M.I., Taufiq Yap, Y.H. (2015). Influence of Ce2O3 and CeO2 promoters on Pd/MgO catalysts in the dry-reforming of methane. RSC Advances, 5(99), 81739–81752, doi: 10.1039/C5RA15825G
  23. Tada, S., Shimizu, T., Kameyama, H., Haneda, T., Kikuchi, R. (2012). Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures. International Journal of Hydrogen Energy, 37(7), 5527–5531, doi: 10.1016/j.ijhydene.2011.12.122
  24. Li, G., Hu, L., Hill, J.M. (2006). Comparison of reducibility and stability of alumina-supported Ni catalysts prepared by impregnation and co-precipitation. Applied Catalysis A: General, 301(1), 16–24, doi: 10.1016/j.apcata.2005.11.013
  25. Al‐Doghachi, F.A., Taufiq‐Yap, Y.H. (2018). CO2 reforming of methane over Ni/MgO catalysts promoted with Zr and La oxides. ChemistrySelect, 3(2), 816–827, doi: 10.1002/slct.201701883
  26. Mahoney, E.G., Pusel, J.M., Stagg-Williams, S.M., Faraji, S. (2014). The effects of Pt addition to supported Ni catalysts on dry (CO2) reforming of methane to syngas. Journal of CO2 Utilization, 6, 40–44, doi: 10.1016/j.jcou.2014.01.003
  27. Gaddalla, A.M., Sommer, M.E. (1989). Carbon dioxide reforming of methane on nickel catalysts. Chemical Engineering Science, 44(12), 2825–2829, doi: 10.1016/0009-2509(89)85092-4
  28. Al-Doghachi, F.J., Zainal, Z., Saiman, M.I., Embong, Z., Taufiq-Yap, Y.H. (2015). Hydrogen production from dry-reforming of biogas over Pt/Mg1-xNixO catalysts. Energy Procedia, 79, 18–25, doi: 10.1016/j.egypro.2015.11.460
  29. Kim, B.J., Jeon, K.W., Na, H.S., Lee, Y.L., Ahn, S.Y., Kim, K.J., Jang, W.J., Shim, J.O., Roh, H.S. (2020). Reducible oxide (CeO2, ZrO2, and CeO2-ZrO2) promoted Ni-MgO catalysts for carbon dioxide reforming of methane reaction. Korean Journal of Chemical Engineering, 37, 1130–1136, doi: 10.1007/s11814-020-0551-0
  30. Laosiripojana, N., Assabumrungrat, S. (2005). Catalytic dry reforming of methane over high surface area ceria. Applied Catalysis B: Environmental, 60(1–2), 107–116, doi: 10.1016/j.apcatb.2005.03.001
  31. Guo, J., Lou, H., Zhao, H., Chai, D., Zheng, X. (2004). Dry reforming of methane over nickel catalysts supported on magnesium aluminate spinels. Applied Catalysis A: General, 273(1–2), 75–82, doi: 10.1016/j.apcata.2004.06.014
  32. Atallah, E., Zeaiter, J., Ahmad, N., Kwapinska, M., Leahy, J. & Kwapinski, W. (2020). The effect of temperature, residence time, and water-sludge ratio on hydrothermal carbonization of DAF dairy sludge. Journal of Environmental Chemical Engineering, 8(1), 103599, doi: 10.1016/j.jece.2019.103599
  33. Kehres, J., Jakobsen, J. (2012). Dynamical Properties of a Ru/MgAl2O4 Catalyst during Reduction and Dry Methane Reforming. J. Phys. Chem. C, 116, 12407–21415, doi: 10.1021/jp3069656
  34. Topalidis, A., Petrakis, E., Ladavos, A., Loukatzikou, L., Pomonis, J. (2007). A kinetic study of methane and carbon dioxide interconversion over 0.5% Pt/SrTiO3 catalysts. Catalysis Today, 127(1–4), 238–245, doi: 10.1016/j.cattod.2007.04.015

Last update: 2021-04-21 12:18:16

No citation recorded.

Last update: 2021-04-21 12:18:17

No citation recorded.